1
|
Wang Y, Yu T, Zhao Z, Li X, Song Y, He Y, Zhou Y, Li P, An L, Wang F. SMAD4 Limits PARP1 dependent DNA Repair to Render Pancreatic Cancer Cells Sensitive to Radiotherapy. Cell Death Dis 2024; 15:818. [PMID: 39528473 PMCID: PMC11555233 DOI: 10.1038/s41419-024-07210-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/24/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Dysregulation of SMAD4 (i.e. somatic mutation) is strongly associated with poor pancreatic ductal adenocarcinoma (PDAC) prognosis, yet the molecular mechanisms remain underlying this relationship obscure. Previously, we discovered that SMAD4 mutation renders pancreatic cancer resistant to radiotherapy via promotion of autophagy. In the current work, we observed a downregulation of the protein level of SMAD4 in PDAC as compared with adjacent normal tissue, and that such SMAD4low PDAC failed to benefit from chemotherapy. Furthermore, we observed that SMAD4 depletion dramatically enhanced DNA repair capacity in response to irradiation (IR) or a radiomimetic chemical. Interestingly, we found the radiomimetic chemical having induced a robust translocation of SMAD4 into the nucleus, where a direct interaction was shown to occur between the MH1 domain of SMAD4 and the DBD domain of PARP1. Functionally, the SMAD4-PARP1 interaction was found to perturb the recruitment of PARP1 to DNA damage sites. Accordingly, the combination of olaparib and radiotherapy was indicated in vivo and in vitro to specifically reduce the growth of SMAD4-deficient PDAC by attenuating PARP1 activity. Collectively, our results revealed a novel molecular mechanism for the involvement of the SMAD4-PARP1 interaction in DNA repair with a vital role in radiotherapy response in PDAC. Based on our set of findings, our findings offer a new combined therapeutic strategy for SMAD4 deficient PDAC that can significantly reduce pancreatic cancer radiotherapy resistance.
Collapse
Affiliation(s)
- Yang Wang
- Department of Gastroenterology, Huadong Hospital, Fudan University, 200040, Shanghai, China
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072, Shanghai, China
| | - Tianyu Yu
- Department of Gastroenterology, Huadong Hospital, Fudan University, 200040, Shanghai, China
| | - Zhangting Zhao
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072, Shanghai, China
| | - Xiaobing Li
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, 200444, Shanghai, China
| | - Yiran Song
- Department of Gastroenterology, Huadong Hospital, Fudan University, 200040, Shanghai, China
| | - Yazhi He
- Department of Gastroenterology, Huadong Hospital, Fudan University, 200040, Shanghai, China
| | - Yingqun Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072, Shanghai, China.
| | - Pu Li
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Liwei An
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072, Shanghai, China.
| | - Feng Wang
- Department of Gastroenterology, Huadong Hospital, Fudan University, 200040, Shanghai, China.
| |
Collapse
|
2
|
Ma D, Ma L, Zhao Y, Li Y, Ye W, Li X. The LRG-TGF-β-Alk-1/TGFßRII-Smads as Predictive Biomarkers of Chronic Hydrocephalus after Aneurysmal Subarachnoid Hemorrhage. J Neurol Surg A Cent Eur Neurosurg 2024; 85:457-463. [PMID: 37604195 PMCID: PMC11281838 DOI: 10.1055/s-0043-1771277] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 05/03/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Chronic hydrocephalus is a common complication of aneurysmal subarachnoid hemorrhage (aSAH); however, the risk factors and the mechanisms underlying its occurrence have yet to be fully elucidated. The purpose of this study was to identify biomarkers that could be used to predict chronic hydrocephalus after aSAH and to investigate the relationships. METHODS We analyzed cerebrospinal fluid (CSF) samples from 19 patients with chronic hydrocephalus after aSAH and 44 controls without hydrocephalus after aSAH. Enzyme-linked immunosorbent assay was used to determine the levels of leucine-rich alpha-2-glycoprotein (LRG), transforming growth factor-β (TGF-β), Smad1, Smad4, Smad5, Smad8, activin receptor-like kinase 1 (Alk-1), activin receptor-like kinase 5 (Alk-5), P38, and TGF-β type II receptor (TGFßRII) in CSF samples. RESULTS In the CSF of patients with chronic hydrocephalus after aSAH, the levels of LRG, TGF-β, Alk-1, Smad5, and TGFßRII were significantly increased (p < 0.05) and the levels of Smad1, Smad4, and Smad8 were significantly decreased (p < 0.05). There were no significant differences between the two groups concerning the levels of P38 and Alk-5 (p > 0.05). The analysis also identified significant correlations between specific biomarkers: LRG and Smad1, LRG and Smad5, TGF-β and Alk-1, and Alk-1 and Smad4 (p < 0.05); the Pearson's correlation coefficients for these relationships were -0.341, 0.257, 0.256, and -0.424, respectively. CONCLUSION The levels of LRG, TGF-β, Alk-1, TGFßRII, Smad1/5/8, and Smad4 in the CSF are potentially helpful as predictive biomarkers of chronic hydrocephalus after aSAH. Moreover, the LRG-TGF-β-Alk-1/TGFßRII-Smad1/5/8-Smad4 signaling pathway is highly likely to be involved in the pathogenic process of chronic hydrocephalus after aSAH.
Collapse
Affiliation(s)
- Dongying Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Luyao Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongqiang Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongli Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xianfeng Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
3
|
Pu T, Jin Y, Tang C, Fu J, Zhang C, Su B, Cao A. An innovative predictive model for cervical cancer constructed around a gene profile associated with cholesterol metabolism. ENVIRONMENTAL TOXICOLOGY 2024; 39:1055-1071. [PMID: 37694961 DOI: 10.1002/tox.23969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/12/2023]
Abstract
Cholesterol metabolism is crucial for cell survival and cancer progression. The prognostic patterns of genes linked to cholesterol metabolism (CMAGs) in CESC, however, have received very little attention in research. From public databases, TCGA-CESC cohorts with mRNA expression patterns and the accompanying clinical information of patients were gathered. Consensus clustering was used to find the molecular subtype connected to cholesterol metabolism. In the TCGA-CESC cohort, a predictive risk model with 28 CMAGs was created using Lasso-Cox regression. The function enrichment analysis between groups with high-and low-risk were investigated by employing GO, KEGG, and GSVA software. The immune cell infiltration was analyzed using ESTIMATE, CIBERSORT, and MCPCOUNTER methods. Finally, we select 7 genes in risk model for further multivariate Cox analysis, and ultimately a hub gene, CHIT1, was identified. Meanwhile, the function of CHIT1 was preliminarily verified in cell and mice tumor model. In conclusion, the abundance of the CHIT1 gene might be beneficial for forecasting the prognosis of CESC, demonstrating that cholesterol metabolism could be a promising treatment target for CESC.
Collapse
Affiliation(s)
- Tengda Pu
- Department of Gynecology, Hainan Cancer Hospital, Haikou, China
| | - Ying Jin
- Department of Ultrasound, Hainan Cancer Hospital, Haikou, China
| | - Chuai Tang
- Department of Rehabilitation Therapeutics, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jingjing Fu
- Department of Gynecology, Hainan Cancer Hospital, Haikou, China
| | - Chengyuan Zhang
- Department of Gynecology, Hainan Cancer Hospital, Haikou, China
| | - Bingfeng Su
- Department of Gynecology, Hainan Cancer Hospital, Haikou, China
| | - Aie Cao
- Department of Gynecology, Hainan Cancer Hospital, Haikou, China
| |
Collapse
|
4
|
Xiao M, Wang F, Chen N, Zhang H, Cao J, Yu Y, Zhao B, Ji J, Xu P, Li L, Shen L, Lin X, Feng XH. Smad4 sequestered in SFPQ condensates prevents TGF-β tumor-suppressive signaling. Dev Cell 2024; 59:48-63.e8. [PMID: 38103553 DOI: 10.1016/j.devcel.2023.11.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/18/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023]
Abstract
Loss of TGF-β growth-inhibitory responses is a hallmark of human cancer. However, the molecular mechanisms underlying the TGF-β resistance of cancer cells remain to be fully elucidated. Splicing factor proline- and glutamine-rich (SFPQ) is a prion-like RNA-binding protein that is frequently upregulated in human cancers. In this study, we identified SFPQ as a potent suppressor of TGF-β signaling. The ability of SFPQ to suppress TGF-β responses depends on its prion-like domain (PrLD) that drives liquid-liquid phase separation (LLPS). Mechanistically, SFPQ physically restrained Smad4 in its condensates, which excluded Smad4 from the Smad complex and chromatin occupancy and thus functionally dampened Smad-dependent transcriptional responses. Accordingly, SFPQ deficiency or loss of phase separation activities rendered human cells hypersensitive to TGF-β responses. Together, our data identify an important function of SFPQ through LLPS that suppresses Smad transcriptional activation and TGF-β tumor-suppressive activity.
