1
|
Sponholtz MR, Byrne PO, Lee AG, Ramamohan AR, Goldsmith JA, McCool RS, Zhou L, Johnson NV, Hsieh CL, Connors M, Karthigeyan KP, Crooks CM, Fuller AS, Campbell JD, Permar SR, Maynard JA, Yu D, Bottomley MJ, McLellan JS. Structure-based design of a soluble human cytomegalovirus glycoprotein B antigen stabilized in a prefusion-like conformation. Proc Natl Acad Sci U S A 2024; 121:e2404250121. [PMID: 39231203 PMCID: PMC11406251 DOI: 10.1073/pnas.2404250121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
Human cytomegalovirus (HCMV) glycoprotein B (gB) is a class III membrane fusion protein required for viral entry. HCMV vaccine candidates containing gB have demonstrated moderate clinical efficacy, but no HCMV vaccine has been approved. Here, we used structure-based design to identify and characterize amino acid substitutions that stabilize gB in its metastable prefusion conformation. One variant containing two engineered interprotomer disulfide bonds and two cavity-filling substitutions (gB-C7), displayed increased expression and thermostability. A 2.8 Å resolution cryoelectron microscopy structure shows that gB-C7 adopts a prefusion-like conformation, revealing additional structural elements at the membrane-distal apex. Unlike previous observations for several class I viral fusion proteins, mice immunized with postfusion or prefusion-stabilized forms of soluble gB protein displayed similar neutralizing antibody titers, here specifically against an HCMV laboratory strain on fibroblasts. Collectively, these results identify initial strategies to stabilize class III viral fusion proteins and provide tools to probe gB-directed antibody responses.
Collapse
Affiliation(s)
- Madeline R. Sponholtz
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Patrick O. Byrne
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Alison G. Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Ajit R. Ramamohan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Jory A. Goldsmith
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Ryan S. McCool
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Ling Zhou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Nicole V. Johnson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Ching-Lin Hsieh
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Megan Connors
- Division of Infectious Diseases, Department of Pediatrics, Weill Cornell Medicine, New York, NY10065
| | - Krithika P. Karthigeyan
- Division of Infectious Diseases, Department of Pediatrics, Weill Cornell Medicine, New York, NY10065
| | - Chelsea M. Crooks
- Division of Infectious Diseases, Department of Pediatrics, Weill Cornell Medicine, New York, NY10065
| | - Adelaide S. Fuller
- Division of Infectious Diseases, Department of Pediatrics, Weill Cornell Medicine, New York, NY10065
| | | | - Sallie R. Permar
- Division of Infectious Diseases, Department of Pediatrics, Weill Cornell Medicine, New York, NY10065
| | - Jennifer A. Maynard
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX78712
| | - Dong Yu
- Dynavax Technologies Corporation, Emeryville, CA94608
| | | | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| |
Collapse
|
2
|
Grgic I, Gorenec L. Human Cytomegalovirus (HCMV) Genetic Diversity, Drug Resistance Testing and Prevalence of the Resistance Mutations: A Literature Review. Trop Med Infect Dis 2024; 9:49. [PMID: 38393138 PMCID: PMC10892457 DOI: 10.3390/tropicalmed9020049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Human cytomegalovirus (HCMV) is a pathogen with high prevalence in the general population that is responsible for high morbidity and mortality in immunocompromised individuals and newborns, while remaining mainly asymptomatic in healthy individuals. The HCMV genome is 236,000 nucleotides long and encodes approximately 200 genes in more than 170 open reading frames, with the highest rate of genetic polymorphisms occurring in the envelope glycoproteins. HCMV infection is treated with antiviral drugs such as ganciclovir, valganciclovir, cidofovir, foscarnet, letermovir and maribavir targeting viral enzymes, DNA polymerase, kinase and the terminase complex. One of the obstacles to successful therapy is the emergence of drug resistance, which can be tested phenotypically or by genotyping using Sanger sequencing, which is a widely available but less sensitive method, or next-generation sequencing performed in samples with a lower viral load to detect minority variants, those representing approximately 1% of the population. The prevalence of drug resistance depends on the population tested, as well as the drug, and ranges from no mutations detected to up to almost 50%. A high prevalence of resistance emphasizes the importance of testing the patient whenever resistance is suspected, which requires the development of more sensitive and rapid tests while also highlighting the need for alternative therapeutic targets, strategies and the development of an effective vaccine.
Collapse
Affiliation(s)
- Ivana Grgic
- Department of Molecular and Immunological Diagnostic, University Hospital for Infectious Diseases “Dr. Fran Mihaljevic”, 10000 Zagreb, Croatia
| | - Lana Gorenec
- Department of Molecular and Immunological Diagnostic, University Hospital for Infectious Diseases “Dr. Fran Mihaljevic”, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Hoornweg TE, Schaftenaar W, Rutten VPMG, de Haan CAM. Low gH/gL (Sub)Species-Specific Antibody Levels Indicate Elephants at Risk of Fatal Elephant Endotheliotropic Herpesvirus Hemorrhagic Disease. Viruses 2024; 16:268. [PMID: 38400043 PMCID: PMC10892434 DOI: 10.3390/v16020268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Elephant endotheliotropic herpesviruses (EEHVs), of which eleven (sub)species are currently distinguished, infect either Asian (Elephas maximus) or African elephants (Loxodonta species). While all adult elephants are latently infected with at least one EEHV (sub)species, young elephants, specifically those with low to non-detectable EEHV-specific antibody levels, may develop fatal hemorrhagic disease (EEHV-HD) upon infection. However, animals with high antibody levels against EEHV(1A) gB, an immunodominant antigen recognized by antibodies elicited against multiple (sub)species, may also occasionally succumb to EEHV-HD. To better define which animals are at risk of EEHV-HD, gB and gH/gL ELISAs were developed for each of the Asian elephant EEHV subspecies and assessed using 396 sera from 164 Asian elephants from European zoos. Antibody levels measured against gB of different (sub)species correlated strongly with one another, suggesting high cross-reactivity. Antibody levels against gH/gL of different subspecies were far less correlated and allowed differentiation between these (sub)species. Importantly, while high gB-specific antibody levels were detected in the sera of several EEHV-HD fatalities, all fatalities (n = 23) had low antibody levels against gH/gL of the subspecies causing disease. Overall, our data indicate that (sub)species-specific gH/gL ELISAs can be used to identify animals at risk of EEHV-HD when infected with a particular EEHV (sub)species.
Collapse
Affiliation(s)
- Tabitha E. Hoornweg
- Section of Virology, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Department of Biomolecular Health Sciences, Utrecht University, 3584 CL Utrecht, The Netherlands
- Section of Immunology, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Department of Biomolecular Health Sciences, Utrecht University, 3584 CL Utrecht, The Netherlands;
| | | | - Victor P. M. G. Rutten
- Section of Immunology, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Department of Biomolecular Health Sciences, Utrecht University, 3584 CL Utrecht, The Netherlands;
- Faculty of Veterinary Science, Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort 0110, South Africa
| | - Cornelis A. M. de Haan
- Section of Virology, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Department of Biomolecular Health Sciences, Utrecht University, 3584 CL Utrecht, The Netherlands
| |
Collapse
|
4
|
El Baba R, Haidar Ahmad S, Monnien F, Mansar R, Bibeau F, Herbein G. Polyploidy, EZH2 upregulation, and transformation in cytomegalovirus-infected human ovarian epithelial cells. Oncogene 2023; 42:3047-3061. [PMID: 37634008 PMCID: PMC10555822 DOI: 10.1038/s41388-023-02813-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/28/2023]
Abstract
Human cytomegalovirus (HCMV) infection has been implicated in epithelial ovarian cancer (OC). Polyploidy giant cancer cells (PGCCs) have been observed in high-grade serous ovarian carcinoma (HGSOC); they possess cancer stem cell-like characteristics and give rise to progeny cells expressing epithelial-mesenchymal transition (EMT) markers. EZH2 plays a potential oncogenic role, correlating with high proliferative index and tumor grade in OC. Herein, we present the experimental evidence for HCMV as a reprogramming vector that elicited human ovarian epithelial cells (OECs) transformation leading to the generation of "CMV-transformed Ovarian cells" (CTO). The infection with the two high-risk clinical strains, namely HCMV-DB and BL provoked a distinct cellular and molecular mechanisms in infected OECs. EZH2 upregulation and cellular proliferation were curtailed by using EZH2 inhibitors. The HGSOC biopsies were characterized by an elevated EZH2 expression, possessing a strong positive correlation between the aforementioned marker and HCMV. From HGSOC biopsies, we isolated three HCMV clinical strains that transformed OECs generating CTO cells which displayed proliferative potentials in addition to EZH2 upregulation and PGCCs generation; these features were reduced upon EZH2 inhibition. High-risk HCMV strains transformed OECs confirming an HCMV-induced epithelial ovarian cancer model and highlighting EZH2 tumorigenic properties. Our findings might be highly relevant in the pathophysiology of ovarian tumors thereby nominating new targeted therapeutics.
Collapse
Affiliation(s)
- Ranim El Baba
- Department of Pathogens & Inflammation-EPILAB Laboratory EA4266, University of Franche-Comté, Besançon, France
| | - Sandy Haidar Ahmad
- Department of Pathogens & Inflammation-EPILAB Laboratory EA4266, University of Franche-Comté, Besançon, France
| | | | - Racha Mansar
- Department of Pathology, CHU Besançon, Besançon, France
| | | | - Georges Herbein
- Department of Pathogens & Inflammation-EPILAB Laboratory EA4266, University of Franche-Comté, Besançon, France.
