1
|
Deichmann M, Hansson FG, Jensen ED. Yeast-based screening platforms to understand and improve human health. Trends Biotechnol 2024; 42:1258-1272. [PMID: 38677901 DOI: 10.1016/j.tibtech.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024]
Abstract
Detailed molecular understanding of the human organism is essential to develop effective therapies. Saccharomyces cerevisiae has been used extensively for acquiring insights into important aspects of human health, such as studying genetics and cell-cell communication, elucidating protein-protein interaction (PPI) networks, and investigating human G protein-coupled receptor (hGPCR) signaling. We highlight recent advances and opportunities of yeast-based technologies for cost-efficient chemical library screening on hGPCRs, accelerated deciphering of PPI networks with mating-based screening and selection, and accurate cell-cell communication with human immune cells. Overall, yeast-based technologies constitute an important platform to support basic understanding and innovative applications towards improving human health.
Collapse
Affiliation(s)
- Marcus Deichmann
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Frederik G Hansson
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Emil D Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
2
|
Mujahid K, Rana I, Suliman IH, Li Z, Wu J, He H, Nam J. Biomaterial-Based Sustained-Release Drug Formulations for Localized Cancer Immunotherapy. ACS APPLIED BIO MATERIALS 2024; 7:4944-4961. [PMID: 38050811 DOI: 10.1021/acsabm.3c00808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Cancer immunotherapy has revolutionized clinical cancer treatments by taking advantage of the immune system to selectively and effectively target and kill cancer cells. However, clinical cancer immunotherapy treatments often have limited efficacy and/or present severe adverse effects associated primarily with their systemic administration. Localized immunotherapy has emerged to overcome these limitations by directly targeting accessible tumors via local administration, reducing potential systemic drug distribution that hampers drug efficacy and safety. Sustained-release formulations can prolong drug activity at target sites, which maximizes the benefits of localized immunotherapy to increase the therapeutic window using smaller dosages than those used for systemic injection, avoiding complications of frequent dosing. The performance of sustained-release formulations for localized cancer immunotherapy has been validated preclinically using various implantable and injectable scaffold platforms. This review introduces the sustained-release formulations developed for localized cancer immunotherapy and highlights their biomaterial-based platforms for representative classes, including inorganic scaffolds, natural hydrogels, synthetic hydrogels, and microneedle patches. The design rationale and other considerations are summarized for further development of biomaterials for the construction of optimal sustained-release formulations.
Collapse
Affiliation(s)
- Khizra Mujahid
- College of Pharmacy, Chonnam National University, Gwangju 61186, South Korea
| | - Isra Rana
- College of Pharmacy, Chonnam National University, Gwangju 61186, South Korea
| | | | - Zhen Li
- College of Pharmacy, Chonnam National University, Gwangju 61186, South Korea
| | - Jiang Wu
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Huacheng He
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, P. R. China
| | - Jutaek Nam
- College of Pharmacy, Chonnam National University, Gwangju 61186, South Korea
| |
Collapse
|
3
|
Sun Y, Yan L, Sun J, Xiao M, Lai W, Song G, Li L, Fan C, Pei H. Nanoscale organization of two-dimensional multimeric pMHC reagents with DNA origami for CD8 + T cell detection. Nat Commun 2022; 13:3916. [PMID: 35798752 PMCID: PMC9263106 DOI: 10.1038/s41467-022-31684-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/23/2022] [Indexed: 11/08/2022] Open
Abstract
Peptide-MHC (pMHC) multimers have excelled in the detection of antigen-specific T cells and have allowed phenotypic analysis using other reagents, but their use for detection of low-affinity T cells remains a challenge. Here we develop a multimeric T cell identifying reagent platform using two-dimensional DNA origami scaffolds to spatially organize pMHCs (termed as dorimers) with nanoscale control. We show that these dorimers enhance the binding avidity for low-affinity antigen-specific T cell receptors (TCRs). The dorimers are able to detect more antigen-specific T cells in mouse CD8+ T cells and early-stage CD4+CD8+ double-positive thymocytes that express less dense TCRs, compared with the equivalent tetramers and dextramers. Moreover, we demonstrate dorimer function in the analysis of autoimmune CD8+ T cells that express low-affinity TCRs, which are difficult to detect using tetramers. We anticipate that dorimers could contribute to the investigation of antigen-specific T cells in immune T cell function or immunotherapy applications.
Collapse
Affiliation(s)
- Yueyang Sun
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Lu Yan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Jiajia Sun
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Guangqi Song
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China.