Collapse
Affiliation(s)
- Mu Xiao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Fei Wang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Nuo Chen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hanchenxi Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jin Cao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yi Yu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Bin Zhao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Junfang Ji
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Pinglong Xu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lei Li
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Li Shen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xia Lin
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Xin-Hua Feng
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China; The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
5
|
Lin J, Liu Y, Liu P, Qi W, Liu J, He X, Liu Q, Liu Z, Yin J, Lin J, Bao H, Lin J. SNHG17 alters anaerobic glycolysis by resetting phosphorylation modification of PGK1 to foster pro-tumor macrophage formation in pancreatic ductal adenocarcinoma. J Exp Clin Cancer Res 2023; 42:339. [PMID: 38098044 PMCID: PMC10722693 DOI: 10.1186/s13046-023-02890-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/06/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Within the tumor immune microenvironment (TME), tumor-associated macrophages (TAMs) are crucial in modulating polarization states to influence cancer development through metabolic reprogramming. While long non-coding RNAs (lncRNAs) have been shown to play a pivotal role in the progression of various cancers, the underlying mechanisms by which lncRNAs alter M2 polarization through macrophage metabolism remodeling remain unelucidated. METHODS RNA sequencing was used to screen for differentially expressed lncRNAs in TAMs and normal tissue-resident macrophages (NTRMs) isolated from pancreatic ductal adenocarcinoma (PDAC) tissues, whilst RT-qPCR and FISH were employed to detect the expression level of SNHG17. Moreover, a series of in vivo and in vitro experiments were conducted to assess the functions of SNHG17 from TAMs in the polarization and glycolysis of M2-like macrophages and in the proliferation and metastasis of pancreatic cancer cells (PCs). Furthermore, Western blotting, RNA pull-down, mass spectrometry, RIP, and dual-luciferase assays were utilized to explore the underlying mechanism through which SNHG17 induces pro-tumor macrophage formation. RESULTS SNHG17 was substantially enriched in TAMs and was positively correlated with a worse prognosis in PDAC. Meanwhile, functional assays determined that SNHG17 promoted the malignant progression of PCs by enhancing M2 macrophage polarization and anaerobic glycolysis. Mechanistically, SNHG17 could sponge miR-628-5p to release PGK1 mRNA and concurrently interact with the PGK1 protein, activating the pro-tumorigenic function of PGK1 by enhancing phosphorylation at the T168A site of PGK1 through ERK1/2 recruitment. Lastly, SNHG17 knockdown could reverse the polarization status of macrophages in PDAC. CONCLUSIONS The present study illustrated the essential role of SNHG17 and its molecular mechanism in TAMs derived from PDAC, indicating that SNHG17 might be a viable target for PDAC immunotherapy.
Collapse
Affiliation(s)
- Jiayu Lin
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Yihao Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Pengyi Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Wenxin Qi
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jia Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xingfeng He
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qian Liu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zehua Liu
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014, Helsinki, Finland
| | - Jingxin Yin
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Jiewei Lin
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Haili Bao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- School of Life Sciences, Shanghai University, Shanghai, China.
| | - Jianhong Lin
- Department of Pharmacy, The Third Hospital of Xiamen, Xiamen, 361100, China.
| |
Collapse
|
6
|
Angeles AK, Janke F, Daum AK, Reck M, Schneider MA, Thomas M, Christopoulos P, Sültmann H. Integrated circulating tumour DNA and cytokine analysis for therapy monitoring of ALK-rearranged lung adenocarcinoma. Br J Cancer 2023; 129:112-121. [PMID: 37120670 PMCID: PMC10307797 DOI: 10.1038/s41416-023-02284-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Detection of circulating tumour DNA (ctDNA) in biological fluids is a minimally invasive alternative to tissue biopsy for therapy monitoring. Cytokines are released in the tumour microenvironment to influence inflammation and tumorigenic mechanisms. Here, we investigated the potential biomarker utility of circulating cytokines vis-à-vis ctDNA in ALK-rearranged+ lung adenocarcinoma (ALK + NSCLC) and explored the optimal combination of molecular parameters that could indicate disease progression. METHODS Longitudinal serum samples (n = 296) were collected from ALK + NSCLC patients (n = 38) under tyrosine kinase inhibitor (TKI) therapy and assayed to quantify eight cytokines: IFN-γ, IL-1β, IL-6, IL-8, IL-10, IL-12p70, MCP1 and TNF-α. Generalised linear mixed-effect modelling was performed to test the performance of different combinations of cytokines and previously determined ctDNA parameters in identifying progressive disease. RESULTS Serum IL-6, IL-8 and IL-10 were elevated at progressive disease, with IL-8 having the most significant impact as a biomarker. Integrating changes in IL-8 with ctDNA parameters maximised the performance of the classifiers in identifying disease progression, but this did not significantly outperform the model based on ctDNA alone. CONCLUSIONS Serum cytokine levels are potential disease progression markers in ALK + NSCLC. Further validation in a larger and prospective cohort is necessary to determine whether the addition of cytokine evaluation could improve current tumour monitoring modalities in the clinical setting.
Collapse
Affiliation(s)
- Arlou Kristina Angeles
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Heidelberg, Germany.
- German Center for Lung Research (DZL), TLRC Heidelberg, Heidelberg, Germany.
| | - Florian Janke
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Center for Lung Research (DZL), TLRC Heidelberg, Heidelberg, Germany
| | - Ann-Kathrin Daum
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Center for Lung Research (DZL), TLRC Heidelberg, Heidelberg, Germany
| | - Martin Reck
- Lung Clinic Grosshansdorf, Airway Research Center North, German Center for Lung Research, Grosshansdorf, Germany
| | - Marc A Schneider
- German Center for Lung Research (DZL), TLRC Heidelberg, Heidelberg, Germany
- Translational Research Unit, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Michael Thomas
- German Center for Lung Research (DZL), TLRC Heidelberg, Heidelberg, Germany
- Department of Oncology, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Petros Christopoulos
- German Center for Lung Research (DZL), TLRC Heidelberg, Heidelberg, Germany
- Department of Oncology, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Holger Sültmann
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Center for Lung Research (DZL), TLRC Heidelberg, Heidelberg, Germany
| |
Collapse
|
7
|
Wang L, Gu S, Chen F, Yu Y, Cao J, Li X, Gao C, Chen Y, Yuan S, Liu X, Qin J, Zhao B, Xu P, Liang T, Tong H, Lin X, Feng XH. Imatinib blocks tyrosine phosphorylation of Smad4 and restores TGF-β growth-suppressive signaling in BCR-ABL1-positive leukemia. Signal Transduct Target Ther 2023; 8:120. [PMID: 36959211 PMCID: PMC10036327 DOI: 10.1038/s41392-023-01327-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/15/2022] [Accepted: 01/16/2023] [Indexed: 03/25/2023] Open
Abstract
Loss of TGF-β-mediated growth suppression is a major contributor to the development of cancers, best exemplified by loss-of-function mutations in genes encoding components of the TGF-β signaling pathway in colorectal and pancreatic cancers. Alternatively, gain-of-function oncogene mutations can also disrupt antiproliferative TGF-β signaling. However, the molecular mechanisms underlying oncogene-induced modulation of TGF-β signaling have not been extensively investigated. Here, we show that the oncogenic BCR-ABL1 of chronic myelogenous leukemia (CML) and the cellular ABL1 tyrosine kinases phosphorylate and inactivate Smad4 to block antiproliferative TGF-β signaling. Mechanistically, phosphorylation of Smad4 at Tyr195, Tyr301, and Tyr322 in the linker region interferes with its binding to the transcription co-activator p300/CBP, thereby blocking the ability of Smad4 to activate the expression of cyclin-dependent kinase (CDK) inhibitors and induce cell cycle arrest. In contrast, the inhibition of BCR-ABL1 kinase with Imatinib prevented Smad4 tyrosine phosphorylation and re-sensitized CML cells to TGF-β-induced antiproliferative and pro-apoptotic responses. Furthermore, expression of phosphorylation-site-mutated Y195F/Y301F/Y322F mutant of Smad4 in Smad4-null CML cells enhanced antiproliferative responses to TGF-β, whereas the phosphorylation-mimicking Y195E/Y301E/Y322E mutant interfered with TGF-β signaling and enhanced the in vivo growth of CML cells. These findings demonstrate the direct role of BCR-ABL1 tyrosine kinase in suppressing TGF-β signaling in CML and explain how Imatinib-targeted therapy restored beneficial TGF-β anti-growth responses.
