1
|
Nissenbaum J, Segal E, Philip H, Cashman R, Golan-Lev T, Reubinoff BE, Turjeman A, Yanuka O, Lezmi E, Kopper O, Benvenisty N. Predicting tumour resistance to paclitaxel and carboplatin utilising genome-wide screening in haploid human embryonic stem cells. Cell Prolif 2024:e13771. [PMID: 39523021 DOI: 10.1111/cpr.13771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/02/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Taxanes and platinum molecules, specifically paclitaxel and carboplatin, are widely used anticancer drugs that induce cell death and serve as first-line chemotherapy for various cancer types. Despite the efficient effect of both drugs on cancer cell proliferation, many tumours have innate resistance against paclitaxel and carboplatin, which leads to inefficient treatment and poor survival rates. Haploid human embryonic stem cells (hESCs) are a novel and robust platform for genetic screening. To gain a comprehensive view of genes that affect or regulate paclitaxel and carboplatin resistance, genome-wide loss-of-function screens in haploid hESCs were performed. Both paclitaxel and carboplatin screens have yielded selected plausible gene lists and pathways relevant to resistance prediction. The effects of mutations in selected genes on the resistance to the drugs were demonstrated. Based on the results, an algorithm that can predict resistance to paclitaxel or carboplatin was developed. Applying the algorithm to the DNA mutation profile of patients' tumours enabled the separation of sensitive versus resistant patients, thus, providing a prediction tool. As the anticancer drugs arsenal can offer alternatives in case of resistance to either paclitaxel or carboplatin, an early prediction can provide a significant advantage and should improve treatment. The algorithm assists this unmet need and helps predict whether a patient will respond to the treatment and may have an immediate clinically actionable application.
Collapse
Affiliation(s)
| | - Emanuel Segal
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
- Hadassah Stem Cell Research Center, Goldyne Savad Institute of Gene Therapy, Department of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | | | | | - Tamar Golan-Lev
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Benjamin E Reubinoff
- Hadassah Stem Cell Research Center, Goldyne Savad Institute of Gene Therapy, Department of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Adi Turjeman
- The Center for Genomic Technologies, The Hebrew University, Jerusalem, Israel
| | - Ofra Yanuka
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | | | | | - Nissim Benvenisty
- NewStem LTD, Jerusalem, Israel
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
2
|
Wang HS, Ma XR, Guo YH. Development and application of haploid embryonic stem cells. Stem Cell Res Ther 2024; 15:116. [PMID: 38654389 PMCID: PMC11040874 DOI: 10.1186/s13287-024-03727-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Haploid cells are a kind of cells with only one set of chromosomes. Compared with traditional diploid cells, haploid cells have unique advantages in gene screening and drug-targeted therapy, due to their phenotype being equal to the genotype. Embryonic stem cells are a kind of cells with strong differentiation potential that can differentiate into various types of cells under specific conditions in vitro. Therefore, haploid embryonic stem cells have the characteristics of both haploid cells and embryonic stem cells, which makes them have significant advantages in many aspects, such as reproductive developmental mechanism research, genetic screening, and drug-targeted therapy. Consequently, establishing haploid embryonic stem cell lines is of great significance. This paper reviews the progress of haploid embryonic stem cell research and briefly discusses the applications of haploid embryonic stem cells.
Collapse
Affiliation(s)
- Hai-Song Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 40 Daxue Road, 450052, Zhengzhou, Henan Province, China.
| | - Xin-Rui Ma
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 40 Daxue Road, 450052, Zhengzhou, Henan Province, China
| | - Yi-Hong Guo
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 40 Daxue Road, 450052, Zhengzhou, Henan Province, China.