- Department of Virology, CHU Besançon, Besançon, France.
| |
Collapse
|
5
|
TUGRUL ERSAK D, OZGURLUK I, BASTEMUR AG, GULEN YILDIZ E, SINACI S, TURGUT E, KARA O, TANACAN A, SAHIN D. Results of Routine Antenatal Screening for Cytomegalovirus at a Tertiary Center. Medeni Med J 2023; 38:167-171. [PMID: 37766584 PMCID: PMC10542985 DOI: 10.4274/mmj.galenos.2023.84042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/16/2023] [Indexed: 09/29/2023] Open
Abstract
Objective Cytomegalovirus (CMV) is the most common viral infection. In this study, we discussed the results of pregnant women who underwent antenatal CMV screening in a tertiary center and the value of CMV antenatal screening. Methods For this retrospective study, the data of pregnant patients with antenatal CMV screening test results between 2019 and 2022 were obtained from hospital records. CMV immunoglobulin M (IgM), CMV IgG, anti-IgG avidity test results, amniocentesis, CMV polymerase chain reaction (PCR), and the outcome of the babies were recorded. Results A total of 31,912 CMV IgM and 26,969 CMV IgG tests were performed. CMV IgG seropositivity was observed in 78.99% of pregnant women, and 0.09% of the pregnant women were confirmed to have a positive CMV IgM test result. Pregnant women with positive IgM accompanying low avidity were referred to perinatology clinics for detailed ultrasonography and amniocentesis. Only 3 of the 44 pregnant women who underwent amniocentesis were confirmed to have positive CMV PCR testing. Conclusions CMV screening should be preserved for pregnant women with ultrasonographic findings at high risk of congenital CMV infection.
Collapse
Affiliation(s)
- Duygu TUGRUL ERSAK
- University of Health Sciences Turkey, Ankara City Hospital, Clinic of Obstetrics and Gynecology, Ankara, Turkey
| | - Izzet OZGURLUK
- University of Health Sciences Turkey, Ankara City Hospital, Clinic of Obstetrics and Gynecology, Ankara, Turkey
| | - Ayse Gulcin BASTEMUR
- University of Health Sciences Turkey, Ankara City Hospital, Clinic of Obstetrics and Gynecology, Ankara, Turkey
| | - Esra GULEN YILDIZ
- University of Health Sciences Turkey, Ankara City Hospital, Clinic of Obstetrics and Gynecology, Ankara, Turkey
| | - Selcan SINACI
- University of Health Sciences Turkey, Ankara City Hospital, Clinic of Obstetrics and Gynecology, Ankara, Turkey
| | - Ezgi TURGUT
- University of Health Sciences Turkey, Ankara City Hospital, Clinic of Obstetrics and Gynecology, Ankara, Turkey
| | - Ozgur KARA
- University of Health Sciences Turkey, Ankara City Hospital, Clinic of Obstetrics and Gynecology, Ankara, Turkey
| | - Atakan TANACAN
- University of Health Sciences Turkey, Ankara City Hospital, Clinic of Obstetrics and Gynecology, Ankara, Turkey
| | - Dilek SAHIN
- University of Health Sciences Turkey, Ankara City Hospital, Clinic of Obstetrics and Gynecology, Ankara, Turkey
| |
Collapse
|
6
|
McMahon‑Cole H, Johnson A, Sadat Aghamiri S, Helikar T, Crawford LB. Modeling and Remodeling the Cell: How Digital Twins and HCMV Can Elucidate the Complex Interactions of Viral Latency, Epigenetic Regulation, and Immune Responses. CURRENT CLINICAL MICROBIOLOGY REPORTS 2023; 10:141-151. [PMID: 37901689 PMCID: PMC10601359 DOI: 10.1007/s40588-023-00201-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 10/31/2023]
Abstract
Purpose of Review Human cytomegalovirus (HCMV), while asymptomatic in most, causes significant complications during fetal development, following transplant or in immunosuppressed individuals. The host-virus interactions regulating viral latency and reactivation and viral control of the cellular environment (immune regulation, differentiation, epigenetics) are highly complex. Understanding these processes is essential to controlling infection and can be leveraged as a novel approach for understanding basic cell biology. Recent Findings Immune digital twins (IDTs) are digital simulations integrating knowledge of human immunology, physiology, and patient-specific clinical data to predict individualized immune responses and targeted treatments. Recent studies used IDTs to elucidate mechanisms of T cells, dendritic cells, and epigenetic control-all key to HCMV biology. Summary Here, we discuss how leveraging the unique biology of HCMV and IDTs will clarify immune response dynamics, host-virus interactions, and viral latency and reactivation and serve as a powerful IDT-validation platform for individualized and holistic health management.
Collapse
Affiliation(s)
- Hana McMahon‑Cole
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Alicia Johnson
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Sara Sadat Aghamiri
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Tomáš Helikar
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Lindsey B. Crawford
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Center for Virology, Lincoln, NE, USA
- Nebraska Center for Integrated Biomolecular Communication, Lincoln, NE, USA
| |
Collapse
|
7
|
Panda K, Parashar D, Viswanathan R. An Update on Current Antiviral Strategies to Combat Human Cytomegalovirus Infection. Viruses 2023; 15:1358. [PMID: 37376657 PMCID: PMC10303229 DOI: 10.3390/v15061358] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Human cytomegalovirus (HCMV) remains an essential global concern due to its distinct life cycle, mutations and latency. As HCMV is a herpesvirus, it establishes a lifelong persistence in the host through a chronic state of infection. Immunocompromised individuals are at risk of significant morbidity and mortality from the virus. Until now, no effective vaccine has been developed to combat HCMV infection. Only a few antivirals targeting the different stages of the virus lifecycle and viral enzymes are licensed to manage the infection. Therefore, there is an urgent need to find alternate strategies to combat the infection and manage drug resistance. This review will provide an insight into the clinical and preclinical antiviral approaches, including HCMV antiviral drugs and nucleic acid-based therapeutics.
Collapse
Affiliation(s)
- Kingshuk Panda
- Dengue-Chikungunya Group, Indian Council of Medical Research-National Institute of Virology, Pune 411001, India
| | - Deepti Parashar
- Dengue-Chikungunya Group, Indian Council of Medical Research-National Institute of Virology, Pune 411001, India
| | - Rajlakshmi Viswanathan
- Bacteriology Group, Indian Council of Medical Research-National Institute of Virology, Pune 411001, India
| |
Collapse
|
8
|
Sartori P, Egloff C, Hcini N, Vauloup Fellous C, Périllaud-Dubois C, Picone O, Pomar L. Primary, Secondary, and Tertiary Prevention of Congenital Cytomegalovirus Infection. Viruses 2023; 15:v15040819. [PMID: 37112800 PMCID: PMC10146889 DOI: 10.3390/v15040819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/11/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Cytomegalovirus infection is the most common congenital infection, affecting about 1% of births worldwide. Several primary, secondary, and tertiary prevention strategies are already available during the prenatal period to help mitigate the immediate and long-term consequences of this infection. In this review, we aim to present and assess the efficacy of these strategies, including educating pregnant women and women of childbearing age on their knowledge of hygiene measures, development of vaccines, screening for cytomegalovirus infection during pregnancy (systematic versus targeted), prenatal diagnosis and prognostic assessments, and preventive and curative treatments in utero.
Collapse
Affiliation(s)
- Pauline Sartori
- School of Health Sciences (HESAV), University of Applied Sciences and Arts Western Switzerland, 1011 Lausanne, Switzerland
- Department Woman-Mother-Child, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Charles Egloff
- Assistance Publique-Hôpitaux de Paris APHP, Nord, Service de Gynécologie Obstétrique, Hôpital Louis Mourier, 92700 Colombes, France
- Université de Paris, 75006 Paris, France
- INSERM, IAME, B.P. 416, 75870 Paris, France
| | - Najeh Hcini
- Department of Obstetrics and Gynaecology, West French Guiana Hospital Center, French 97320, Guyana
- CIC Inserm 1424 et DFR Santé Université Guyane, 97320 ST Laurent du Maroni, France
| | - Christelle Vauloup Fellous
- Université Paris-Saclay, INSERM U1193, 94804 Villejuif, France
- Laboratoire de Virologie, AP-HP, Hôpital Paul-Brousse, 94804 Villejuif, France
- Groupe de Recherche sur les Infections Pendant la Grossesse (GRIG), 75000 Paris, France
| | - Claire Périllaud-Dubois
- Université de Paris, 75006 Paris, France
- INSERM, IAME, B.P. 416, 75870 Paris, France
- Virology Laboratory, AP-HP, Sorbonne Université, Hôpital Saint-Antoine, F-75012 Paris, France
| | - Olivier Picone
- Assistance Publique-Hôpitaux de Paris APHP, Nord, Service de Gynécologie Obstétrique, Hôpital Louis Mourier, 92700 Colombes, France
- Université de Paris, 75006 Paris, France
- INSERM, IAME, B.P. 416, 75870 Paris, France
- Groupe de Recherche sur les Infections Pendant la Grossesse (GRIG), 75000 Paris, France
| | - Léo Pomar
- School of Health Sciences (HESAV), University of Applied Sciences and Arts Western Switzerland, 1011 Lausanne, Switzerland
- Department Woman-Mother-Child, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
9
|
Nuévalos M, García-Ríos E, Mancebo FJ, Martín-Martín C, Pérez-Romero P. Novel monoclonal antibody-based therapies: implications for the treatment and prevention of HCMV disease. Trends Microbiol 2023; 31:480-497. [PMID: 36624009 DOI: 10.1016/j.tim.2022.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023]
Abstract
Human cytomegalovirus (HCMV) is an important pathogen worldwide. Although HCMV infection is often asymptomatic in immunocompetent individuals, it can cause severe or even life-threatening symptoms in immunocompromised patients. Due to limitations of antiviral treatments, it is necessary to search for new therapeutic alternatives. Recent studies have highlighted the contribution of antibodies in protecting against HCMV disease, including neutralizing and non-neutralizing antibodies. Given the immunocompromised target population, monoclonal antibodies (mAbs) may represent an alternative to the clinical management of HCMV infection. In this context, we provide a synthesis of recent data revising the literature supporting and arguing about the role of the humoral immunity in controlling HCMV infection. Additionally, we review the state of the art in the development of therapies based on mAbs.
