1
|
Chhabra L, Pandey RK, Kumar R, Sundar S, Mehrotra S. Navigating the Roadblocks: Progress and Challenges in Cell-Based Therapies for Human Immunodeficiency Virus. J Cell Biochem 2024:e30669. [PMID: 39485037 DOI: 10.1002/jcb.30669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/26/2024] [Accepted: 10/11/2024] [Indexed: 11/03/2024]
Abstract
Cell-based therapies represent a major advancement in the treatment and management of HIV/AIDS, with a goal to overcome the limitations of traditional antiretroviral therapy (ART). These innovative approaches not only promise a functional cure by reconstructing the immune landscape but also address the persistent viral reservoirs. For example, stem cell therapies have emerged from the foundational success of allogeneic hematopoietic stem cell transplantation in curing HIV infection in a limited number of cases. B cell therapies make use of genetically modified B cells constitutively expressing broadly neutralizing antibodies (bNAbs) against target viral particles and infected cells. Adoptive cell transfer (ACT), including TCR-T therapy, CAR-T cells, NK-CAR cells, and DC-based therapy, is adapted from cancer immunotherapy and repurposed for HIV eradication. In this review, we summarize the mechanisms through which these engineered cells recognize and destroy HIV-infected cells, the modification strategies, and their role in sustaining remission in the absence of ART. The review also addresses the challenges to cell-based therapies against HIV and discusses the recent advancements aimed at overcoming them.
Collapse
Affiliation(s)
- Lakshay Chhabra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | | | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
2
|
Zhang W, Zeng M, Li Y, Yu L. Leveraging oncovirus-derived antigen against the viral malignancies in adoptive cell therapies. Biomark Res 2024; 12:71. [PMID: 39075601 PMCID: PMC11287861 DOI: 10.1186/s40364-024-00617-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/10/2024] [Indexed: 07/31/2024] Open
Abstract
Adoptive cell therapies (ACTs) have revolutionized cancer immunotherapy, prompting exploration into their application against oncoviruses. Oncoviruses such as human papillomavirus (HPV), hepatitis B virus (HBV), hepatitis C virus (HCV), and Epstein-Barr virus (EBV) contribute significantly (12-25%) to human malignancies through direct or indirect oncogenic mechanisms. These viruses persistently or latently infect cells, disrupt cellular homeostasis and pathways, challenging current antiviral treatment paradigms. Moreover, viral infections pose additional risks in the setting of long-term cancer therapy and lead to morbidity and mortality. Virally encoded oncoproteins, which are tumor-restricted, immunologically foreign, and even uniformly expressed, represent promising targets for patient-tailored ACTs. This review elucidates the rationale for leveraging viral antigen-specific ACTs in combating viral-associated malignancies. On this basis, ongoing preclinical studies consolidate our understanding of harnessing ACTs against viral malignancies, underscoring their potential to eradicate viruses implicated in cancer progression. Furthermore, we scrutinize the current landscape of clinical trials focusing on virus-specific ACTs and discuss their implications for therapeutic advancement.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen, 518060, China
| | - Miao Zeng
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen, 518060, China
| | - Yisheng Li
- Shenzhen Haoshi Biotechnology Co., Ltd, No. 155 Hongtian Road, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, 518125, China
- Haoshi Cell Therapy Institute, Shenzhen University, Shenzhen, China
| | - Li Yu
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China.