| |
Collapse
|
3
|
Huang H, Hu C, Na J, Hart SN, Gnanaolivu RD, Abozaid M, Rao T, Tecleab YA, Pesaran T, Lyra PCM, Karam R, Yadav S, Domchek SM, de la Hoya M, Robson M, Mehine M, Bandlamudi C, Mandelker D, Monteiro ANA, Boddicker N, Chen W, Richardson ME, Couch FJ. Saturation genome editing-based functional evaluation and clinical classification of BRCA2 single nucleotide variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571597. [PMID: 38168194 PMCID: PMC10760149 DOI: 10.1101/2023.12.14.571597] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Germline BRCA2 loss-of function (LOF) variants identified by clinical genetic testing predispose to breast, ovarian, prostate and pancreatic cancer. However, variants of uncertain significance (VUS) (n>4000) limit the clinical use of testing results. Thus, there is an urgent need for functional characterization and clinical classification of all BRCA2 variants. Here we report on comprehensive saturation genome editing-based functional characterization of 97% of all possible single nucleotide variants (SNVs) in the BRCA2 DNA Binding Domain hotspot for pathogenic missense variants that is encoded by exons 15 to 26. The assay was based on deep sequence analysis of surviving endogenously targeted haploid cells. A total of 7013 SNVs were characterized as functionally abnormal (n=955), intermediate/uncertain, or functionally normal (n=5224) based on 95% agreement with ClinVar known pathogenic and benign standards. Results were validated relative to batches of nonsense and synonymous variants and variants evaluated using a homology directed repair (HDR) functional assay. Breast cancer case-control association studies showed that pooled SNVs encoding functionally abnormal missense variants were associated with increased risk of breast cancer (odds ratio (OR) 3.89, 95%CI: 2.77-5.51). In addition, 86% of tumors associated with abnormal missense SNVs displayed loss of heterozygosity (LOH), whereas 26% of tumors with normal variants had LOH. The functional data were added to other sources of information in a ClinGen/ACMG/AMP-like model and 700 functionally abnormal SNVs, including 220 missense SNVs, were classified as pathogenic or likely pathogenic, while 4862 functionally normal SNVs, including 3084 missense SNVs, were classified as benign or likely benign. These classified variants can now be used for risk assessment and clinical care of variant carriers and the remaining functional scores can be used directly for clinical classification and interpretation of many additional variants. Summary Germline BRCA2 loss-of function (LOF) variants identified by clinical genetic testing predispose to several types of cancer. However, variants of uncertain significance (VUS) limit the clinical use of testing results. Thus, there is an urgent need for functional characterization and clinical classification of all BRCA2 variants to facilitate current and future clinical management of individuals with these variants. Here we show the results from a saturation genome editing (SGE) and functional analysis of all possible single nucleotide variants (SNVs) from exons 15 to 26 that encode the BRCA2 DNA Binding Domain hotspot for pathogenic missense variants. The assay was based on deep sequence analysis of surviving endogenously targeted human haploid HAP1 cells. The assay was calibrated relative to ClinVar known pathogenic and benign missense standards and 95% prevalence thresholds for functionally abnormal and normal variants were identified. Thresholds were validated based on nonsense and synonymous variants. SNVs encoding functionally abnormal missense variants were associated with increased risks of breast and ovarian cancer. The functional assay results were integrated into a ClinGen/ACMG/AMP-like model for clinical classification of the majority of BRCA2 SNVs as pathogenic/likely pathogenic or benign/likely benign. The classified variants can be used for improved clinical management of variant carriers.
Collapse
|
4
|
Sahu S, Sullivan T, Southon E, Caylor D, Geh J, Sharan SK. Protocol for the saturation and multiplexing of genetic variants using CRISPR-Cas9. STAR Protoc 2023; 4:102702. [PMID: 37948185 PMCID: PMC10658368 DOI: 10.1016/j.xpro.2023.102702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023] Open
Abstract
Here, we present a multiplexed assay for variant effect protocol to assess the functional impact of all possible genetic variations within a particular genomic region. We describe steps for saturation genome editing by designing and cloning of single-guide RNA (sgRNA). We then detail steps for nucleofection of sgRNA, testing drug response on variants, and amplification of genomic DNA for next-generation sequencing. For complete details on the use and execution of this protocol, please refer to Sahu et al.1.
Collapse
Affiliation(s)
- Sounak Sahu
- Mouse Cancer Genetics Program, Centre for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| | - Teresa Sullivan
- Mouse Cancer Genetics Program, Centre for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Eileen Southon
- Mouse Cancer Genetics Program, Centre for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Dylan Caylor
- Mouse Cancer Genetics Program, Centre for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Josephine Geh
- Mouse Cancer Genetics Program, Centre for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Centre for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|