Collapse
Affiliation(s)
- Lijing Wang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang, 321000, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Shuchen Gu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang, 321000, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Fenfang Chen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yi Yu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang, 321000, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jin Cao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang, 321000, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xinran Li
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang, 321000, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Chun Gao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang, 321000, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang, 311200, China
| | - Yanzhen Chen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Shuchong Yuan
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xia Liu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang, 311200, China
| | - Jun Qin
- Beijing Proteome Research Center, National Center for Protein Sciences, Beijing, China
| | - Bin Zhao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang, 321000, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Pinglong Xu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang, 321000, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xia Lin
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Xin-Hua Feng
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang, 321000, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
- The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
8
|
Yuan B, Liu J, Shi A, Cao J, Yu Y, Zhu Y, Zhang C, Qiu Y, Luo H, Shi J, Cao X, Xu P, Shen L, Liang T, Zhao B, Feng X. HERC3 promotes YAP/TAZ stability and tumorigenesis independently of its ubiquitin ligase activity. EMBO J 2023; 42:e111549. [PMID: 36598329 PMCID: PMC9929636 DOI: 10.15252/embj.2022111549] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023] Open
Abstract
YAP/TAZ transcriptional co-activators play pivotal roles in tumorigenesis. In the Hippo pathway, diverse signals activate the MST-LATS kinase cascade that leads to YAP/TAZ phosphorylation, and subsequent ubiquitination and proteasomal degradation by SCFβ-TrCP . When the MST-LATS kinase cascade is inactive, unphosphorylated or dephosphorylated YAP/TAZ translocate into the nucleus to mediate TEAD-dependent gene transcription. Hippo signaling-independent YAP/TAZ activation in human malignancies has also been observed, yet the mechanism remains largely elusive. Here, we report that the ubiquitin E3 ligase HERC3 can promote YAP/TAZ activation independently of its enzymatic activity. HERC3 directly binds to β-TrCP, blocks its interaction with YAP/TAZ, and thus prevents YAP/TAZ ubiquitination and degradation. Expression levels of HERC3 correlate with YAP/TAZ protein levels and expression of YAP/TAZ target genes in breast tumor cells and tissues. Accordingly, knockdown of HERC3 expression ameliorates tumorigenesis of breast cancer cells. Our results establish HERC3 as a critical regulator of the YAP/TAZ stability and a potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Bo Yuan
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouChina
- Center for Life Sciences, Shaoxing InstituteZhejiang UniversityShaoxingChina
| | - Jinquan Liu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouChina
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic DiseaseThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Aiping Shi
- Department of Breast SurgeryThe First Hospital of Jilin UniversityChangchunChina
| | - Jin Cao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouChina
- Center for Life Sciences, Shaoxing InstituteZhejiang UniversityShaoxingChina
| | - Yi Yu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouChina
- Center for Life Sciences, Shaoxing InstituteZhejiang UniversityShaoxingChina
| | - Yezhang Zhu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouChina
- Center for Life Sciences, Shaoxing InstituteZhejiang UniversityShaoxingChina
| | - Chengbin Zhang
- Department of PathologyThe First Hospital of Jilin UniversityChangchunChina
| | - Yifei Qiu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouChina
| | - Hongjie Luo
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouChina
- Center for Life Sciences, Shaoxing InstituteZhejiang UniversityShaoxingChina
| | - Jiaxian Shi
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouChina
- Center for Life Sciences, Shaoxing InstituteZhejiang UniversityShaoxingChina
| | - Xiaolei Cao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouChina
- Center for Life Sciences, Shaoxing InstituteZhejiang UniversityShaoxingChina
| | - Pinglong Xu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouChina
- Center for Life Sciences, Shaoxing InstituteZhejiang UniversityShaoxingChina
| | - Li Shen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouChina
- Center for Life Sciences, Shaoxing InstituteZhejiang UniversityShaoxingChina
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic DiseaseThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Bin Zhao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouChina
- Center for Life Sciences, Shaoxing InstituteZhejiang UniversityShaoxingChina
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic DiseaseThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Xin‐Hua Feng
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouChina
- Center for Life Sciences, Shaoxing InstituteZhejiang UniversityShaoxingChina
- Cancer CenterZhejiang UniversityHangzhouChina
- The Second Affiliated HospitalZhejiang UniversityHangzhouChina
| |
Collapse
|
9
|
Ge Q, Shi Z, Zou KA, Ying J, Chen J, Yuan W, Wang W, Xiao L, Lin X, Chen D, Feng XH, Wang PE, Tong P, Jin H. Protein phosphatase PPM1A inhibition attenuates osteoarthritis via regulating TGF-β/Smad2 signaling in chondrocytes. JCI Insight 2023; 8:166688. [PMID: 36752205 PMCID: PMC9926971 DOI: 10.1172/jci.insight.166688] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/21/2022] [Indexed: 02/09/2023] Open
Abstract
TGF-β signaling is crucial for modulating osteoarthritis (OA), and protein phosphatase magnesium-dependent 1A (PPM1A) has been reported as a phosphatase of SMAD2 and regulates TGF-β signaling, while the role of PPM1A in cartilage homeostasis and OA development remains largely unexplored. In this study, we found increased PPM1A expression in OA chondrocytes and confirmed the interaction between PPM1A and phospho-SMAD2 (p-SMAD2). Importantly, our data show that PPM1A KO substantially protected mice treated with destabilization of medial meniscus (DMM) surgery against cartilage degeneration and subchondral sclerosis. Additionally, PPM1A ablation reduced the cartilage catabolism and cell apoptosis after the DMM operation. Moreover, p-SMAD2 expression in chondrocytes from KO mice was higher than that in WT controls with DMM induction. However, intraarticular injection with SD-208, repressing TGF-β/SMAD2 signaling, dramatically abolished protective phenotypes in PPM1A-KO mice. Finally, a specific pharmacologic PPM1A inhibitor, Sanguinarine chloride (SC) or BC-21, was able to ameliorate OA severity in C57BL/6J mice. In summary, our study identified PPM1A as a pivotal regulator of cartilage homeostasis and demonstrated that PPM1A inhibition attenuates OA progression via regulating TGF-β/SMAD2 signaling in chondrocytes and provided PPM1A as a potential target for OA treatment.
Collapse
Affiliation(s)
- Qinwen Ge
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhenyu Shi
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Kai-ao Zou
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jun Ying
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiali Chen
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenhua Yuan
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Weidong Wang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Department of Orthopedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Luwei Xiao
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xia Lin
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Di Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xin-Hua Feng
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute and
| | - Ping-er Wang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Peijian Tong
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongting Jin
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Life Sciences Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Inhibiting ALK-TOPK signaling pathway promotes cell apoptosis of ALK-positive NSCLC. Cell Death Dis 2022; 13:828. [PMID: 36167821 PMCID: PMC9515217 DOI: 10.1038/s41419-022-05260-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 01/23/2023]
Abstract
T-LAK cell-oriented protein kinase (TOPK) is a potential therapeutic target in tumors. However, its role in anaplastic lymphoma kinase (ALK)-positive non-small cell lung cancer (NSCLC) has not been reported. Here, we found that TOPK was highly expressed in ALK-positive NSCLC. Additionally, ALK was identified as another upstream kinase of TOPK by in vitro kinase assay screening. Then, it was proven that ALK phosphorylated TOPK at Y74 in vitro and ex vivo, and the pathways downstream of ALK-TOPK were explored by phosphoproteomic analysis. Subsequently, we demonstrated that inhibiting TOPK enhanced tumor sensitivity to alectinib (an ALK inhibitor). The combination of alectinib and HI-032 (a TOPK inhibitor) suppressed the growth and promoted the apoptosis of ALK-positive NSCLC cells ex vivo and in vivo. Our findings reveal a novel ALK-TOPK signaling pathway in ALK-positive NSCLC. The combination of alectinib and HI-032 might be a promising therapeutic strategy for improving the sensitivity of ALK-positive NSCLC to targeted therapy.