Collapse
Affiliation(s)
- Marcos Nuévalos
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Estéfani García-Ríos
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; Department of Science, Universidad Internacional de Valencia-VIU, 46002 Valencia, Spain.
| | - Francisco J Mancebo
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Clara Martín-Martín
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Pilar Pérez-Romero
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain.
| |
Collapse
|
10
|
Jenks JA, Amin S, Sponholtz MR, Kumar A, Wrapp D, Venkatayogi S, Tu JJ, Karthigeyan K, Valencia SM, Connors M, Harnois MJ, Hora B, Rochat E, McLellan JS, Wiehe K, Permar SR. A single, improbable B cell receptor mutation confers potent neutralization against cytomegalovirus. PLoS Pathog 2023; 19:e1011107. [PMID: 36662906 PMCID: PMC9891502 DOI: 10.1371/journal.ppat.1011107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/01/2023] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
Cytomegalovirus (CMV) is a leading cause of infant hearing loss and neurodevelopmental delay, but there are no clinically licensed vaccines to prevent infection, in part due to challenges eliciting neutralizing antibodies. One of the most well-studied targets for CMV vaccines is the viral fusogen glycoprotein B (gB), which is required for viral entry into host cells. Within gB, antigenic domain 2 site 1 (AD-2S1) is a target of potently neutralizing antibodies, but gB-based candidate vaccines have yet to elicit robust responses against this region. We mapped the genealogy of B cells encoding potently neutralizing anti-gB AD-2S1 antibodies from their inferred unmutated common ancestor (UCA) and characterized the binding and function of early lineage ancestors. Surprisingly, we found that a single amino acid heavy chain mutation A33N, which was an improbable mutation rarely generated by somatic hypermutation machinery, conferred broad CMV neutralization to the non-neutralizing UCA antibody. Structural studies revealed that this mutation mediated key contacts with the gB AD-2S1 epitope. Collectively, these results provide insight into potently neutralizing gB-directed antibody evolution in a single donor and lay a foundation for using this B cell-lineage directed approach for the design of next-generation CMV vaccines.
Collapse
Affiliation(s)
- Jennifer A. Jenks
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sharmi Amin
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Madeline R. Sponholtz
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Amit Kumar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Daniel Wrapp
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Sravani Venkatayogi
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joshua J. Tu
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Krithika Karthigeyan
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, United States of America
| | - Sarah M. Valencia
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Megan Connors
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, United States of America
| | - Melissa J. Harnois
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Bhavna Hora
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Eric Rochat
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Sallie R. Permar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, United States of America
| |
Collapse
|
11
|
Hu X, Wang HY, Otero CE, Jenks JA, Permar SR. Lessons from Acquired Natural Immunity and Clinical Trials to Inform Next-Generation Human Cytomegalovirus Vaccine Development. Annu Rev Virol 2022; 9:491-520. [PMID: 35704747 PMCID: PMC10154983 DOI: 10.1146/annurev-virology-100220-010653] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human cytomegalovirus (HCMV) infection, the most common cause of congenital disease globally, affecting an estimated 1 million newborns annually, can result in lifelong sequelae in infants, such as sensorineural hearing loss and brain damage. HCMV infection also leads to a significant disease burden in immunocompromised individuals. Hence, an effective HCMV vaccine is urgently needed to prevent infection and HCMV-associated diseases. Unfortunately, despite more than five decades of vaccine development, no successful HCMV vaccine is available. This review summarizes what we have learned from acquired natural immunity, including innate and adaptive immunity; the successes and failures of HCMV vaccine human clinical trials; the progress in related animal models; and the analysis of protective immune responses during natural infection and vaccination settings. Finally, we propose novel vaccine strategies that will harness the knowledge of protective immunity and employ new technology and vaccine concepts to inform next-generation HCMV vaccine development.
Collapse
Affiliation(s)
- Xintao Hu
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA;
| | - Hsuan-Yuan Wang
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA;
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Claire E Otero
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA;
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Jennifer A Jenks
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Sallie R Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA;
| |
Collapse
|
12
|
Semmes EC, Miller IG, Wimberly CE, Phan CT, Jenks JA, Harnois MJ, Berendam SJ, Webster H, Hurst JH, Kurtzberg J, Fouda GG, Walsh KM, Permar SR. Maternal Fc-mediated non-neutralizing antibody responses correlate with protection against congenital human cytomegalovirus infection. J Clin Invest 2022; 132:e156827. [PMID: 35763348 PMCID: PMC9374380 DOI: 10.1172/jci156827] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/24/2022] [Indexed: 01/05/2023] Open
Abstract
Human cytomegalovirus (HCMV) is the most common congenital infection and a leading cause of stillbirth, neurodevelopmental impairment, and pediatric hearing loss worldwide. Development of a maternal vaccine or therapeutic to prevent congenital HCMV has been hindered by limited knowledge of the immune responses that protect against HCMV transmission in utero. To identify protective antibody responses, we measured HCMV-specific IgG binding and antiviral functions in paired maternal and cord blood sera from HCMV-seropositive transmitting (n = 41) and non-transmitting (n = 40) mother-infant dyads identified via a large, US-based, public cord blood bank. We found that high-avidity IgG binding to HCMV and antibody-dependent cellular phagocytosis (ADCP) were associated with reduced risk of congenital HCMV infection. We also determined that HCMV-specific IgG activation of FcγRI and FcγRII was enhanced in non-transmitting dyads and that increased ADCP responses were mediated through both FcγRI and FcγRIIA expressed on human monocytes. These findings suggest that engagement of FcγRI/FcγRIIA and Fc effector functions including ADCP may protect against congenital HCMV infection. Taken together, these data can guide future prospective studies on immune correlates against congenital HCMV transmission and inform HCMV vaccine and immunotherapeutic development.
Collapse
Affiliation(s)
- Eleanor C. Semmes
- Medical Scientist Training Program, Department of Molecular Genetics and Microbiology and
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Duke Children’s Health & Discovery Initiative, Duke University, Durham, North Carolina, USA
| | - Itzayana G. Miller
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Pediatrics, Weill Cornell School of Medicine, New York, New York, USA
| | - Courtney E. Wimberly
- Duke Children’s Health & Discovery Initiative, Duke University, Durham, North Carolina, USA
- Department of Neurosurgery and
| | - Caroline T. Phan
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Jennifer A. Jenks
- Medical Scientist Training Program, Department of Molecular Genetics and Microbiology and
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Melissa J. Harnois
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Stella J. Berendam
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Helen Webster
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Jillian H. Hurst
- Duke Children’s Health & Discovery Initiative, Duke University, Durham, North Carolina, USA
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Joanne Kurtzberg
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
- Carolinas Cord Blood Bank, Duke University Medical Center, Durham, North Carolina, USA
| | - Genevieve G. Fouda
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Duke Children’s Health & Discovery Initiative, Duke University, Durham, North Carolina, USA
| | - Kyle M. Walsh
- Duke Children’s Health & Discovery Initiative, Duke University, Durham, North Carolina, USA
- Department of Neurosurgery and
| | - Sallie R. Permar
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Duke Children’s Health & Discovery Initiative, Duke University, Durham, North Carolina, USA
- Department of Pediatrics, Weill Cornell School of Medicine, New York, New York, USA
| |
Collapse
|
13
|
Deciphering the Potential Coding of Human Cytomegalovirus: New Predicted Transmembrane Proteome. Int J Mol Sci 2022; 23:ijms23052768. [PMID: 35269907 PMCID: PMC8911422 DOI: 10.3390/ijms23052768] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/18/2022] [Accepted: 02/26/2022] [Indexed: 02/06/2023] Open
Abstract
CMV is a major cause of morbidity and mortality in immunocompromised individuals that will benefit from the availability of a vaccine. Despite the efforts made during the last decade, no CMV vaccine is available. An ideal CMV vaccine should elicit a broad immune response against multiple viral antigens including proteins involved in virus-cell interaction and entry. However, the therapeutic use of neutralizing antibodies targeting glycoproteins involved in viral entry achieved only partial protection against infection. In this scenario, a better understanding of the CMV proteome potentially involved in viral entry may provide novel candidates to include in new potential vaccine design. In this study, we aimed to explore the CMV genome to identify proteins with putative transmembrane domains to identify new potential viral envelope proteins. We have performed in silico analysis using the genome sequences of nine different CMV strains to predict the transmembrane domains of the encoded proteins. We have identified 77 proteins with transmembrane domains, 39 of which were present in all the strains and were highly conserved. Among the core proteins, 17 of them such as UL10, UL139 or US33A have no ascribed function and may be good candidates for further mechanistic studies.
