1
|
Zhang H, Li W, Li Y, Wang Y, Jin Y, Tong D, Li Z, Zhou J. Bacterial ghosts engineered with lipidated antigens as an adjuvant-free vaccine for Chlamydia abortus. Int J Pharm 2024; 666:124801. [PMID: 39368676 DOI: 10.1016/j.ijpharm.2024.124801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/19/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Bacterial ghosts (BGs) provide novel vaccine delivery platforms because of their inherent adjuvant properties and efficient antigen delivery capabilities. However, effective engineering strategies are required to modify them for different antigens. In this study, the Escherichia coli (E. coli) ghost was modified by using a lpp'-ompA chimera, a widely used bacterial surface display vector, with a protective antigen macrophage infectivity potentiator (MIP) of Chlamydia abortus (C. abortus), and its protective effect was evaluated in a mouse model. The MIP fusion protein accumulated at 1.2% of the ghost total protein mass and a significant portion of the protein was modified into lipoproteins upon translocation to the BG surface. Lipidated MIP-modified recombinant E. coli ghosts (rECG-lpp'-MIP) effectively promoted antigen-presenting cells (APCs) uptake of antigens and stimulated APCs activation in vivo and in vitro. Immunization with rECG-lpp'-MIP and no adjuvant induced intense specific humoral responses as well as Th1-biased cellular immune responses, which significantly improved the efficiency of C. abortus infection clearance in mice and reduced pathological damage to the uterus. In summary, this study demonstrates that recombinant E. coli ghosts modified with lipidated antigens could help to develop an effective C. abortus vaccine and aid in the development of a universal adjuvant-free vaccine platform.
Collapse
Affiliation(s)
- Huaiyu Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Wei Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Yunhui Li
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Yihan Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Youshun Jin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
| | - Zhaocai Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China.
| | - Jizhang Zhou
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China.
| |
Collapse
|
2
|
Zhang H, Li Y, Li W, Li Z, Zhou J, Tong D. Surface Display of Cholera Toxin B Subunit Recombinant Escherichia coli Ghosts Further Enhances Resistance to Chlamydia abortus Infection in Mice. Microorganisms 2024; 12:1656. [PMID: 39203498 PMCID: PMC11356887 DOI: 10.3390/microorganisms12081656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 09/03/2024] Open
Abstract
Chlamydia abortus (C. abortus) is an important zoonotic pathogen that seriously endangers the development of animal husbandry. Vaccination is the most effective approach to preventing C. abortus infection. We previously reported a recombinant Escherichia coli ghost (rECG)-based C. abortus vaccine that demonstrated outstanding protective efficacy. In this study, we further attempted to fuse the cholera toxin B subunit (CTB), a widely studied potent mucosal immune adjuvant, with macrophage infectivity potentiator (MIP), a candidate antigen of C. abortus, on the surface of the rECG and explore its protective effect against C. abortus infection. The MIP fusion protein was highly expressed in the rECGs, and the CTB-modified rECGs significantly induced the activation of mouse bone marrow-derived dendritic cells in vitro. Intranasal immunization with rECGs induced a Th1-biased cellular immune response. Compared to the rECGs without CTB, the CTB-modified rECGs induced higher concentrations of IgA in the serum and vaginal wash solution. Moreover, in a mouse infection model, the CTB-modified rECGs significantly improved the clearance efficiency of C. abortus and reduced the pathological damage to the uterus. This study demonstrates that incorporating CTB into rECGs significantly enhances the immunogenic potential of the rECG vaccine and can significantly enhance its protective efficacy against a C. abortus challenge.
Collapse
Affiliation(s)
- Huaiyu Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Yunhui Li
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Wei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Zhaocai Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Jizhang Zhou
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
3
|
Hsieh MS, Hsu CW, Liao HC, Lin CL, Chiang CY, Chen MY, Liu SJ, Liao CL, Chen HW. SARS-CoV-2 spike-FLIPr fusion protein plus lipidated FLIPr protects against various SARS-CoV-2 variants in hamsters. J Virol 2024; 98:e0154623. [PMID: 38299865 PMCID: PMC10878263 DOI: 10.1128/jvi.01546-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/22/2023] [Indexed: 02/02/2024] Open
Abstract
Vaccine-induced mucosal immunity and broad protective capacity against various severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants remain inadequate. Formyl peptide receptor-like 1 inhibitory protein (FLIPr), produced by Staphylococcus aureus, can bind to various Fcγ receptor subclasses. Recombinant lipidated FLIPr (rLF) was previously found to be an effective adjuvant. In this study, we developed a vaccine candidate, the recombinant Delta SARS-CoV-2 spike (rDS)-FLIPr fusion protein (rDS-F), which employs the property of FLIPr binding to various Fcγ receptors. Our study shows that rDS-F plus rLF promotes rDS capture by dendritic cells. Intranasal vaccination of mice with rDS-F plus rLF increases persistent systemic and mucosal antibody responses and CD4/CD8 T-cell responses. Importantly, antibodies induced by rDS-F plus rLF vaccination neutralize Delta, Wuhan, Alpha, Beta, and Omicron strains. Additionally, rDS-F plus rLF provides protective effects against various SARS-CoV-2 variants in hamsters by reducing inflammation and viral loads in the lung. Therefore, rDS-F plus rLF is a potential vaccine candidate to induce broad protective responses against various SARS-CoV-2 variants.IMPORTANCEMucosal immunity is vital for combating pathogens, especially in the context of respiratory diseases like COVID-19. Despite this, most approved vaccines are administered via injection, providing systemic but limited mucosal protection. Developing vaccines that stimulate both mucosal and systemic immunity to address future coronavirus mutations is a growing trend. However, eliciting strong mucosal immune responses without adjuvants remains a challenge. In our study, we have demonstrated that using a recombinant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike-formyl peptide receptor-like 1 inhibitory protein (FLIPr) fusion protein as an antigen, in combination with recombinant lipidated FLIPr as an effective adjuvant, induced simultaneous systemic and mucosal immune responses through intranasal immunization in mice and hamster models. This approach offered protection against various SARS-CoV-2 strains, making it a promising vaccine candidate for broad protection. This finding is pivotal for future broad-spectrum vaccine development.
Collapse
Affiliation(s)
- Ming-Shu Hsieh
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chia-Wei Hsu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Hung-Chun Liao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chang-Ling Lin
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chen-Yi Chiang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Mei-Yu Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Len Liao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|