Collapse
|
11
|
Liu X, Hao J, Wei P, Zhao X, Lan Q, Ni L, Chen Y, Bai X, Ni L, Dong C. SMAD4, activated by the TCR-triggered MEK/ERK signaling pathway, critically regulates CD8 + T cell cytotoxic function. SCIENCE ADVANCES 2022; 8:eabo4577. [PMID: 35895826 PMCID: PMC9328680 DOI: 10.1126/sciadv.abo4577] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Transforming growth factor-β is well known to restrain cytotoxic T cell responses to maintain self-tolerance and to promote tumor immune evasion. In this study, we have investigated the role of SMAD4, a core component in the TGF-β signaling pathway, in CD8+ T cells. Unexpectedly, we found that SMAD4 was critical in promoting CD8+ T cell function in both tumor and infection models. SMAD4-mediated transcriptional regulation of CD8+ T cell activation and cytotoxicity was dependent on the T cell receptor (TCR) but not TGF-β signaling pathway. Following TCR activation, SMAD4 translocated into the nucleus, up-regulated genes encoding TCR signaling components and cytotoxic molecules in CD8+ T cells and thus reinforced T cell function. Biochemically, SMAD4 was directly phosphorylated by ERK at Ser367 residue following TCR activation. Our study thus demonstrates a critical yet unexpected role of SMAD4 in promoting CD8+ T cell-mediated cytotoxic immunity.
Collapse
Affiliation(s)
- Xinwei Liu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jing Hao
- Shanghai Immune Therapy Institute, Shanghai Jiaotong University School of Medicine-affiliated Renji Hospital, Shanghai 200127, China
| | - Peng Wei
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiaohong Zhao
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Qiuyan Lan
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lu Ni
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yongzhen Chen
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xue Bai
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Ling Ni
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Chen Dong
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
- Shanghai Immune Therapy Institute, Shanghai Jiaotong University School of Medicine-affiliated Renji Hospital, Shanghai 200127, China
| |
Collapse
|
12
|
Xu ZH, Wang WQ, Liu L, Lou WH. A special subtype: Revealing the potential intervention and great value of KRAS wildtype pancreatic cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188751. [PMID: 35732240 DOI: 10.1016/j.bbcan.2022.188751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the predominant form of pancreatic cancer and has devastating consequences on affected families and society. Its dismal prognosis is attributed to poor specificity of symptoms during early stages. It is widely believed that PDAC patients with the wildtype (WT) KRAS gene benefit more from currently available treatments than those with KRAS mutations. The oncogenic genetic changes alternations generally found in KRAS wildtype PDAC are related to either the KRAS pathway or microsatellite instability/mismatch repair deficiency (MSI/dMMR), which enable the application of tailored treatments based on each patient's genetic characteristics. This review focuses on targeted therapies against alternative tumour mechanisms in KRAS WT PDAC.
Collapse
Affiliation(s)
- Zhi-Hang Xu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Wen-Hui Lou
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Spatiotemporal modulation of SMAD4 by HBx is required for cellular proliferation in hepatitis B-related liver cancer. Cell Oncol (Dordr) 2022; 45:573-589. [PMID: 35716259 DOI: 10.1007/s13402-022-00683-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2022] [Indexed: 11/03/2022] Open
Abstract
PURPOSE Hepatitis B virus (HBV) plays a crucial role in the progression of hepatocellular carcinoma (HCC). It is known that HBV-encoded X protein (HBx) can induce genetic alterations in some oncogenes and that SMAD4 is relevant for the development of some cancers, especially HBV-related HCC. Previously, it has been reported that HBx can promote SMAD4 protein expression in liver fibrosis and HCC but, as yet, its regulatory mechanism has not been fully elucidated. Here, we aimed to investigate the correlation between and regulatory mechanism behind HBx and SMAD4 in HCC. METHODS mRNA and protein expression of SMAD4 in HCC tissues was detected by qRT-PCR, Western blotting and IHC. CCK-8 and colony forming assays, as well as xenograft murine models were used to evaluate the effects of HBx and SMAD4 on the proliferation and tumorigenicity of HCC cells. Luciferase reporter, immunofluorescence, Co-IP and truncation assays were performed to assess the regulatory relationship between HBx and SMAD4. RESULTS We found that SMAD4 was highly expressed in HBV-positive HCC patient samples and correlated with a poor prognosis. The proliferation of HCC cells with a high SMAD4 expression was found to be enhanced in vitro and in vivo, and knocking down HBx while replenishing SMAD4 rescued HCC cell proliferation. Mechanically, we found that HBx regulates SMAD4 expression at the transcriptional level via TFII-I and can bind to SMAD4 to repress its ubiquitination. The binding region comprised the MH2 domain of SMAD4. Furthermore, we found that SMAD4 can promote HBx expression through a positive feedback mechanism. CONCLUSIONS From our data we conclude that SMAD4 is modulated spatiotemporally via both transcriptional activation and protein stabilization by HBx in HCC cells. Our data shed light on the molecular mechanism underlying HBx-induced hepatocarcinogenesis.
Collapse
|
14
|
Adachi J, Kakudo A, Takada Y, Isoyama J, Ikemoto N, Abe Y, Narumi R, Muraoka S, Gunji D, Hara Y, Katayama R, Tomonaga T. Systematic identification of ALK substrates by integrated phosphoproteome and interactome analysis. Life Sci Alliance 2022; 5:5/8/e202101202. [PMID: 35508387 PMCID: PMC9069051 DOI: 10.26508/lsa.202101202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 11/24/2022] Open
Abstract
Integrated analysis of the phosphoproteome and interactome of anaplastic lymphoma kinase (ALK)-overexpressing HEK 293 cells revealed 37 ALK substrate candidates, contributing to the improvement of kinase activity prediction. The sensitivity of phosphorylation site identification by mass spectrometry has improved markedly. However, the lack of kinase–substrate relationship (KSR) data hinders the improvement of the range and accuracy of kinase activity prediction. In this study, we aimed to develop a method for acquiring systematic KSR data on anaplastic lymphoma kinase (ALK) using mass spectrometry and to apply this method to the prediction of kinase activity. Thirty-seven ALK substrate candidates, including 34 phosphorylation sites not annotated in the PhosphoSitePlus database, were identified by integrated analysis of the phosphoproteome and crosslinking interactome of HEK 293 cells with doxycycline-induced ALK overexpression. Furthermore, KSRs of ALK were validated by an in vitro kinase assay. Finally, using phosphoproteomic data from ALK mutant cell lines and patient-derived cells treated with ALK inhibitors, we found that the prediction of ALK activity was improved when the KSRs identified in this study were used instead of the public KSR dataset. Our approach is applicable to other kinases, and future identification of KSRs will facilitate more accurate estimations of kinase activity and elucidation of phosphorylation signals.
Collapse
Affiliation(s)
- Jun Adachi
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan .,Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Laboratory of Proteomics and Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Akemi Kakudo
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Yoko Takada
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Junko Isoyama
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Narumi Ikemoto
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Yuichi Abe
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Ryohei Narumi
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Satoshi Muraoka
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Daigo Gunji
- Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yasuhiro Hara
- Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Ryohei Katayama
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| |
Collapse
|
15
|
Peng D, Fu M, Wang M, Wei Y, Wei X. Targeting TGF-β signal transduction for fibrosis and cancer therapy. Mol Cancer 2022; 21:104. [PMID: 35461253 PMCID: PMC9033932 DOI: 10.1186/s12943-022-01569-x] [Citation(s) in RCA: 392] [Impact Index Per Article: 196.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/18/2022] [Indexed: 02/08/2023] Open
Abstract
Transforming growth factor β (TGF-β) has long been identified with its intensive involvement in early embryonic development and organogenesis, immune supervision, tissue repair, and adult homeostasis. The role of TGF-β in fibrosis and cancer is complex and sometimes even contradictory, exhibiting either inhibitory or promoting effects depending on the stage of the disease. Under pathological conditions, overexpressed TGF-β causes epithelial-mesenchymal transition (EMT), extracellular matrix (ECM) deposition, cancer-associated fibroblast (CAF) formation, which leads to fibrotic disease, and cancer. Given the critical role of TGF-β and its downstream molecules in the progression of fibrosis and cancers, therapeutics targeting TGF-β signaling appears to be a promising strategy. However, due to potential systemic cytotoxicity, the development of TGF-β therapeutics has lagged. In this review, we summarized the biological process of TGF-β, with its dual role in fibrosis and tumorigenesis, and the clinical application of TGF-β-targeting therapies.