Collapse
|
14
|
Zeng C, Zhang C, Walker PG, Dong Y. Formulation and Delivery Technologies for mRNA Vaccines. Curr Top Microbiol Immunol 2022; 440:71-110. [PMID: 32483657 PMCID: PMC8195316 DOI: 10.1007/82_2020_217] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
mRNA vaccines have become a versatile technology for the prevention of infectious diseases and the treatment of cancers. In the vaccination process, mRNA formulation and delivery strategies facilitate effective expression and presentation of antigens, and immune stimulation. mRNA vaccines have been delivered in various formats: encapsulation by delivery carriers, such as lipid nanoparticles, polymers, peptides, free mRNA in solution, and ex vivo through dendritic cells. Appropriate delivery materials and formulation methods often boost the vaccine efficacy which is also influenced by the selection of a proper administration route. Co-delivery of multiple mRNAs enables synergistic effects and further enhances immunity in some cases. In this chapter, we overview the recent progress and existing challenges in the formulation and delivery technologies of mRNA vaccines with perspectives for future development.
Collapse
Affiliation(s)
- Chunxi Zeng
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, 43210, Columbus, OH, USA
| | - Chengxiang Zhang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, 43210, Columbus, OH, USA
| | - Patrick G Walker
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, 43210, Columbus, OH, USA. .,The Center for Clinical and Translational Science, The Ohio State University, Columbus, OH, 43210, USA. .,The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA. .,Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, 43210, Columbus, OH, USA. .,Department of Radiation Oncology, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
15
|
Analysis and Fine Specificity of the HCMV-Specific Cell-Free and Cell-Associated Antibody-Dependent Cellular Phagocytosis (ADCP) Responses in Lung Transplant Recipients. Int J Mol Sci 2021; 22:ijms22158206. [PMID: 34360986 PMCID: PMC8348747 DOI: 10.3390/ijms22158206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/04/2022] Open
Abstract
Human Cytomegalovirus (HCMV) may cause severe infections in transplant recipients. HCMV-replication can be limited by HCMV-specific antibody responses. The impact of the antibody-dependent cellular phagocytosis (ADCP) on inhibition of HCMV-replication in natural infections has not been clarified. Therefore, we investigated the HCMV-specific ADCP response in a study cohort of lung-transplant recipients (LTRs) with different donor (D) and recipient (R) HCMV-serostatus. Follow-up plasma samples from 39 non/low-viremic and 36 highly viremic (>1000 HCMV copies/mL plasma) LTRs were collected for one (R+ LTRs) or two (D+/R− LTRs) years post-transplantation. The HCMV-specific ADCP responses were assessed by focal expansion assays (FEA) and flow-cytometry. In all LTRs, ADCP responses were detected against HCMV-infected cells and cell-free virions. When measured in fibroblasts as well as with cell-free virus, the HCMV-specific ADPC response was higher in LTRs than in HCMV-seropositive healthy controls. In D+/R− LTRs, a significant ADCP response developed over time after the receipt of an HCMV positive lung, and a level of <19 IE+ cells/focus in the FEA on fibroblasts was associated with further protection from high-level viremia. Taken together, a strong HCMV-specific ADCP response is elicited in transplant recipients, which may contribute to protection from high-level viremia in primary HCMV infection.
Collapse
|
16
|
Scarpini S, Morigi F, Betti L, Dondi A, Biagi C, Lanari M. Development of a Vaccine against Human Cytomegalovirus: Advances, Barriers, and Implications for the Clinical Practice. Vaccines (Basel) 2021; 9:551. [PMID: 34070277 PMCID: PMC8225126 DOI: 10.3390/vaccines9060551] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/13/2022] Open
Abstract
Human cytomegalovirus (hCMV) is one of the most common causes of congenital infection in the post-rubella era, representing a major public health concern. Although most cases are asymptomatic in the neonatal period, congenital CMV (cCMV) disease can result in permanent impairment of cognitive development and represents the leading cause of non-genetic sensorineural hearing loss. Moreover, even if hCMV mostly causes asymptomatic or pauci-symptomatic infections in immunocompetent hosts, it may lead to severe and life-threatening disease in immunocompromised patients. Since immunity reduces the severity of disease, in the last years, the development of an effective and safe hCMV vaccine has been of great interest to pharmacologic researchers. Both hCMV live vaccines-e.g., live-attenuated, chimeric, viral-based-and non-living ones-subunit, RNA-based, virus-like particles, plasmid-based DNA-have been investigated. Encouraging data are emerging from clinical trials, but a hCMV vaccine has not been licensed yet. Major difficulties in the development of a satisfactory vaccine include hCMV's capacity to evade the immune response, unclear immune correlates for protection, low number of available animal models, and insufficient general awareness. Moreover, there is a need to determine which may be the best target populations for vaccine administration. The aim of the present paper is to examine the status of hCMV vaccines undergoing clinical trials and understand barriers limiting their development.
Collapse
Affiliation(s)
- Sara Scarpini
- Specialty School of Pediatrics, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (S.S.); (F.M.); (L.B.)
| | - Francesca Morigi
- Specialty School of Pediatrics, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (S.S.); (F.M.); (L.B.)
| | - Ludovica Betti
- Specialty School of Pediatrics, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (S.S.); (F.M.); (L.B.)
| | - Arianna Dondi
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (C.B.); (M.L.)
| | - Carlotta Biagi
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (C.B.); (M.L.)
| | - Marcello Lanari
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (C.B.); (M.L.)
| |
Collapse
|
17
|
Prevention of Congenital Cytomegalovirus Infection with Vaccines: State of the Art. Vaccines (Basel) 2021; 9:vaccines9050523. [PMID: 34069321 PMCID: PMC8158681 DOI: 10.3390/vaccines9050523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/15/2022] Open
Abstract
Cytomegalovirus (CMV) is the most common cause of congenital infection and non-genetic sensorineural hearing loss in childhood. Up to 2% of neonates, with the highest percentages found in developing countries, are congenitally infected with CMV. At birth, most of these infants are asymptomatic. However, approximately 10% have signs and symptoms of the disease, and 40–60% of symptomatic neonates will later develop permanent neurologic sequelae. To reduce congenital CMV (cCMV) infection, a vaccine able to prevent primary infection is essential. In this narrative review, actual ongoing research about the development of a CMV vaccine is discussed. The progressive increase in knowledge on the ways in which the host’s immune system and CMV relate has made it possible to clarify that the development of a vaccine that is certainly capable of reducing the risk of cCMV infection, and preventing both primary and nonprimary infections is extremely difficult. Many of the ways in which the virus evades the immune system and causes cCMV infection are not yet fully understood, especially in cases of nonprimary infection. Moreover, the schedule that should be recommended and that subjects must be vaccinated to obtain the greatest effect have not been precisely defined. Further studies are needed before the problem of cCMV infection and its related challenges can be totally solved.
Collapse
|
18
|
Galitska G, Coscia A, Forni D, Steinbrueck L, De Meo S, Biolatti M, De Andrea M, Cagliani R, Leone A, Bertino E, Schulz T, Santoni A, Landolfo S, Sironi M, Cerboni C, Dell'Oste V. Genetic Variability of Human Cytomegalovirus Clinical Isolates Correlates With Altered Expression of Natural Killer Cell-Activating Ligands and IFN-γ. Front Immunol 2021; 12:532484. [PMID: 33897679 PMCID: PMC8062705 DOI: 10.3389/fimmu.2021.532484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/23/2021] [Indexed: 01/03/2023] Open
Abstract
Human cytomegalovirus (HCMV) infection often leads to systemic disease in immunodeficient patients and congenitally infected children. Despite its clinical significance, the exact mechanisms contributing to HCMV pathogenesis and clinical outcomes have yet to be determined. One of such mechanisms involves HCMV-mediated NK cell immune response, which favors viral immune evasion by hindering NK cell-mediated cytolysis. This process appears to be dependent on the extent of HCMV genetic variation as high levels of variability in viral genes involved in immune escape have an impact on viral pathogenesis. However, the link between viral genome variations and their functional effects has so far remained elusive. Thus, here we sought to determine whether inter-host genetic variability of HCMV influences its ability to modulate NK cell responses to infection. For this purpose, five HCMV clinical isolates from a previously characterized cohort of pediatric patients with confirmed HCMV congenital infection were evaluated by next-generation sequencing (NGS) for genetic polymorphisms, phylogenetic relationships, and multiple-strain infection. We report variable levels of genetic characteristics among the selected clinical strains, with moderate variations in genome regions associated with modulation of NK cell functions. Remarkably, we show that different HCMV clinical strains differentially modulate the expression of several ligands for the NK cell-activating receptors NKG2D, DNAM-1/CD226, and NKp30. Specifically, the DNAM-1/CD226 ligand PVR/CD155 appears to be predominantly upregulated by fast-replicating (“aggressive”) HCMV isolates. On the other hand, the NGK2D ligands ULBP2/5/6 are downregulated regardless of the strain used, while other NK cell ligands (i.e., MICA, MICB, ULBP3, Nectin-2/CD112, and B7-H6) are not significantly modulated. Furthermore, we show that IFN-γ; production by NK cells co-cultured with HCMV-infected fibroblasts is directly proportional to the aggressiveness of the HCMV clinical isolates employed. Interestingly, loss of NK cell-modulating genes directed against NK cell ligands appears to be a common feature among the “aggressive” HCMV strains, which also share several gene variants across their genomes. Overall, even though further studies based on a higher number of patients would offer a more definitive scenario, our findings provide novel mechanistic insights into the impact of HCMV genetic variability on NK cell-mediated immune responses.
