1
|
Ancău M, Tanti GK, Butenschoen VM, Gempt J, Yakushev I, Nekolla S, Mühlau M, Scheunemann C, Heininger S, Löwe B, Löwe E, Baer S, Fischer J, Reiser J, Ayachit SS, Liesche-Starnecker F, Schlegel J, Matiasek K, Schifferer M, Kirschke JS, Misgeld T, Lueth T, Hemmer B. Validating a minipig model of reversible cerebral demyelination using human diagnostic modalities and electron microscopy. EBioMedicine 2024; 100:104982. [PMID: 38306899 PMCID: PMC10850420 DOI: 10.1016/j.ebiom.2024.104982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Inflammatory demyelinating diseases of the central nervous system, such as multiple sclerosis, are significant sources of morbidity in young adults despite therapeutic advances. Current murine models of remyelination have limited applicability due to the low white matter content of their brains, which restricts the spatial resolution of diagnostic imaging. Large animal models might be more suitable but pose significant technological, ethical and logistical challenges. METHODS We induced targeted cerebral demyelinating lesions by serially repeated injections of lysophosphatidylcholine in the minipig brain. Lesions were amenable to follow-up using the same clinical imaging modalities (3T magnetic resonance imaging, 11C-PIB positron emission tomography) and standard histopathology protocols as for human diagnostics (myelin, glia and neuronal cell markers), as well as electron microscopy (EM), to compare against biopsy data from two patients. FINDINGS We demonstrate controlled, clinically unapparent, reversible and multimodally trackable brain white matter demyelination in a large animal model. De-/remyelination dynamics were slower than reported for rodent models and paralleled by a degree of secondary axonal pathology. Regression modelling of ultrastructural parameters (g-ratio, axon thickness) predicted EM features of cerebral de- and remyelination in human data. INTERPRETATION We validated our minipig model of demyelinating brain diseases by employing human diagnostic tools and comparing it with biopsy data from patients with cerebral demyelination. FUNDING This work was supported by the DFG under Germany's Excellence Strategy within the framework of the Munich Cluster for Systems Neurology (EXC 2145 SyNergy, ID 390857198) and TRR 274/1 2020, 408885537 (projects B03 and Z01).
Collapse
Affiliation(s)
- Mihai Ancău
- Department of Neurology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Institute of Neuronal Cell Biology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Goutam Kumar Tanti
- Department of Neurology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Vicki Marie Butenschoen
- Department of Neurosurgery, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Germany
| | - Jens Gempt
- Department of Neurosurgery, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Germany; Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Igor Yakushev
- Department of Nuclear Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Germany
| | - Stephan Nekolla
- Department of Nuclear Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Germany
| | - Mark Mühlau
- Department of Neurology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Christian Scheunemann
- Institute of Micro Technology and Medical Device Technology, Technical University of Munich, Garching, Germany; Ergosurg GmbH, Ismaning, Germany
| | - Sebastian Heininger
- Institute of Micro Technology and Medical Device Technology, Technical University of Munich, Garching, Germany; Ergosurg GmbH, Ismaning, Germany
| | - Benjamin Löwe
- Institute of Micro Technology and Medical Device Technology, Technical University of Munich, Garching, Germany; Ergosurg GmbH, Ismaning, Germany
| | - Erik Löwe
- Institute of Micro Technology and Medical Device Technology, Technical University of Munich, Garching, Germany; Ergosurg GmbH, Ismaning, Germany
| | - Silke Baer
- Centre for Preclinical Research, Department of Veterinary Medicine, Technical University of Munich, Munich, Germany
| | - Johannes Fischer
- Centre for Preclinical Research, Department of Veterinary Medicine, Technical University of Munich, Munich, Germany
| | - Judith Reiser
- Centre for Preclinical Research, Department of Veterinary Medicine, Technical University of Munich, Munich, Germany
| | - Sai S Ayachit
- Department of Neurology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany; Graduate School of Systemic Neurosciences, Ludwig Maximilian University of Munich, Germany
| | - Friederike Liesche-Starnecker
- Department of Neuropathology, Institute of Pathology, Technical University of Munich School of Medicine, Munich, Germany; Medical Faculty, Institute of Pathology and Molecular Diagnostics, University of Augsburg, Augsburg, Germany
| | - Jürgen Schlegel
- Department of Neuropathology, Institute of Pathology, Technical University of Munich School of Medicine, Munich, Germany
| | - Kaspar Matiasek
- Clinical and Comparative Neuropathology, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Martina Schifferer
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Jan S Kirschke
- Department of Neuroradiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Germany
| | - Thomas Misgeld
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Institute of Neuronal Cell Biology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Tim Lueth
- Institute of Micro Technology and Medical Device Technology, Technical University of Munich, Garching, Germany; Ergosurg GmbH, Ismaning, Germany
| | - Bernhard Hemmer
- Department of Neurology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|