Collapse
|
16
|
Loss of deubiquitylase USP2 triggers development of glioblastoma via TGF-β signaling. Oncogene 2022; 41:2597-2608. [PMID: 35332268 DOI: 10.1038/s41388-022-02275-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/24/2022] [Accepted: 03/09/2022] [Indexed: 12/23/2022]
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor as one of the deadliest cancers. The TGF-β signaling acts as an oncogenic factor in GBM, and plays vital roles in development of GBM. SMAD7 is a major inhibitor of TGF-β signaling, while the deubiquitination of SMAD7 has been poorly studied in GBM. Here, we found USP2 as a new prominent candidate that could regulate SMAD7 stability. USP2 was lost in GBM, leading to the poor prognosis in patients. Moreover, aberrant DNA methylation mediated by DNMT3A induced the low expression of USP2 in GBM. USP2 depletion induced TGF-β signaling and progression of GBM. In contrast, overexpressed USP2 suppressed TGF-β signaling and GBM development. Specifically, USP2 interacted with SMAD7 and prevented SMAD7 ubiquitination. USP2 directly cleaved Lys27- and Lys48-linked poly-ubiquitin chains of SMAD7, and Lys27-linked poly-ubiquitin chains of SMAD7 K185 mediated the recruitment of SMAD7 to HERC3, which regulated Lys63-linked poly-ubiquitination of SMAD7. Moreover, we demonstrated that the DNMT3A inhibitor SGI-1027 induced USP2, suppressed TGF-β signaling and GBM development. Thus, USP2 repressed development of GBM by inhibition TGF-β signaling pathway via the deubiquitination of SMAD7.
Collapse
|
17
|
Dong C, Wu K, Gu S, Wang W, Xie S, Zhou Y. PTBP3 mediates TGF-β-induced EMT and metastasis of lung adenocarcinoma. Cell Cycle 2022; 21:1406-1421. [PMID: 35323096 PMCID: PMC9345618 DOI: 10.1080/15384101.2022.2052530] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is associated with a poor prognosis due to early metastasis to distant organs. TGF-β potently induces epithelial-to-mesenchymal transition (EMT) and promotes invasion and metastasis of cancers. However, the mechanisms underlying this alteration are largely unknown. PTBP3 plays a critical role in RNA splicing and transcriptional regulation. Although accumulating evidence has revealed that PTBP3 exhibits a pro-oncogenic role in several cancers, whether and how PTBP3 mediates TGF-β-induced EMT and metastasis in LUAD remains unknown. The expression levels and prognostic value of PTBP3 were analyzed in human LUAD tissues and matched normal tissues. siRNAs and lentivirus-mediated vectors were used to transfect LUAD cell lines. Various in vitro experiments including western blot, qRT-PCR, a luciferase reporter assay, chromatin immunoprecipitation (ChIP), transwell migration and invasion assay and in vivo metastasis experiment were performed to determine the roles of PTBP3 in TGF-β-induced EMT and metastasis. PTBP3 expression was significantly upregulated in patients with LUAD, and high expression of PTBP3 indicated a poor prognosis. Intriguingly, we found that PTBP3 expression level in LUAD cell lines was significantly increased by exogenous TGF-β1 in a Smad-dependent manner. Mechanistically, p-Smad3 was recruited to the PTBP3 promoter and activated its transcription. In turn, PTBP3 knockdown abolished TGF-β1-mediated EMT through the inhibition of Smad2/3 expression. Furthermore, PTBP3 overexpression increased lung and liver metastasis of LUAD cells in vivo. PTBP3 is indispensable to TGF-β-induced EMT and metastasis of LUAD cells and is a novel potential therapeutic target for the treatment of LUAD.
Collapse
Affiliation(s)
- Chenglai Dong
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Kaiqin Wu
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shaorui Gu
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenli Wang
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shiliang Xie
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yongxin Zhou
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
18
|
Dai CJ, Cao YT, Huang F, Wang YG. Multiple roles of mothers against decapentaplegic homolog 4 in tumorigenesis, stem cells, drug resistance, and cancer therapy. World J Stem Cells 2022; 14:41-53. [PMID: 35126827 PMCID: PMC8788178 DOI: 10.4252/wjsc.v14.i1.41] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/13/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
The transforming growth factor (TGF)-β signaling pathway controls many cellular processes, including proliferation, differentiation, and apoptosis. Abnormalities in the TGF-β signaling pathway and its components are closely related to the occurrence of many human diseases, including cancer. Mothers against decapentaplegic homolog 4 (Smad4), also known as deleted in pancreatic cancer locus 4, is a typical tumor suppressor candidate gene locating at q21.1 of human chromosome 18 and the common mediator of the TGF-β/Smad and bone morphogenetic protein/Smad signaling pathways. It is believed that Smad4 inactivation correlates with the development of tumors and stem cell fate decisions. Smad4 also interacts with cytokines, miRNAs, and other signaling pathways, jointly regulating cell behavior. However, the regulatory function of Smad4 in tumorigenesis, stem cells, and drug resistance is currently controversial. In addition, Smad4 represents an attractive therapeutic target for cancer. Elucidating the specific role of Smad4 is important for understanding the mechanism of tumorigenesis and cancer treatment. Here, we review the identification and characterization of Smad4, the canonical TGF-β/Smad pathway, as well as the multiple roles of Smad4 in tumorigenesis, stem cells, and drug resistance. Furthermore, we provide novel insights into the prospects of Smad4-targeted cancer therapy and the challenges that it will face in the future.
Collapse
Affiliation(s)
- Chuan-Jing Dai
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| | - Yu-Ting Cao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| | - Fang Huang
- Department of Pathology, Zhejiang Provincial People’s Hospital of Hangzhou Medical University, Hangzhou 310014, Zhejiang Province, China
| | - Yi-Gang Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| |
Collapse
|
19
|
A Comparative and Comprehensive Review of Antibody Applications in the Treatment of Lung Disease. Life (Basel) 2022; 12:life12010130. [PMID: 35054524 PMCID: PMC8778790 DOI: 10.3390/life12010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 11/30/2022] Open
Abstract
Antibodies are a type of protein produced by active B cells in response to antigen stimulation. A series of monoclonal antibodies and neutralizing antibodies have been invented and put into clinical use because of their high therapeutic effect and bright developing insight. Patients with cancer, infectious diseases, and autoimmune diseases can all benefit from antibody therapy. However, the targeting aspects and potential mechanisms for treating these diseases differ. In the treatment of patients with infectious diseases such as COVID-19, neutralizing antibodies have been proposed as reliable vaccines against COVID-19, which target the ACE2 protein by preventing virus entry into somatic cells. Monoclonal antibodies can target immune checkpoints (e.g., PD-L1 and CTLA-4), tyrosine kinase and subsequent signaling pathways (e.g., VEGF), and cytokines in cancer patients (e.g. IL-6 and IL-1β). It is debatable whether there is any connection between the use of antibodies in these diseases. It would be fantastic to discover the related points and explain the burden for the limitation of cross-use of these techniques. In this review, we provided a comprehensive overview of the use of antibodies in the treatment of infectious disease and cancer patients. There are also discussions of their mechanisms and history. In addition, we discussed our future outlook on the use of antibodies.