Collapse
Affiliation(s)
- Ganna Galitska
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Alessandra Coscia
- Neonatal Unit, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Diego Forni
- Laboratory of Bioinformatics, Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Lars Steinbrueck
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Simone De Meo
- Laboratory of Molecular Immunology and Immunopathology, Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Matteo Biolatti
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Marco De Andrea
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy.,Center for Translational Research on Autoimmune and Allergic Disease - CAAD, University of Piemonte Orientale, Novara, Italy
| | - Rachele Cagliani
- Laboratory of Bioinformatics, Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Agata Leone
- Neonatal Unit, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Enrico Bertino
- Neonatal Unit, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Thomas Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Angela Santoni
- Laboratory of Molecular Immunology and Immunopathology, Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Santo Landolfo
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Manuela Sironi
- Laboratory of Bioinformatics, Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Cristina Cerboni
- Laboratory of Molecular Immunology and Immunopathology, Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Valentina Dell'Oste
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| |
Collapse
|
19
|
Vietzen H, Görzer I, Honsig C, Jaksch P, Puchhammer-Stöckl E. Human Cytomegalovirus (HCMV)-Specific Antibody Response and Development of Antibody-Dependent Cellular Cytotoxicity Against HCMV After Lung Transplantation. J Infect Dis 2021; 222:417-427. [PMID: 32157310 DOI: 10.1093/infdis/jiaa097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/09/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Human cytomegalovirus (HCMV) may cause severe infections in lung transplant recipients (LTRs). The impact of the host antibody (AB)-dependent cytotoxicity (ADCC) on HCMV is still unclear. Therefore, we analyzed the AB-response against HCMV glycoprotein B (gB) and the pentameric complex (PC) and the ADCC response in HCMV-seropositive (R+) LTRs and in seronegative recipients of positive organs (D+/R-). METHODS Plasma samples were collected from 35 R+ and 28 D+/R- LTRs for 1 (R+) or 2 (D+/R-) years posttransplantation and from 114 healthy control persons. The PC- and gB-specific ABs were assessed by enzyme-linked immunosorbent assay. The ADCC was analyzed by focal expansion assay and CD107 cytotoxicity assay. RESULTS In R+ LTRs, significantly higher gB-specific AB levels developed within 1 year posttransplantation than in controls (immunoglobulin [Ig]G1, P < .001; IgG3, P < .001). In addition, higher levels of ADCC were observed by FEA and CD107 assay in R+ patients compared with controls (P < .001). In 23 D+R- patients, HCMV-specific ABs developed. Antibody-dependent cytotoxicity became detectable 3 months posttransplantation in these, with higher ADCC observed in viremic patients. Depletion of gB- and PC-specific ABs revealed that, in particular, gB-specific Abs were associated with the ADCC response. CONCLUSIONS We show that a strong ADCC is elicited after transplantation and is especially based on gB-specific ABs.
Collapse
Affiliation(s)
- Hannes Vietzen
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Irene Görzer
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Claudia Honsig
- Division of Clinical Virology, Medical University of Vienna, Vienna, Austria
| | - Peter Jaksch
- Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
20
|
Singh T, Otero CE, Li K, Valencia SM, Nelson AN, Permar SR. Vaccines for Perinatal and Congenital Infections-How Close Are We? Front Pediatr 2020; 8:569. [PMID: 33384972 PMCID: PMC7769834 DOI: 10.3389/fped.2020.00569] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/04/2020] [Indexed: 12/26/2022] Open
Abstract
Congenital and perinatal infections are transmitted from mother to infant during pregnancy across the placenta or during delivery. These infections not only cause pregnancy complications and still birth, but also result in an array of pediatric morbidities caused by physical deformities, neurodevelopmental delays, and impaired vision, mobility and hearing. Due to the burden of these conditions, congenital and perinatal infections may result in lifelong disability and profoundly impact an individual's ability to live to their fullest capacity. While there are vaccines to prevent congenital and perinatal rubella, varicella, and hepatitis B infections, many more are currently in development at various stages of progress. The spectrum of our efforts to understand and address these infections includes observational studies of natural history of disease, epidemiological evaluation of risk factors, immunogen design, preclinical research of protective immunity in animal models, and evaluation of promising candidates in vaccine trials. In this review we summarize this progress in vaccine development research for Cytomegalovirus, Group B Streptococcus, Herpes simplex virus, Human Immunodeficiency Virus, Toxoplasma, Syphilis, and Zika virus congenital and perinatal infections. We then synthesize this evidence to examine how close we are to developing a vaccine for these infections, and highlight areas where research is still needed.
Collapse
Affiliation(s)
- Tulika Singh
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| | - Claire E. Otero
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States
| | - Katherine Li
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States
| | - Sarah M. Valencia
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States
| | - Ashley N. Nelson
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States
| | - Sallie R. Permar
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| |
Collapse
|
21
|
Sweet C. Lessons from studies with murine cytomegalovirus that could lead to a safe live attenuated vaccine for human cytomegalovirus. Access Microbiol 2020; 2:acmi000147. [PMID: 33195979 PMCID: PMC7656186 DOI: 10.1099/acmi.0.000147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/03/2020] [Indexed: 11/29/2022] Open
Abstract
Studies with a murine cytomegalovirus mutant tsm5 suggested two possible approaches to producing a live attenuated human cytomegalovirus vaccine. One approach would be to use a combination of five to six mutants where an attenuating mutation in the gene of one mutant is compensated by the wild-type version in a second mutant, which in turn has a mutation in a different gene compensated by the wild-type version in a third mutant, etc. Important genes in this approach could include those involved in DNA replication. The importance of the carboxy terminase of the primase gene (M70/UL70) for its function suggested a second approach where some of the natural codons in this region could be substituted with synonymous non-preferred (minor) codons that would reduce the replication fitness of the mutant.
Collapse
Affiliation(s)
- Clive Sweet
- School of Biosciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
22
|
Abstract
Prophylactic and therapeutic vaccines for the alphaherpesviruses including varicella zoster virus (VZV) and herpes simplex virus types 1 and 2 have been the focus of enormous preclinical and clinical research. A live viral vaccine for prevention of chickenpox and a subunit therapeutic vaccine to prevent zoster are highly successful. In contrast, progress towards the development of effective prophylactic or therapeutic vaccines against HSV-1 and HSV-2 has met with limited success. This review provides an overview of the successes and failures, the different types of immune responses elicited by various vaccine modalities, and the need to reconsider the preclinical models and immune correlates of protection against HSV.
Collapse
Affiliation(s)
- Clare Burn Aschner
- Department of Microbiology-Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Betsy C. Herald
- Department of Microbiology-Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
23
|
Semmes EC, Hurst JH, Walsh KM, Permar SR. Cytomegalovirus as an immunomodulator across the lifespan. Curr Opin Virol 2020; 44:112-120. [PMID: 32818717 DOI: 10.1016/j.coviro.2020.07.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022]
Abstract
Human cytomegalovirus (HCMV) is a nearly ubiquitous β-herpesvirus that establishes latent infection in the majority of the world's population. HCMV infection profoundly influences the host immune system and, perhaps more than any other human pathogen, has been shown to create a lasting imprint on human T and NK cell compartments. HCMV-seropositivity has been associated with both beneficial effects, such as increased vaccine responsiveness or heterologous protection against infections, and deleterious effects, such as pathological neurodevelopmental sequelae from congenital infection in utero and cumulative damage from chronic lifelong latency into old age. The significance of many of these associations is unclear, as studies into the causal mechanisms linking HCMV and these disease outcomes are lacking; however, HCMV-mediated changes to the immune system may play a key role. This review examines how HCMV impacts the host immune system in an age-dependent manner with important implications for human immunophenotypes and long-term disease risk.
Collapse
Affiliation(s)
- Eleanor C Semmes
- Medical Scientist Training Program, Duke University, Durham, NC, USA; Children's Health and Discovery Institute, Department of Pediatrics, Duke University, Durham, NC, USA
| | - Jillian H Hurst
- Children's Health and Discovery Institute, Department of Pediatrics, Duke University, Durham, NC, USA; Department of Pediatrics, Division of Infectious Diseases, Duke University, Durham NC, USA
| | - Kyle M Walsh
- Children's Health and Discovery Institute, Department of Pediatrics, Duke University, Durham, NC, USA; Department of Neurosurgery, Duke University, Durham, NC, USA
| | - Sallie R Permar
- Children's Health and Discovery Institute, Department of Pediatrics, Duke University, Durham, NC, USA; Duke Human Vaccine Institute, Duke University, Durham, NC, USA; Department of Pediatrics, Division of Infectious Diseases, Duke University, Durham NC, USA.
| |
Collapse
|
24
|
Burn Aschner C, Loh LN, Galen B, Delwel I, Jangra RK, Garforth SJ, Chandran K, Almo S, Jacobs WR, Ware CF, Herold BC. HVEM signaling promotes protective antibody-dependent cellular cytotoxicity (ADCC) vaccine responses to herpes simplex viruses. Sci Immunol 2020; 5:eaax2454. [PMID: 32817296 PMCID: PMC7673108 DOI: 10.1126/sciimmunol.aax2454] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 01/20/2020] [Accepted: 07/23/2020] [Indexed: 12/20/2022]
Abstract
Herpes simplex virus (HSV) glycoprotein D (gD) not only is required for virus entry and cell-to-cell spread but also binds the host immunomodulatory molecule, HVEM, blocking interactions with its ligands. Natural infection primarily elicits neutralizing antibodies targeting gD, but subunit protein vaccines designed to induce this response have failed clinically. In contrast, preclinical studies demonstrate that an HSV-2 single-cycle strain deleted in gD, ΔgD-2, induces primarily non-neutralizing antibodies that activate Fcγ receptors (FcγRs) to mediate antibody-dependent cellular cytotoxicity (ADCC). These studies were designed to test the hypothesis that gD interferes with ADCC through engagement of HVEM. Immunization of Hvem-/- mice with ΔgD-2 resulted in significant reduction in HSV-specific IgG2 antibodies, the subclass associated with FcγR activation and ADCC, compared with wild-type controls. This translated into a parallel reduction in active and passive vaccine protection. A similar decrease in ADCC titers was observed in Hvem-/- mice vaccinated with an alternative HSV vaccine candidate (dl5-29) or an unrelated vesicular stomatitis virus-vectored vaccine. Unexpectedly, not only did passive transfer of immune serum from ΔgD-2-vaccinated Hvem-/- mice fail to protect wild-type mice but transfer of immune serum from ΔgD-2-vaccinated wild-type mice failed to protect Hvem-/- mice. Immune cells isolated from Hvem-/- mice were impaired in FcγR activation, and, conversely, addition of gD protein or anti-HVEM antibodies to in vitro murine or human FcγR activation assays inhibited the response. These findings uncover a previously unrecognized role for HVEM signaling in generating and mediating ADCC and an additional HSV immune evasion strategy.