- Haoshi Cell Therapy Institute, Shenzhen University, Shenzhen, China.
| |
Collapse
|
3
|
Pan W, Tao T, Qiu Y, Zhu X, Zhou X. Natural killer cells at the forefront of cancer immunotherapy with immune potency, genetic engineering, and nanotechnology. Crit Rev Oncol Hematol 2024; 193:104231. [PMID: 38070841 DOI: 10.1016/j.critrevonc.2023.104231] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024] Open
Abstract
Natural killer (NK) cells are vital components of the human immune system, acting as innate lymphocytes and playing a crucial role in immune surveillance. Their unique ability to independently eliminate target cells without antigen contact or antibodies has sparked interest in immunological research. This review examines recent NK cell developments and applications, encompassing immune functions, interactions with target cells, genetic engineering techniques, pharmaceutical interventions, and implications in cancers. Insights into NK cell regulation emerge, with a focus on promising genetic engineering like CAR-engineered NK cells, enhancing specificity against tumors. Immune checkpoint inhibitors also enhance NK cells' potential in cancer therapy. Nanotechnology's emergence as a tool for targeted drug delivery to improve NK cell therapies is explored. In conclusion, NK cells are pivotal in immunity, holding exciting potential in cancer immunotherapy. Ongoing research promises novel therapeutic strategies, advancing immunotherapy and medical interventions.
Collapse
Affiliation(s)
- Weiyi Pan
- Department of Immunology, School of Medicine, Nantong University, Nantong, China; School of Public Health, Southern Medical University, Guangzhou, China
| | - Tao Tao
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China
| | - Yishu Qiu
- Department of Biology, College of Arts and Science, New York University, New York, USA
| | - Xiao Zhu
- Computational Systems Biology Lab (CSBL), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, Nantong, China.
| |
Collapse
|
4
|
Elwakeel A, Bridgewater HE, Bennett J. Unlocking Dendritic Cell-Based Vaccine Efficacy through Genetic Modulation-How Soon Is Now? Genes (Basel) 2023; 14:2118. [PMID: 38136940 PMCID: PMC10743214 DOI: 10.3390/genes14122118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
The dendritic cell (DC) vaccine anti-cancer strategy involves tumour-associated antigen loading and maturation of autologous ex vivo cultured DCs, followed by infusion into the cancer patient. This strategy stemmed from the idea that to induce a robust anti-tumour immune response, it was necessary to bypass the fundamental immunosuppressive mechanisms of the tumour microenvironment that dampen down endogenous innate immune cell activation and enable tumours to evade immune attack. Even though the feasibility and safety of DC vaccines have long been confirmed, clinical response rates remain disappointing. Hence, the full potential of DC vaccines has yet to be reached. Whether this cellular-based vaccination approach will fully realise its position in the immunotherapy arsenal is yet to be determined. Attempts to increase DC vaccine immunogenicity will depend on increasing our understanding of DC biology and the signalling pathways involved in antigen uptake, maturation, migration, and T lymphocyte priming to identify amenable molecular targets to improve DC vaccine performance. This review evaluates various genetic engineering strategies that have been employed to optimise and boost the efficacy of DC vaccines.
Collapse
Affiliation(s)
- Ahmed Elwakeel
- Centre for Health and Life Sciences (CHLS), Coventry University, Coventry CV1 5FB, UK; (A.E.); (H.E.B.)
| | - Hannah E. Bridgewater
- Centre for Health and Life Sciences (CHLS), Coventry University, Coventry CV1 5FB, UK; (A.E.); (H.E.B.)