Collapse
|
20
|
Zhang M, Zhang YY, Chen Y, Wang J, Wang Q, Lu H. TGF-β Signaling and Resistance to Cancer Therapy. Front Cell Dev Biol 2021; 9:786728. [PMID: 34917620 PMCID: PMC8669610 DOI: 10.3389/fcell.2021.786728] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
The transforming growth factor β (TGF-β) pathway, which is well studied for its ability to inhibit cell proliferation in early stages of tumorigenesis while promoting epithelial-mesenchymal transition and invasion in advanced cancer, is considered to act as a double-edged sword in cancer. Multiple inhibitors have been developed to target TGF-β signaling, but results from clinical trials were inconsistent, suggesting that the functions of TGF-β in human cancers are not yet fully explored. Multiple drug resistance is a major challenge in cancer therapy; emerging evidence indicates that TGF-β signaling may be a key factor in cancer resistance to chemotherapy, targeted therapy and immunotherapy. Finally, combining anti-TGF-β therapy with other cancer therapy is an attractive venue to be explored for the treatment of therapy-resistant cancer.
Collapse
Affiliation(s)
- Maoduo Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ying Yi Zhang
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Yongze Chen
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jia Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hezhe Lu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Gao C, Deng J, Zhang H, Li X, Gu S, Zheng M, Tang M, Zhu Y, Lin X, Jin J, Zhang L, Huang J, Zou J, Xia ZP, Xu PL, Shen L, Zhao B, Feng XH. HSPA13 facilitates NF-κB-mediated transcription and attenuates cell death responses in TNFα signaling. SCIENCE ADVANCES 2021; 7:eabh1756. [PMID: 34613781 PMCID: PMC8494447 DOI: 10.1126/sciadv.abh1756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
RIP1 has emerged as a master regulator in TNFα signaling that controls two distinct cellular fates: cell survival versus programmed cell death. Because the default response of most cells to TNFα is NF-κB–mediated inflammation and survival, a specific mechanism must exist to control the divergence of signaling outcome. Here, we identify HSPA13 as a transcription-independent checkpoint to modulate the role of RIP1 in TNFα signaling. Through specific binding to TNFR1 and RIP1, HSPA13 enhances TNFα-induced recruitment of RIP1 to TNFR1, and consequently promotes downstream NF-κB transcriptional responses. Meanwhile, HSPA13 attenuates the participation of RIP1 in cytosolic complex II and prevents cells from programmed death. Loss of HSPA13 shifts the transition of RIP1 from complex I to complex II and promotes both apoptosis and necroptosis. Thus, our study provides compelling evidence for the cellular protective function of HSPA13 in fine-tuning TNFα responses.
Collapse
Affiliation(s)
- Chun Gao
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jianhua Deng
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hanchenxi Zhang
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xinran Li
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shuchen Gu
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Mingjie Zheng
- Eye Center of the Second Affiliated Hospital School of Medicine, Institutes of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Mei Tang
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yezhang Zhu
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xin Lin
- Institute for Immunology, Tsinghua University School of Medicine, Tsinghua University–Peking University Jointed Center for Life Sciences, Beijing 100084, China
| | - Jianping Jin
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Long Zhang
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jun Huang
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jian Zou
- Eye Center of the Second Affiliated Hospital School of Medicine, Institutes of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zong-Ping Xia
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ping-Long Xu
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Li Shen
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Bin Zhao
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xin-Hua Feng
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
- The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
22
|
Wang X, Ge X, Liao W, Cao Y, Li R, Zhang F, Zhao B, Du J. ZFP36 promotes VDR mRNA degradation to facilitate cell death in oral and colonic epithelial cells. Cell Commun Signal 2021; 19:85. [PMID: 34380509 PMCID: PMC8355874 DOI: 10.1186/s12964-021-00765-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Vitamin D receptor (VDR) plays a vital protective role in oral and colonic epithelial cells. Albeit we know that VDR expression is reduced in the mucosal epithelial layers of autoimmune diseases, the mechanism by which VDR is decreased remains elusive. METHODS VDR and zinc finger protein 36 (ZFP36) levels in human samples and cell lines were detected by real-time PCR, western blot and immunostaining. Luciferase report assay was used to test cis-elements in VDR gene promoter, real-time PCR was applied to measure mRNA decay and western blot was performed to evaluate protein degradation. RNA affinity chromatography assay was used to test protein-mRNA interaction. Co-immunoprecipitation was used to detect protein-protein interaction. The role of ZFP36 in AU-rich elements (AREs) in the 3' untranslated region (UTR) of VDR mRNA was also measured by luciferase report assay. RESULTS We identify ZFP36 can bind with the AREs in the 3'UTR of VDR mRNA, leading to mRNA degradation in oral and colonic epithelial cells under inflammatory circumstance. Either ZFP36 protein or AREs of VDR mRNA mutation abolishes this protein-mRNA binding process. After the key amino acid's mutation, ZFP36 fails to decrease VDR mRNA expression. We also find that VDR physically binds with Y box-binding protein 1 (YBX-1) to block YBX-1's nuclear translocation and ameliorate cell death in the presence of inflammation. CONCLUSION These findings provide insights into the cause of VDR decrease in oral and colonic epithelial cells under inflammatory condition and explain how VDR maintains cell viability in these cells. Video abstract.
Collapse
Affiliation(s)
- Xiangyu Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No. 63 Xinjian South Road, Taiyuan, 030001, Shanxi, China.,Department of Child Dental and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China.,Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, No. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Xuejun Ge
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No. 63 Xinjian South Road, Taiyuan, 030001, Shanxi, China.,Department of Endodontics, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Wang Liao
- Department of Cardiology, Hainan General Hospital, Hainan Clinical Medicine Research Institution, Haikou, China
| | - Yong Cao
- Division of Gastroenterology, Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ran Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No. 63 Xinjian South Road, Taiyuan, 030001, Shanxi, China.,Department of Child Dental and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Fang Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No. 63 Xinjian South Road, Taiyuan, 030001, Shanxi, China.,Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, No. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Bin Zhao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No. 63 Xinjian South Road, Taiyuan, 030001, Shanxi, China.,Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, No. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Jie Du
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No. 63 Xinjian South Road, Taiyuan, 030001, Shanxi, China. .,Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, No. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China. .,Institute of Biomedical Research, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
23
|
Liu J, Yuan B, Cao J, Luo H, Gu S, Zhang M, Ding R, Zhang L, Zhou F, Hung MC, Xu P, Lin X, Jin J, Feng XH. AMBRA1 promotes TGF-β signaling via non-proteolytic polyubiquitylation of Smad4. Cancer Res 2021; 81:5007-5020. [PMID: 34362797 DOI: 10.1158/0008-5472.can-21-0431] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/22/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022]
Abstract
Transforming growth factor-β (TGF-β) is pro-metastatic in advanced cancers and its biological activities are mainly mediated by the Smad family of proteins. Smad4 is the central signal transducer and transcription factor in the TGF-β pathway, yet the underlying mechanisms that govern transcriptional activities of Smad4 are not fully understood. Here, we show that AMBRA1, a member of the DDB1 and CUL4-associated factor (DCAF) family of proteins, serves as the substrate receptor for Smad4 in the CUL4-RING (CRL4) ubiquitin ligase complex. The CRL4-AMBRA1 ubiquitin ligase mediates non-proteolytic polyubiquitylation of Smad4 to enhance its transcriptional functions. Consequently, AMBRA1 potentiated TGF-β signaling and critically promoted TGF-β-induced epithelial-to-mesenchymal transition, migration, and invasion of breast cancer cells. Mouse models of breast cancer demonstrated that AMBRA1 promotes metastasis. Collectively, these results show that CRL4-AMBRA1 facilitates TGF-β-driven metastasis by increasing Smad4 polyubiquitylation, suggesting AMBRA1 may serve as a new therapeutic target in metastatic breast cancer.