Collapse
Affiliation(s)
- Clare Burn Aschner
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Lip Nam Loh
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Benjamin Galen
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Isabel Delwel
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rohit K Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Scott J Garforth
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Steven Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - William R Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Carl F Ware
- Infectious and Inflammatory Diseases Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Betsy C Herold
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
25
|
Guinea pig cytomegalovirus trimer complex gH/gL/gO uses PDGFRA as universal receptor for cell fusion and entry. Virology 2020; 548:236-249. [PMID: 32791352 DOI: 10.1016/j.virol.2020.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022]
Abstract
Species-specific guinea pig cytomegalovirus (GPCMV) causes congenital CMV and the virus encodes homolog glycoprotein complexes to human CMV, including gH-based trimer (gH/gL/gO) and pentamer-complex (PC). Platelet-derived growth factor receptor alpha (gpPDGFRA), only present on fibroblast cells, was identified via CRISPR as the putative receptor for PC-independent GPCMV infection. Immunoprecipitation assays demonstrated direct interaction of gH/gL/gO with gpPDGFRA but not in absence of gO. Expression of viral gB also resulted in precipitation of gB/gH/gL/gO/gpPDGFRA complex. Cell-cell fusion assays determined that expression of gpPDGFRA and gH/gL/gO in adjacent cells enabled cell fusion, which was not enhanced by gB. N-linked gpPDGFRA glycosylation inhibition had limited effect and blocking tyrosine kinase (TK) transduction had no impact on infection. Ectopically expressed gpPDGFRA or TK-domain mutant in trophoblast or epithelial cells previously non-susceptible to GPCMV(PC-) enabled viral infection. In contrast, transient human PDGFRA expression did not complement GPCMV(PC-) infection, a potential basis for viral species specificity.
Collapse
|
26
|
Nelson CS, Jenks JA, Pardi N, Goodwin M, Roark H, Edwards W, McLellan JS, Pollara J, Weissman D, Permar SR. Human Cytomegalovirus Glycoprotein B Nucleoside-Modified mRNA Vaccine Elicits Antibody Responses with Greater Durability and Breadth than MF59-Adjuvanted gB Protein Immunization. J Virol 2020; 94:e00186-20. [PMID: 32051265 PMCID: PMC7163130 DOI: 10.1128/jvi.00186-20] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
A vaccine to prevent maternal acquisition of human cytomegalovirus (HCMV) during pregnancy is a primary strategy to reduce the incidence of congenital disease. The MF59-adjuvanted glycoprotein B (gB) protein subunit vaccine (gB/MF59) is the most efficacious vaccine tested to date for this indication. We previously identified that gB/MF59 vaccination elicited poor neutralizing antibody responses and an immunodominant response against gB antigenic domain 3 (AD-3). Thus, we sought to test novel gB vaccines to improve functional antibody responses and reduce AD-3 immunodominance. Groups of juvenile New Zealand White rabbits were administered 3 sequential doses of the full-length gB protein with an MF59-like squalene-based adjuvant, the gB ectodomain protein (lacking AD-3) with squalene adjuvant, or lipid nanoparticle (LNP)-encapsulated nucleoside-modified mRNA encoding full-length gB. All vaccines were highly immunogenic with similar kinetics and comparable peak gB-binding and functional antibody responses. The AD-3-immunodominant IgG response following human gB/MF59 vaccination was closely mimicked in rabbits. Though gB ectodomain subunit vaccination eliminated targeting of epitopes in AD-3, it did not improve vaccine-elicited neutralizing or nonneutralizing antibody functions. gB nucleoside-modified mRNA-LNP-immunized rabbits exhibited an enhanced durability of vaccine-elicited antibody responses. Furthermore, the gB mRNA-LNP vaccine enhanced the breadth of IgG binding responses against discrete gB peptides. Finally, low-magnitude gB-specific T cell activity was observed in the full-length gB protein and mRNA-LNP groups, though not in ectodomain-vaccinated rabbits. Altogether, these data suggest that the use of gB nucleoside-modified mRNA-LNP vaccines is a viable strategy for improving on the partial efficacy of gB/MF59 vaccination and should be further evaluated in preclinical models.IMPORTANCE Human cytomegalovirus (HCMV) is the most common infectious cause of infant birth defects, resulting in permanent neurological disability for one newborn child every hour in the United States. After more than a half century of research and development, we remain without a clinically licensed vaccine or immunotherapeutic to reduce the burden of HCMV-associated disease. In this study, we sought to improve upon the glycoprotein B protein vaccine (gB/MF59), the most efficacious HCMV vaccine evaluated in a clinical trial, via targeted modifications to either the protein structure or vaccine formulation. Utilization of a novel vaccine platform, nucleoside-modified mRNA formulated in lipid nanoparticles, increased the durability and breadth of vaccine-elicited antibody responses. We propose that an mRNA-based gB vaccine may ultimately prove more efficacious than the gB/MF59 vaccine and should be further evaluated for its ability to elicit antiviral immune factors that can prevent HCMV-associated disease.
Collapse
Affiliation(s)
- Cody S Nelson
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Jennifer A Jenks
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Norbert Pardi
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Matthew Goodwin
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Hunter Roark
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Whitney Edwards
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Justin Pollara
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Sallie R Permar
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
27
|
Cui X, Cao Z, Wang S, Adler SP, McVoy MA, Snapper CM. Immunization with Human Cytomegalovirus Core Fusion Machinery and Accessory Envelope Proteins Elicit Strong Synergistic Neutralizing Activities. Vaccines (Basel) 2020; 8:vaccines8020179. [PMID: 32294946 PMCID: PMC7348949 DOI: 10.3390/vaccines8020179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/04/2020] [Accepted: 04/10/2020] [Indexed: 12/15/2022] Open
Abstract
Human cytomegalovirus (HCMV) core fusion machinery proteins gB and gH/gL, and accessory proteins UL128/UL130/UL131A, are the key envelope proteins that mediate HCMV entry into and infection of host cells. To determine whether these HCMV envelope proteins could elicit neutralizing activities synergistically, we immunized rabbits with individual or various combinations of these proteins adsorbed to aluminum hydroxide mixed with CpG-ODN. We then analyzed serum neutralizing activities with multiple HCMV laboratory strains and clinical isolates. HCMV trimeric gB and gH/gL elicited high and moderate titers of HCMV neutralizing activity, respectively. HCMV gB in combination with gH/gL elicited up to 17-fold higher HCMV neutralizing activities compared to the sum of neutralizing activity elicited by the individual proteins analyzed with both fibroblasts and epithelial cells. HCMV gB+gH/gL+UL128/UL130/UL131A in combination increased the neutralizing activity up to 32-fold compared to the sum of neutralizing activities elicited by the individual proteins analyzed with epithelial cells. Adding UL128/UL130/UL131A to gB and gH/gL combination did not increase further the HCMV neutralizing activity analyzed with fibroblasts. These data suggest that the combination of HCMV core fusion machinery envelope proteins gB+gH/gL or the combination of gB and pentameric complex could be ideal vaccine candidates that would induce optimal immune responses against HCMV infection.
Collapse
Affiliation(s)
- Xinle Cui
- The Institute for Vaccine Research and Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Correspondence: ; Tel.: +1-301-295-3498
| | - Zhouhong Cao
- The Institute for Vaccine Research and Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Michael A. McVoy
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Clifford M. Snapper
- The Institute for Vaccine Research and Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
28
|
Nelson CS, Baraniak I, Lilleri D, Reeves MB, Griffiths PD, Permar SR. Immune Correlates of Protection Against Human Cytomegalovirus Acquisition, Replication, and Disease. J Infect Dis 2020; 221:S45-S59. [PMID: 32134477 PMCID: PMC7057792 DOI: 10.1093/infdis/jiz428] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human cytomegalovirus (HCMV) is the most common infectious cause of infant birth defects and an etiology of significant morbidity and mortality in solid organ and hematopoietic stem cell transplant recipients. There is tremendous interest in developing a vaccine or immunotherapeutic to reduce the burden of HCMV-associated disease, yet after nearly a half-century of research and development in this field we remain without such an intervention. Defining immune correlates of protection is a process that enables targeted vaccine/immunotherapeutic discovery and informed evaluation of clinical performance. Outcomes in the HCMV field have previously been measured against a variety of clinical end points, including virus acquisition, systemic replication, and progression to disease. Herein we review immune correlates of protection against each of these end points in turn, showing that control of HCMV likely depends on a combination of innate immune factors, antibodies, and T-cell responses. Furthermore, protective immune responses are heterogeneous, with no single immune parameter predicting protection against all clinical outcomes and stages of HCMV infection. A detailed understanding of protective immune responses for a given clinical end point will inform immunogen selection and guide preclinical and clinical evaluation of vaccines or immunotherapeutics to prevent HCMV-mediated congenital and transplant disease.