| | - Jason Bennett
- Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
5
|
Schober R, Brandus B, Laeremans T, Iserentant G, Rolin C, Dessilly G, Zimmer J, Moutschen M, Aerts JL, Dervillez X, Seguin-Devaux C. Multimeric immunotherapeutic complexes activating natural killer cells towards HIV-1 cure. J Transl Med 2023; 21:791. [PMID: 37936122 PMCID: PMC10631209 DOI: 10.1186/s12967-023-04669-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Combination antiretroviral therapy (cART) has dramatically extended the life expectancy of people living with HIV-1 and improved their quality of life. There is nevertheless no cure for HIV-1 infection since HIV-1 persists in viral reservoirs of latently infected CD4+ T cells. cART does not eradicate HIV-1 reservoirs or restore cytotoxic natural killer (NK) cells which are dramatically reduced by HIV-1 infection, and express the checkpoint inhibitors NKG2A or KIR2DL upregulated after HIV-1 infection. Cytotoxic NK cells expressing the homing receptor CXCR5 were recently described as key subsets controlling viral replication. METHODS We designed and evaluated the potency of "Natural killer activating Multimeric immunotherapeutic compleXes", called as NaMiX, combining multimers of the IL-15/IL-15Rα complex with an anti-NKG2A or an anti-KIR single-chain fragment variable (scFv) to kill HIV-1 infected CD4+ T cells. The oligomerization domain of the C4 binding protein was used to associate the IL-15/IL-15Rα complex to the scFv of each checkpoint inhibitor as well as to multimerize each entity into a heptamer (α form) or a dimer (β form). Each α or β form was compared in different in vitro models using one-way ANOVA and post-hoc Tukey's tests before evaluation in humanized NSG tg-huIL-15 mice having functional NK cells. RESULTS All NaMiX significantly enhanced the cytolytic activity of NK and CD8+ T cells against Raji tumour cells and HIV-1+ ACH-2 cells by increasing degranulation, release of granzyme B, perforin and IFN-γ. Targeting NKG2A had a stronger effect than targeting KIR2DL due to higher expression of NKG2A on NK cells. In viral inhibition assays, NaMiX initially increased viral replication of CD4+ T cells which was subsequently inhibited by cytotoxic NK cells. Importantly, anti-NKG2A NaMiX enhanced activation, cytotoxicity, IFN-γ production and CXCR5 expression of NK cells from HIV-1 positive individuals. In humanized NSG tg-huIL-15 mice, we confirmed enhanced activation, degranulation, cytotoxicity of NK cells, and killing of HIV-1 infected cells from mice injected with the anti-NKG2A.α NaMiX, as compared to control mice, as well as decreased total HIV-1 DNA in the lung. CONCLUSIONS NK cell-mediated killing of HIV-1 infected cells by NaMiX represents a promising approach to support HIV-1 cure strategies.
Collapse
Affiliation(s)
- Rafaëla Schober
- Department of Infection and Immunity, Luxembourg Institute of Health, 29, Rue Henri Koch, L-4354, Esch-Sur-Alzette, Luxembourg
| | - Bianca Brandus
- Department of Infection and Immunity, Luxembourg Institute of Health, 29, Rue Henri Koch, L-4354, Esch-Sur-Alzette, Luxembourg
| | - Thessa Laeremans
- Neuro-Aging and Viro-Immunotherapy (NAVI) Research Group, Faculty of Pharmacy and Medicine, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Gilles Iserentant
- Department of Infection and Immunity, Luxembourg Institute of Health, 29, Rue Henri Koch, L-4354, Esch-Sur-Alzette, Luxembourg
| | - Camille Rolin
- Department of Infection and Immunity, Luxembourg Institute of Health, 29, Rue Henri Koch, L-4354, Esch-Sur-Alzette, Luxembourg
| | - Géraldine Dessilly
- AIDS Reference Laboratory, Catholic University of Louvain, Ottignies-Louvain-la-Neuve, Belgium
| | - Jacques Zimmer
- Department of Infection and Immunity, Luxembourg Institute of Health, 29, Rue Henri Koch, L-4354, Esch-Sur-Alzette, Luxembourg
| | - Michel Moutschen
- Department of Infectious Diseases, University of Liège, CHU de Liège, Liège, Belgium
| | - Joeri L Aerts
- Neuro-Aging and Viro-Immunotherapy (NAVI) Research Group, Faculty of Pharmacy and Medicine, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Xavier Dervillez
- Department of Infection and Immunity, Luxembourg Institute of Health, 29, Rue Henri Koch, L-4354, Esch-Sur-Alzette, Luxembourg
| | - Carole Seguin-Devaux
- Department of Infection and Immunity, Luxembourg Institute of Health, 29, Rue Henri Koch, L-4354, Esch-Sur-Alzette, Luxembourg.
| |
Collapse
|