- Institute of Eco-Chongming, 202162, Shanghai, China.
| |
Collapse
|
4
|
Kristensen NP, Heeke C, Tvingsholm SA, Borch A, Draghi A, Crowther MD, Carri I, Munk KK, Holm JS, Bjerregaard AM, Bentzen AK, Marquard AM, Szallasi Z, McGranahan N, Andersen R, Nielsen M, Jönsson GB, Donia M, Svane IM, Hadrup SR. Neoantigen-reactive CD8+ T cells affect clinical outcome of adoptive transfer with tumor-infiltrating lymphocytes in melanoma. J Clin Invest 2021; 132:150535. [PMID: 34813506 PMCID: PMC8759789 DOI: 10.1172/jci150535] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Neoantigen-driven recognition and T cell-mediated killing contribute to tumor clearance following adoptive cell therapy (ACT) with Tumor-Infiltrating Lymphocytes (TILs). Yet, how diversity, frequency, and persistence of expanded neoepitope-specific CD8+ T cells derived from TIL infusion products affect patient outcome is not fully determined. METHODS Using barcoded pMHC multimers, we provide a comprehensive mapping of CD8+ T cells recognizing neoepitopes in TIL infusion products and blood samples from 26 metastatic mela-noma patients who received ACT. RESULTS We identified 106 neoepitopes within TIL infusion products corresponding to 1.8% of all predicted neoepitopes. We observed neoepitope-specific recognition to be virtually devoid in TIL infusion products given to patients with progressive disease outcome. Moreover, we found that the frequency of neoepitope-specific CD8+ T cells in TIL infusion products correlated with in-creased survival, and that detection of engrafted CD8+ T cells in post-treatment (i.e. originating from the TIL infusion product) were unique to responders of TIL-ACT. Finally, we found that a transcriptional signature for lymphocyte activity within the tumor microenvironment was associated with a higher frequency of neoepitope-specific CD8+ T cells in the infusion product. CONCLUSIONS These data support previous case studies of neoepitope-specific CD8+ T cells in melanoma, and indicate that successful TIL-ACT is associated with an expansion of neoepitope-specific CD8+ T cells. FUNDING NEYE Foundation; European Research Council; Lundbeck Foundation Fellowship; Carlsberg Foundation.
Collapse
Affiliation(s)
- Nikolaj Pagh Kristensen
- Department of Health Technology, Technical University of Denmark (DTU), Kgs. Lyngby, Denmark
| | - Christina Heeke
- Department of Health Technology, Technical University of Denmark (DTU), Kgs. Lyngby, Denmark
| | - Siri A Tvingsholm
- Department of Health Technology, Technical University of Denmark (DTU), Kgs. Lyngby, Denmark
| | - Annie Borch
- Department of Health Technology, Technical University of Denmark (DTU), Kgs. Lyngby, Denmark
| | - Arianna Draghi
- Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | | | - Ibel Carri
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Kamilla K Munk
- Department of Health Technology, Technical University of Denmark (DTU), Kgs. Lyngby, Denmark
| | - Jeppe Sejerø Holm
- Department of Health Technology, Technical University of Denmark (DTU), Kgs. Lyngby, Denmark
| | - Anne-Mette Bjerregaard
- Department of Health Technology, Technical University of Denmark (DTU), Kgs. Lyngby, Denmark
| | - Amalie Kai Bentzen
- Department of Health Technology, Technical University of Denmark (DTU), Kgs. Lyngby, Denmark
| | - Andrea M Marquard
- Department of Health Technology, Technical University of Denmark (DTU), Kgs. Lyngby, Denmark
| | - Zoltan Szallasi
- Danish Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark
| | | | - Rikke Andersen
- Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Morten Nielsen
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark (DTU), Kgs. Lyngby, Denmark
| | - Göran B Jönsson
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Marco Donia
- Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Inge Marie Svane
- Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Sine Reker Hadrup
- Department of Health Technology, Technical University of Denmark (DTU), Kgs. Lyngby, Denmark
| |
Collapse
|
5
|
Ferragut F, Acevedo GR, Gómez KA. T Cell Specificity: A Great Challenge in Chagas Disease. Front Immunol 2021; 12:674078. [PMID: 34267750 PMCID: PMC8276045 DOI: 10.3389/fimmu.2021.674078] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
The CD4+ and CD8+ T cell immune response against T. cruzi, the parasite causing Chagas disease, are relevant for both parasite control and disease pathogenesis. Several studies have been focused on their phenotype and functionally, but only a few have drilled down to identify the parasite proteins that are processed and presented to these cells, especially to CD4+ T lymphocytes. Although approximately 10,000 proteins are encoded per haploid T. cruzi genome, fewer than 200 T cell epitopes from 49 T. cruzi proteins have been identified so far. In this context, a detailed knowledge of the specific targets of T cell memory response emerges as a prime tool for the conceptualization and development of prophylactic or therapeutic vaccines, an approach with great potential to prevent and treat this chronic disease. Here, we review the available information about this topic in a comprehensive manner and discuss the future challenges in the field.