Collapse
Affiliation(s)
- Cody S Nelson
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina,Correspondence: Cody S. Nelson, Human Vaccine Institute, Duke University Medical Center, 2 Genome Ct, Durham, NC 27710 ()
| | - Ilona Baraniak
- Institute for Immunity and Transplantation, University College London, London, United Kingdom
| | - Daniele Lilleri
- Laboratory of Genetics, Transplantation, and Cardiovascular Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Matthew B Reeves
- Institute for Immunity and Transplantation, University College London, London, United Kingdom
| | - Paul D Griffiths
- Institute for Immunity and Transplantation, University College London, London, United Kingdom
| | - Sallie R Permar
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
29
|
Lee SJ, Park HJ, Ko HL, Lee JE, Lee HJ, Kim H, Nam JH. Evaluation of glycoprotein E subunit and live attenuated varicella-zoster virus vaccines formulated with a single-strand RNA-based adjuvant. IMMUNITY INFLAMMATION AND DISEASE 2020; 8:216-227. [PMID: 32167678 PMCID: PMC7212201 DOI: 10.1002/iid3.297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/24/2022]
Abstract
Introduction Varicella‐zoster virus (VZV), a human alphaherpesvirus 3, elicits both chickenpox and shingles and/or postherpetic neuralgia. A live attenuated vaccine (LAV) and glycoprotein E (gE) subunit vaccine were developed to prevent VZV‐induced diseases. We recently reported that single‐strand RNA (ssRNA) based on the intergenic region of the internal ribosome entry site of cricket paralysis virus (CrPV) is an effective adjuvant for protein‐based and virus‐like particle‐based vaccines. Here, Chinese hamster ovary expression system and an LAV from Oka/SK strains. Methods We appraised the adjuvant effect of the same CrPV ssRNA encoding the gE gene formulated in the two vaccines using VZV‐primed C57BL/6 mice and guinea pigs. Humoral immunity and cell‐mediated immunity were assessed by enzyme‐linked immunosorbent assay (ELISA) and ELISPOT in gE subunit vaccine and by ELISA and fluorescent antibody to membrane antigen in LAV. Results The gE subunit vaccine‐induced gE‐specific antibodies and CD4+ T‐cell responses (indicated by interferon‐γ [IFN‐γ] and interleukin‐2 secretion) in the ssRNA‐based adjuvant containing the VZV gE gene. Therefore, an ssRNA adjuvant combined with gE antigen can trigger the innate immune response and induce an adaptive immune response to ultimately activate humoral and cell‐mediated responses. VZV LAV could also induce VZV‐specific antibodies and IFN‐γ stimulated by LAV, whereas the effect of ssRNA as a vaccine adjuvant could not be confirmed. However, the ssRNA adjuvant increased VZV‐specific neutralizing antibody response. Conclusions Taken together, these results highlight that the gE subunit vaccine and LAV developed in this study can be functional VZV vaccines, and ssRNAs appear to function better as adjuvants in a subunit vaccine than in an LAV.
Collapse
Affiliation(s)
- Su Jeen Lee
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Republic of Korea.,Department of R&D, SK Bioscience, Pangyoro, Bundang-gu, Republic of Korea
| | - Hyo-Jung Park
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Hae Li Ko
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Jung Eun Lee
- Department of R&D, SK Bioscience, Pangyoro, Bundang-gu, Republic of Korea
| | - Hyun Joo Lee
- Department of R&D, SK Bioscience, Pangyoro, Bundang-gu, Republic of Korea
| | - Hun Kim
- Department of R&D, SK Bioscience, Pangyoro, Bundang-gu, Republic of Korea
| | - Jae-Hwan Nam
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Republic of Korea
| |
Collapse
|
30
|
Abstract
: The use of cytomegalovirus (CMV) as a vaccine vector to express antigens against multiple infectious diseases, including simian immunodeficiency virus, Ebola virus, plasmodium, and mycobacterium tuberculosis, in rhesus macaques has generated extraordinary levels of protective immunity against subsequent pathogenic challenge. Moreover, the mechanisms of immune protection have altered paradigms about viral vector-mediated immunity against ectopically expressed vaccine antigens. Further optimization of CMV-vectored vaccines, particularly as this approach moves to human clinical trials will be augmented by a more complete understanding of how CMV engenders mechanisms of immune protection. This review summarizes the particulars of the specific CMV vaccine vector that has been used to date (rhesus CMV strain 68-1) in relation to CMV natural history.
Collapse
|
31
|
Rios L, Campos EE, Menon R, Zago MP, Garg NJ. Epidemiology and pathogenesis of maternal-fetal transmission of Trypanosoma cruzi and a case for vaccine development against congenital Chagas disease. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165591. [PMID: 31678160 PMCID: PMC6954953 DOI: 10.1016/j.bbadis.2019.165591] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/12/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022]
Abstract
Trypanos o ma cruzi (T. cruzi or Tc) is the causative agent of Chagas disease (CD). It is common for patients to suffer from non-specific symptoms or be clinically asymptomatic with acute and chronic conditions acquired through various routes of transmission. The expecting women and their fetuses are vulnerable to congenital transmission of Tc. Pregnant women face formidable health challenges because the frontline antiparasitic drugs, benznidazole and nifurtimox, are contraindicated during pregnancy. However, it is worthwhile to highlight that newborns can be cured if they are diagnosed and given treatment in a timely manner. In this review, we discuss the pathogenesis of maternal-fetal transmission of Tc and provide a justification for the investment in the development of vaccines against congenital CD.
Collapse
Affiliation(s)
- Lizette Rios
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - E Emanuel Campos
- Instituto de Patología Experimental, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Salta, Argentina
| | - Ramkumar Menon
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - M Paola Zago
- Instituto de Patología Experimental, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Salta, Argentina.
| | - Nisha J Garg
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
32
|
Virus-Like Particles and Nanoparticles for Vaccine Development against HCMV. Viruses 2019; 12:v12010035. [PMID: 31905677 PMCID: PMC7019358 DOI: 10.3390/v12010035] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/21/2019] [Accepted: 12/25/2019] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV) infects more than 70% of the human population worldwide. HCMV is responsible for high morbidity and mortality in immunocompromised patients and remains the leading viral cause of congenital birth defects. Despite considerable efforts in vaccine and therapeutic development, HCMV infection still represents an unmet clinical need and a life-threatening disease in immunocompromised individuals and newborns. Immune repertoire interrogation of HCMV seropositive patients allowed the identification of several potential antigens for vaccine design. However, recent HCMV vaccine clinical trials did not lead to a satisfactory outcome in term of efficacy. Therefore, combining antigens with orthogonal technologies to further increase the induction of neutralizing antibodies could improve the likelihood of a vaccine to reach protective efficacy in humans. Indeed, presentation of multiple copies of an antigen in a repetitive array is known to drive a more robust humoral immune response than its soluble counterpart. Virus-like particles (VLPs) and nanoparticles (NPs) are powerful platforms for multivalent antigen presentation. Several self-assembling proteins have been successfully used as scaffolds to present complex glycoprotein antigens on their surface. In this review, we describe some key aspects of the immune response to HCMV and discuss the scaffolds that were successfully used to increase vaccine efficacy against viruses with unmet medical need.
Collapse
|
33
|
MVA-Vectored Pentameric Complex (PC) and gB Vaccines Improve Pregnancy Outcome after Guinea Pig CMV Challenge, but Only gB Vaccine Reduces Vertical Transmission. Vaccines (Basel) 2019; 7:vaccines7040182. [PMID: 31739399 PMCID: PMC6963609 DOI: 10.3390/vaccines7040182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 02/04/2023] Open
Abstract
(1) Background: A congenital cytomegalovirus (cCMV) vaccine is a major research priority, but the essential glycoprotein target(s) remain unclear. We compared CMV gB (gpgB), gH/gL (gp75/gL), and pentameric complex (gpPC, composed of gH/gL/GP129/GP131/GP133) vaccines in a guinea pig CMV (GPCMV) congenital infection model. (2) Methods: Modified vaccinia virus Ankara (MVA) vaccines expressing GPCMV glycoproteins were used to immunize GPCMV-seronegative, female Hartley guinea pigs (three-dose series, 3 × 107 pfu/dose). After pregnancy was established, the dams underwent an early third-trimester challenge with salivary gland (SG)-adapted GPCMV. (3) Results: All vaccines elicited GPCMV-specific binding and neutralizing antibodies. Preconception immunization resulted in 19.5-, 4.9-, and 698-fold reductions in maternal DNAemia in MVA-gp75/gL, MVA-gpPC and MVA-gpgB groups, respectively, at day 14, post-SG challenge. Vaccination improved pups’ birth weight and reduced mortality and congenital CMV transmission. In controls, cCMV infection was observed in 100% of pups (mean viral load in all visceral organs, 2.4 × 104 genomes/mg), versus 50% in the gB group (visceral viral load, 9.4 × 102 genomes/mg; p < 0.05). No significant reductions in congenital transmission were noted in the MVA-gp75/gL and MVA-gpPC groups. (4) Conclusions: MVA-vectored gB, gH/gL, and PC vaccines were immunogenic, and protected against maternal DNAemia and pup mortality. These results support the inclusion of multiple glycoprotein complexes in a cCMV vaccine.