Collapse
Affiliation(s)
- Jinquan Liu
- Life Sciences Institute, Zhejiang University
| | - Bo Yuan
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University
| | - Jin Cao
- Life Sciences Institute, Zhejiang University
| | - Hongjie Luo
- Life Sciences Institute, Zhejiang University
| | - Shuchen Gu
- Life Sciences Institute, Zhejiang University
| | - Mengdi Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University
| | - Ran Ding
- Life Sciences Institute, Zhejiang University
| | - Long Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University
| | | | - Pinglong Xu
- Life Sciences Institute, Zhejiang University
| | - Xia Lin
- Department of Surgery, Baylor College of Medicine
| | | | - Xin-Hua Feng
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University
| |
Collapse
|
24
|
Qin Z, Sun H, Yue M, Pan X, Chen L, Feng X, Yan X, Zhu X, Ji H. Phase separation of EML4-ALK in firing downstream signaling and promoting lung tumorigenesis. Cell Discov 2021; 7:33. [PMID: 33976114 PMCID: PMC8113584 DOI: 10.1038/s41421-021-00270-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/11/2021] [Indexed: 02/08/2023] Open
Abstract
EML4-ALK fusion, observed in about 3%-7% of human lung adenocarcinoma, is one of the most important oncogenic drivers in initiating lung tumorigenesis. However, it still remains largely unknown about how EML4-ALK fusion exactly fires downstream signaling and drives lung cancer formation. We here find that EML4-ALK variant 1 (exon 1-13 of EML4 fused to exon 20-29 of ALK) forms condensates via phase separation in the cytoplasm of various human cancer cell lines. Using two genetically engineered mouse models (GEMMs), we find that EML4-ALK variant 1 can drive lung tumorigenesis and these murine tumors, as well as primary tumor-derived organoids, clearly show the condensates of EML4-ALK protein, further supporting the findings from in vitro study. Mutation of multiple aromatic residues in EML4 region significantly impairs the phase separation of EML4-ALK and dampens the activation of the downstream signaling pathways, especially the STAT3 phosphorylation. Importantly, it also significantly decreases cancer malignant transformation and tumor formation. These data together highlight an important role of phase separation in orchestrating EML4-ALK signaling and promoting tumorigenesis, which might provide new clues for the development of clinical therapeutic strategies in treating lung cancer patients with the EML4-ALK fusion.
Collapse
Affiliation(s)
- Zhen Qin
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Honghua Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meiting Yue
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinwen Pan
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Liang Chen
- Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong, China
| | - Xinhua Feng
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiumin Yan
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China.
| |
Collapse
|
25
|
Wang W, Zhu Y, Sun Z, Jin C, Wang X. Positive feedback regulation between USP15 and ERK2 inhibits osteoarthritis progression through TGF-β/SMAD2 signaling. Arthritis Res Ther 2021; 23:84. [PMID: 33726807 PMCID: PMC7962367 DOI: 10.1186/s13075-021-02456-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/18/2021] [Indexed: 01/14/2023] Open
Abstract
Background The transforming growth factor-β (TGF-β) signaling pathway plays an essential role in maintaining homeostasis in joints affected by osteoarthritis (OA). However, the specific mechanism of non-SMAD and classical SMAD signaling interactions is still unclear, which needs to be further explored. Methods In ATDC5 cells, USP15 overexpression and knockout were performed using the transfected lentivirus USP15 and Crispr/Cas9. Western blotting and immunofluorescence staining were used to test p-SMAD2 and cartilage phenotype-related molecular markers. In rat OA models, immunohistochemistry, hematoxylin and eosin (HE)/Safranin-O fast green staining, and histology were used to examine the regulatory activity of USP15 in TGF-β/SMAD2 signaling and the cartilage phenotype. Then, ERK2 overexpression and knockout were performed. The expressions of USP15, p-SMAD2, and the cartilage phenotype were evaluated in vitro and in vivo. To address whether USP15 is required for ERK2 and TGF-β/SMAD2 signaling, we performed rescue experiments in vitro and in vivo. Immunoprecipitation and deubiquitination assays were used to examine whether USP15 could bind to ERK2 and affect the deubiquitination of ERK2. Finally, whether USP15 regulates the level of p-ERK1/2 was evaluated by western blotting, immunofluorescence staining, and immunohistochemistry in vitro and in vivo. Results Our results indicated that USP15 stimulated TGF-β/SMAD2 signaling and the cartilage phenotype. Moreover, ERK2 required USP15 to influence TGF-β/SMAD2 signaling for regulating the cartilage phenotype in vivo and in vitro. And USP15 can form a complex with ERK2 to regulate ubiquitination of ERK2. Interestingly, USP15 did not regulate the stability of ERK2 but increased the level of p-ERK1/2 to further enhance the TGF-β/SMAD2 signaling pathway. Conclusions Taken together, our study revealed positive feedback regulation between USP15 and ERK2, which played a critical role in TGF-β/SMAD2 signaling to inhibit OA progression. Therefore, this specific mechanism can guide the clinical treatment of OA.
Collapse
Affiliation(s)
- Wenjuan Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanhui Zhu
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenyu Sun
- Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Jin
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiang Wang
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
26
|
Redl E, Sheibani-Tezerji R, Cardona CDJ, Hamminger P, Timelthaler G, Hassler MR, Zrimšek M, Lagger S, Dillinger T, Hofbauer L, Draganić K, Tiefenbacher A, Kothmayer M, Dietz CH, Ramsahoye BH, Kenner L, Bock C, Seiser C, Ellmeier W, Schweikert G, Egger G. Requirement of DNMT1 to orchestrate epigenomic reprogramming for NPM-ALK-driven lymphomagenesis. Life Sci Alliance 2021; 4:e202000794. [PMID: 33310759 PMCID: PMC7768196 DOI: 10.26508/lsa.202000794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/31/2022] Open
Abstract
Malignant transformation depends on genetic and epigenetic events that result in a burst of deregulated gene expression and chromatin changes. To dissect the sequence of events in this process, we used a T-cell-specific lymphoma model based on the human oncogenic nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) translocation. We find that transformation of T cells shifts thymic cell populations to an undifferentiated immunophenotype, which occurs only after a period of latency, accompanied by induction of the MYC-NOTCH1 axis and deregulation of key epigenetic enzymes. We discover aberrant DNA methylation patterns, overlapping with regulatory regions, plus a high degree of epigenetic heterogeneity between individual tumors. In addition, ALK-positive tumors show a loss of associated methylation patterns of neighboring CpG sites. Notably, deletion of the maintenance DNA methyltransferase DNMT1 completely abrogates lymphomagenesis in this model, despite oncogenic signaling through NPM-ALK, suggesting that faithful maintenance of tumor-specific methylation through DNMT1 is essential for sustained proliferation and tumorigenesis.
Collapse
Affiliation(s)
- Elisa Redl
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | | | | | - Patricia Hamminger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Gerald Timelthaler
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Melanie Rosalia Hassler
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Maša Zrimšek
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Sabine Lagger
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Dillinger
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics (LBI AD), Vienna, Austria
| | - Lorena Hofbauer
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Kristina Draganić
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Andreas Tiefenbacher
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics (LBI AD), Vienna, Austria
| | - Michael Kothmayer
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Charles H Dietz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Bernard H Ramsahoye
- Centre for Genetic and Experimental Medicine, Institute of Genomic and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Lukas Kenner
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Applied Metabolomics (CDL-AM), Medical University of Vienna, Vienna, Austria
- Center for Biomarker Research in Medicine (CBmed), CoreLab 2, Medical University of Vienna, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Christian Seiser
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Gabriele Schweikert
- Max Planck Institute for Intelligent Systems, Tübingen, Germany
- Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Gerda Egger
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics (LBI AD), Vienna, Austria
| |
Collapse
|
27
|
Goulet CR, Pouliot F. TGFβ Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1270:89-105. [PMID: 33123995 DOI: 10.1007/978-3-030-47189-7_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transforming growth factor beta (TGFβ) is a pleiotropic growth factor. Under normal physiological conditions, TGFβ maintains homeostasis in mammalian tissues by restraining the growth of cells and stimulating apoptosis. However, the role of TGFβ signaling in the carcinogenesis is complex. TGFβ acts as a tumor suppressor in the early stages of disease and as a tumor promoter in its later stages where cancer cells have been relieved from TGFβ growth controls. Overproduction of TGFβ by cancer cells lead to a local fibrotic and immune-suppressive microenvironment that fosters tumor growth and correlates with invasive and metastatic behavior of the cancer cells. Here, we present an overview of the complex biology of the TGFβ family, and we discuss the roles of TGFβ signaling in carcinogenesis and how this knowledge is being leveraged to develop TGFβ inhibition therapies against the tumor.
Collapse
Affiliation(s)
- Cassandra Ringuette Goulet
- Oncology Division, CHU de Québec Research Center, Quebec, QC, Canada
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC, Canada
| | - Frédéric Pouliot
- Oncology Division, CHU de Québec Research Center, Quebec, QC, Canada.
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC, Canada.