Collapse
Affiliation(s)
- Fátima Ferragut
- Laboratorio de Inmunología de las Infecciones por Tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Gonzalo R Acevedo
- Laboratorio de Inmunología de las Infecciones por Tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Karina A Gómez
- Laboratorio de Inmunología de las Infecciones por Tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
6
|
Kumar ARK, Shou Y, Chan B, L K, Tay A. Materials for Improving Immune Cell Transfection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007421. [PMID: 33860598 DOI: 10.1002/adma.202007421] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy holds great promise for preventing and treating deadly diseases such as cancer. However, it remains challenging to transfect and engineer primary immune cells for clinical cell manufacturing. Conventional tools using viral vectors and bulk electroporation suffer from low efficiency while posing risks like viral transgene integration and excessive biological perturbations. Emerging techniques using microfluidics, nanoparticles, and high-aspect-ratio nanostructures can overcome these challenges, and on top of that, provide universal and high-throughput cargo delivery. Herein, the strengths and limitations of traditional and emerging materials for immune cell transfection, and commercial development of these tools, are discussed. To enhance the characterization of transfection techniques and uptake by the clinical community, a list of in vitro and in vivo assays to perform, along with relevant protocols, is recommended. The overall aim, herein, is to motivate the development of novel materials to meet rising demand in transfection for clinical CAR-T cell manufacturing.
Collapse
Affiliation(s)
- Arun R K Kumar
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
| | - Yufeng Shou
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Brian Chan
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Krishaa L
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Andy Tay
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
| |
Collapse
|
7
|
Saini SK, Tamhane T, Anjanappa R, Saikia A, Ramskov S, Donia M, Svane IM, Jakobsen SN, Garcia-Alai M, Zacharias M, Meijers R, Springer S, Hadrup SR. Empty peptide-receptive MHC class I molecules for efficient detection of antigen-specific T cells. Sci Immunol 2019; 4:4/37/eaau9039. [DOI: 10.1126/sciimmunol.aau9039] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 06/20/2019] [Indexed: 12/17/2022]
Abstract
The peptide-dependent stability of MHC class I molecules poses a substantial challenge for their use in peptide-MHC multimer–based approaches to comprehensively analyze T cell immunity. To overcome this challenge, we demonstrate the use of functionally empty MHC class I molecules stabilized by a disulfide bond to link the α1and α2helices close to the F pocket. Peptide-loaded disulfide-stabilized HLA-A*02:01 shows complete structural overlap with wild-type HLA-A*02:01. Peptide-MHC multimers prepared using disulfide-stabilized HLA-A*02:01, HLA-A*24:02, and H-2Kbcan be used to identify antigen-specific T cells, and they provide a better staining index for antigen-specific T cell detection compared with multimers prepared with wild-type MHC class I molecules. Disulfide-stabilized MHC class I molecules can be loaded with peptide in the multimerized form without affecting their capacity to stain T cells. We demonstrate the value of empty-loadable tetramers that are converted to antigen-specific tetramers by a single-step peptide addition through their use to identify T cells specific for mutation-derived neoantigens and other cancer-associated antigens in human melanoma.
Collapse
|
8
|
Simoni Y, Chng MHY, Li S, Fehlings M, Newell EW. Mass cytometry: a powerful tool for dissecting the immune landscape. Curr Opin Immunol 2018; 51:187-196. [PMID: 29655022 DOI: 10.1016/j.coi.2018.03.023] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/25/2018] [Accepted: 03/26/2018] [Indexed: 10/17/2022]
Abstract
Advancement in methodologies for single cell analysis has historically been a major driver of progress in immunology. Currently, high dimensional flow cytometry, mass cytometry and various forms of single cell sequencing-based analysis methods are being widely adopted to expose the staggering heterogeneity of immune cells in many contexts. Here, we focus on mass cytometry, a form of flow cytometry that allows for simultaneous interrogation of more than 40 different marker molecules, including cytokines and transcription factors, without the need for spectral compensation. We argue that mass cytometry occupies an important niche within the landscape of single-cell analysis platforms that enables the efficient and in-depth study of diverse immune cell subsets with an ability to zoom-in on myeloid and lymphoid compartments in various tissues in health and disease. We further discuss the unique features of mass cytometry that are favorable for combining multiplex peptide-MHC multimer technology and phenotypic characterization of antigen specific T cells. By referring to recent studies revealing the complexities of tumor immune infiltrates, we highlight the particular importance of this technology for studying cancer in the context of cancer immunotherapy. Finally, we provide thoughts on current technical limitations and how we imagine these being overcome.
Collapse
Affiliation(s)
- Yannick Simoni
- Agency for Science, Technology and Research (A*STAR), Singapore Immunology Network (SIgN), Singapore
| | - Melissa Hui Yen Chng
- Agency for Science, Technology and Research (A*STAR), Singapore Immunology Network (SIgN), Singapore
| | - Shamin Li
- Agency for Science, Technology and Research (A*STAR), Singapore Immunology Network (SIgN), Singapore
| | | | - Evan W Newell
- Agency for Science, Technology and Research (A*STAR), Singapore Immunology Network (SIgN), Singapore.
| |
Collapse
|
9
|
Newell EW, Becht E. High-Dimensional Profiling of Tumor-Specific Immune Responses: Asking T Cells about What They “See” in Cancer. Cancer Immunol Res 2018; 6:2-9. [DOI: 10.1158/2326-6066.cir-17-0519] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/18/2017] [Accepted: 12/04/2017] [Indexed: 11/16/2022]
|