Collapse
|
34
|
Martin M, Holmes S, Sim J, Hassan M, Mathew R, Bensen R, Barakat M. Foregone Inclusion: Neonatal CMV Hepatitis and Cholestasis. Dig Dis Sci 2019; 64:3092-3095. [PMID: 31187327 DOI: 10.1007/s10620-019-05691-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Affiliation(s)
- Melissa Martin
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Lucille Packard Children's Hospital at Stanford, Stanford, CA, 94305, USA.
| | - Signy Holmes
- Division of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jordan Sim
- Division of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Maheen Hassan
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Lucille Packard Children's Hospital at Stanford, Stanford, CA, 94305, USA
| | - Roshni Mathew
- Division of Pediatric Infectious Diseases, Lucille Packard Children's Hospital at Stanford, Stanford, CA, 94305, USA
| | - Rachel Bensen
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Lucille Packard Children's Hospital at Stanford, Stanford, CA, 94305, USA
| | - Monique Barakat
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Lucille Packard Children's Hospital at Stanford, Stanford, CA, 94305, USA
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
35
|
Cui X, Cao Z, Wang S, Flora M, Adler SP, McVoy MA, Snapper CM. Immunization of Rabbits with Recombinant Human Cytomegalovirus Trimeric versus Monomeric gH/gL Protein Elicits Markedly Higher Titers of Antibody and Neutralization Activity. Int J Mol Sci 2019; 20:ijms20133158. [PMID: 31261659 PMCID: PMC6651862 DOI: 10.3390/ijms20133158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 11/30/2022] Open
Abstract
Congenital human cytomegalovirus (HCMV) infection and HCMV infection of immunosuppressed patients cause significant morbidity and mortality, and vaccine development against HCMV is a major public health priority. HCMV envelope glycoproteins gB, gH, and gL, which constitute the core fusion machinery, play critical roles in HCMV fusion and entry into host cells. HCMV gB and gH/gL have been reported to elicit potent neutralizing antibodies. Recently, the gB/gH/gL complex was identified in the envelope of HCMV virions, and 16–50% of the total gH/gL bound to gB, forming the gB/gH/gL complex. These findings make the gB/gH/gL a unique HCMV vaccine candidate. We previously reported the production of HCMV trimeric gB and gH/gL heterodimers, and immunization with a combination of trimeric gB and gH/gL heterodimers elicited strong synergistic HCMV-neutralizing activity. To further improve the immunogenicity of gH/gL, we produced trimeric gH/gL. Rabbits immunized with HCMV trimeric gH/gL induced up to 38-fold higher serum titers of gH/gL-specific IgG relative to HCMV monomeric gH/gL, and elicited ~10-fold higher titers of complement-dependent and complement-independent HCMV-neutralizing activity for both epithelial cells and fibroblasts. HCMV trimeric gH/gL in combination with HCMV trimeric gB would be a novel promising HCMV vaccine candidate that could induce highly potent neutralizing activities.
Collapse
Affiliation(s)
- Xinle Cui
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - Zhouhong Cao
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Shuishu Wang
- Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Michael Flora
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | - Michael A McVoy
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Clifford M Snapper
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
36
|
Antibody responses to crucial functional epitopes as a novel approach to assess immunogenicity of vaccine adjuvants. Vaccine 2019; 37:3770-3778. [PMID: 31153687 DOI: 10.1016/j.vaccine.2019.05.068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/08/2019] [Accepted: 05/22/2019] [Indexed: 12/22/2022]
Abstract
We are interested in developing a vaccine that prevents genital herpes. Adjuvants have a major impact on vaccine immunogenicity. We compared two adjuvants, an experimental Merck Sharp & Dohme lipid nanoparticle (LNP) adjuvant, LNP-2, with CpG oligonucleotide combined with alum for immunogenicity in mice when administered with herpes simplex virus type 2 (HSV-2) glycoproteins C, D and E (gC2, gD2, gE2). The immunogens are intended to produce neutralizing antibodies to gC2 and gD2, antibodies to gD2 and gE2 that block cell-to-cell spread, and antibodies to gE2 and gC2 that block immune evasion from antibody and complement, respectively. Overall, CpG/alum was better at producing serum and vaginal IgG binding antibodies, neutralizing antibodies, antibodies that block virus spread from cell-to-cell, and antibodies that block immune evasion domains on gC2. We used a novel high throughput biosensor assay to further assess differences in immunogenicity by mapping antibody responses to seven crucial epitopes on gD2 involved in virus entry or cell-to-cell spread. We found striking differences between CpG/alum and LNP-2. Mice immunized with gD2 CpG/alum produced higher titers of antibodies than LNP-2 to six of seven crucial epitopes and produced antibodies to more crucial epitopes than LNP-2. Measuring epitope-specific antibodies helped to define mechanisms by which CpG/alum outperformed LNP-2 and is a valuable technique to compare adjuvants.
Collapse
|
37
|
Foglierini M, Marcandalli J, Perez L. HCMV Envelope Glycoprotein Diversity Demystified. Front Microbiol 2019; 10:1005. [PMID: 31156572 PMCID: PMC6529531 DOI: 10.3389/fmicb.2019.01005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/18/2019] [Indexed: 12/27/2022] Open
Abstract
Human cytomegalovirus (HCMV) is the leading viral cause of congenital birth defects and is responsible for morbidity and mortality in immunosuppressed individuals. Considerable efforts have been deployed over the last decade to develop a vaccine capable of preventing HCMV infection. However, in recent clinical trials, vaccines showed at best modest efficacy in preventing infection. These findings might be explained by the high level of sequence polymorphism at the genomic level. To investigate if genomic variation also leads to antigenic variation, we performed a bioinformatic sequence analysis and evaluated the percentage of conservation at the amino acid level of all the proteins present in the virion envelope. Using more than two hundred sequences per envelope glycoprotein and analyzing their degree of conservation, we observe that antigenic variation is in large part limited to three proteins. In addition, we demonstrate that the two leading vaccine candidates, the pentamer and gB complexes, are well conserved at the amino acid level. These results suggest that despite genomic polymorphism, antigenic variability is not involved in the modest efficacy observed in the recent clinical trials for a HCMV vaccine. We therefore propose that next-generation vaccines should focus on stabilizing and refining the gB domains needed to induce a protective humoral response.
Collapse
Affiliation(s)
- Mathilde Foglierini
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jessica Marcandalli
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Laurent Perez
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| |
Collapse
|
38
|
Abstract
Congenital human cytomegalovirus (HCMV) infection and HCMV infection of the immunosuppressed patients cause significant morbidity and mortality, and vaccine development against HCMV is a major public health priority. Efforts to develop HCMV vaccines have been ongoing for 50 y, though no HCMV vaccine has been licensed; encouraging and promising results have obtained from both preclinical and clinical trials. HCMV infection induces a wide range of humoral and T cell-mediated immune responses, and both branches of immunity are correlated with protection. In recent years, there have been novel approaches toward the development of HCMV vaccines and demonstrated that vaccine candidates could potentially provide superior protection over natural immunity acquired following HCMV infection. Further, rationally designed HCMV protein antigens that express native conformational epitopes could elicit optimal immune response. HCMV vaccine candidates, using a multi-antigen approach, to maximize the elicited protective immunity will most likely be successful in development of HCMV vaccine.
Collapse
Affiliation(s)
- Xinle Cui
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Clifford M Snapper
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
39
|
Intrahost Dynamics of Human Cytomegalovirus Variants Acquired by Seronegative Glycoprotein B Vaccinees. J Virol 2019; 93:JVI.01695-18. [PMID: 30518646 DOI: 10.1128/jvi.01695-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/22/2018] [Indexed: 01/07/2023] Open
Abstract
Human cytomegalovirus (HCMV) is the most common congenital infection worldwide and a frequent cause of hearing loss and debilitating neurologic disease in newborn infants. Thus, a vaccine to prevent HCMV-associated congenital disease is a public health priority. One potential strategy is vaccination of women of child bearing age to prevent maternal HCMV acquisition during pregnancy. The glycoprotein B (gB) plus MF59 adjuvant subunit vaccine is the most efficacious tested clinically to date, demonstrating 50% protection against primary HCMV infection in a phase 2 clinical trial. Yet, the impact of gB/MF59-elicited immune responses on the population of viruses acquired by trial participants has not been assessed. In this analysis, we employed quantitative PCR as well as multiple sequencing methodologies to interrogate the magnitude and genetic composition of HCMV populations infecting gB/MF59 vaccinees and placebo recipients. We identified several differences between the viral dynamics in acutely infected vaccinees and placebo recipients. First, viral load was reduced in the saliva of gB vaccinees, though not in whole blood, vaginal fluid, or urine. Additionally, we observed possible anatomic compartmentalization of gB variants in the majority of vaccinees compared to only a single placebo recipient. Finally, we observed reduced acquisition of genetically related gB1, gB2, and gB4 genotype "supergroup" HCMV variants among vaccine recipients, suggesting that the gB1 genotype vaccine construct may have elicited partial protection against HCMV viruses with antigenically similar gB sequences. These findings suggest that gB immunization had a measurable impact on viral intrahost population dynamics and support future analysis of a larger cohort.IMPORTANCE Though not a household name like Zika virus, human cytomegalovirus (HCMV) causes permanent neurologic disability in one newborn child every hour in the United States, which is more than that for Down syndrome, fetal alcohol syndrome, and neural tube defects combined. There are currently no established effective measures to prevent viral transmission to the infant following HCMV infection of a pregnant mother. However, the glycoprotein B (gB)/MF59 vaccine, which aims to prevent pregnant women from acquiring HCMV, is the most successful HCMV vaccine tested clinically to date. Here, we used viral DNA isolated from patients enrolled in a gB vaccine trial who acquired HCMV and identified several impacts that this vaccine had on the size, distribution, and composition of the in vivo viral population. These results have increased our understanding of why the gB/MF59 vaccine was partially efficacious, and such investigations will inform future rational design of a vaccine to prevent congenital HCMV.
Collapse
|