- Department of surgery, CHU de Québec Research Center - Laval University, Quebec City, QC, Canada.
| |
Collapse
|
28
|
Zhang K, Zhang M, Luo Z, Wen Z, Yan X. The dichotomous role of TGF-β in controlling liver cancer cell survival and proliferation. J Genet Genomics 2020; 47:497-512. [PMID: 33339765 DOI: 10.1016/j.jgg.2020.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/14/2020] [Accepted: 09/29/2020] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is the major form of primary liver cancer and one of the most prevalent and life-threatening malignancies globally. One of the hallmarks in HCC is the sustained cell survival and proliferative signals, which are determined by the balance between oncogenes and tumor suppressors. Transforming growth factor beta (TGF-β) is an effective growth inhibitor of epithelial cells including hepatocytes, through induction of cell cycle arrest, apoptosis, cellular senescence, or autophagy. The antitumorigenic effects of TGF-β are bypassed during liver tumorigenesis via multiple mechanisms. Furthermore, along with malignant progression, TGF-β switches to promote cancer cell survival and proliferation. This dichotomous nature of TGF-β is one of the barriers to therapeutic targeting in liver cancer. Thereafter, understanding the underlying molecular mechanisms is a prerequisite for discovering novel antitumor drugs that may specifically disable the growth-promoting branch of TGF-β signaling or restore its tumor-suppressive arm. This review summarizes how TGF-β inhibits or promotes liver cancer cell survival and proliferation, highlighting the functional switch mechanisms during the process.
Collapse
Affiliation(s)
- Kegui Zhang
- School of Biological Engineering, Huainan Normal University, Huainan, 232001, China
| | - Meiping Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China
| | - Zhijun Luo
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Zhili Wen
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Xiaohua Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China; Institute of Biomedical Sciences, Nanchang University Medical College, Nanchang, 330031, China.
| |
Collapse
|
29
|
Shen W, Fan K, Zhao Y, Zhang J, Xie M. Stevioside inhibits unilateral ureteral obstruction-induced kidney fibrosis and upregulates renal PPARγ expression in mice. J Food Biochem 2020; 44:e13520. [PMID: 33047331 DOI: 10.1111/jfbc.13520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/24/2020] [Accepted: 09/24/2020] [Indexed: 01/02/2023]
Abstract
This study aimed to examine the inhibitory effect of stevioside on unilateral ureteral obstruction (UUO)-induced kidney fibrosis. The UUO mice were daily given 50-100 mg/kg stevioside by gavage for 14 days after the operation. The results showed that stevioside decreased the levels of blood urea nitrogen and renal hydroxyproline, severity of kidney fibrosis, and expressions of renal collagen I/III and α-smooth muscle actin proteins. Importantly, stevioside increased the expressions of renal peroxisome proliferator-activated receptor γ (PPARγ) and Smad7 proteins and level of renal glutathione peroxidase, decreased the expressions of renal nuclear factor kappa B (NF-κB), signal transducer and activator of transcription 3 (STAT3), p-STAT3, transforming growth factor-β1 (TGF-β1), Smad2/3, and p-Smad2/3 proteins, suggesting that the antifibrotic mechanisms are related to the activation of PPARγ and subsequent downregulations of NF-κB-mediated STAT3 and TGF-β1 expressions and inhibition of Smad-mediated signaling pathway. These findings provide an applied perspective of stevioside for kidney fibrosis. PRACTICAL APPLICATIONS: Stevioside is widely used in food products as a sweetener, and it has many beneficial biological effects, including antidiabetes, antihypertension, and renal protective action. Here, we provide a novel potential application of stevioside in the prevention and treatment of kidney fibrosis.
Collapse
Affiliation(s)
- Wei Shen
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Ke Fan
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Ying Zhao
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Junyan Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Meilin Xie
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
30
|
SMAD-oncoprotein interplay: Potential determining factors in targeted therapies. Biochem Pharmacol 2020; 180:114155. [DOI: 10.1016/j.bcp.2020.114155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022]
|
31
|
Pan S, Zhou G, Hu W, Pei H. SMAD-6, -7 and -9 are potential molecular biomarkers for the prognosis in human lung cancer. Oncol Lett 2020; 20:2633-2644. [PMID: 32782581 PMCID: PMC7401007 DOI: 10.3892/ol.2020.11851] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/13/2020] [Indexed: 12/24/2022] Open
Abstract
SMADs, a family of proteins that function as signal transducers and transcriptional regulators to regulate various signaling pathways, including the transforming growth factor-β signaling pathway, are similar to the mothers against decapentaplegic family of genes and the sma gene family in Caenorhabditis elegans. SMADs generate context-dependent modulation by interacting with various sequence-specific transcription factors, such as E2F4/5, c-Fos, GATA3, YY1 and SRF, which have been found to serve a key role in lung carcinoma oncogenesis and progression. However, the prognostic values of the eight SMADs in lung cancer have not been fully understood. In the present study, the expression levels and survival data of SMADs in patients with lung carcinoma from the Oncomine, Gene Expression Profiling Interactive Analysis, Kaplan-Meier plotter and cBioPortal databases were downloaded and analyzed. It was found that the mRNA expression levels of SMAD-6, -7 and -9 were decreased in lung adenocarcinoma and squamous cell carcinoma compared with that in adjacent normal tissues, while there was no significant difference in SMADs 1-5. Survival analysis revealed that not only were low transcriptional levels of SMAD-6, -7 and -9 associated with low overall survival but they also had prognostic role for progression-free survival and post-progression survival (P<0.05) in patients with lung carcinoma. In conclusion, the present study demonstrated that SMAD-6, -7 and -9 are potential biomarkers for the prognosis of patients with lung carcinoma.
Collapse
Affiliation(s)
- Shuxian Pan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, P.R. China
- Department of Radiation Oncology, Yancheng Third People's Hospital, Yancheng, Jiangsu 224000, P.R. China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Hailong Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
32
|
Du X, Li Q, Yang L, Liu L, Cao Q, Li Q. SMAD4 activates Wnt signaling pathway to inhibit granulosa cell apoptosis. Cell Death Dis 2020; 11:373. [PMID: 32415058 PMCID: PMC7228950 DOI: 10.1038/s41419-020-2578-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022]
Abstract
The TGF-β and Wnt signaling pathways are interrelated in many cell types and tissues, and control cell functions in coordination. Here, we report that SMAD4, a downstream effector of the TGF-β signaling pathway, induces FZD4, a receptor of the Wnt signaling pathway, establishing a novel route of communication between these two pathways in granulosa cells (GCs). We found that SMAD4 is a strong inducer of FZD4, not only initiating FZD4 transcription but also activating FZD4-dependent Wnt signaling and GC apoptosis. Furthermore, we identified the direct and indirect mechanisms by which SMAD4 promotes expression of FZD4 in GCs. First, SMAD4 functions as a transcription factor to directly bind to the FZD4 promoter region to increase its transcriptional activity. Second, SMAD4 promotes production of SDNOR, a novel lncRNA that acts as a sponge for miR-29c, providing another mean to block miR-29c from degenerating FZD4 mRNA. Overall, our findings not only reveal a new channel of crosstalk between the TGF-β and Wnt signaling pathways, SMAD4–FZD4 axis, but also provide new insights into the regulatory network of GC apoptosis and follicular atresia. These RNA molecules, such as miR-29c and lnc-SDNOR, represent potential targets for treatment of reproductive diseases and improvement of female fertility.
Collapse
Affiliation(s)
- Xing Du
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qiqi Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liu Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lu Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qiuyu Cao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
33
|
Huang W, Yang Y, Wu J, Niu Y, Yao Y, Zhang J, Huang X, Liang S, Chen R, Chen S, Guo L. Circular RNA cESRP1 sensitises small cell lung cancer cells to chemotherapy by sponging miR-93-5p to inhibit TGF-β signalling. Cell Death Differ 2020; 27:1709-1727. [PMID: 31728016 PMCID: PMC7206039 DOI: 10.1038/s41418-019-0455-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/24/2022] Open
Abstract
Circular RNAs (circRNAs) are novel RNA molecules that play important roles in chemoresistance in different cancers, including breast and gastric cancers. However, whether circRNAs are involved in the response to chemotherapy in small cell lung cancer (SCLC) remains largely unknown. In this study, we observed that cESRP1 (circular RNA epithelial splicing regulatory protein-1) expression was significantly downregulated in the chemoresistant cells compared with the parental chemosensitive cells. cESRP1 enhanced drug sensitivity by repressing miR-93-5p in SCLC. Cytoplasmic cESRP1 could directly bind to miR-93-5p and inhibit the posttranscriptional repression mediated by miR-93-5p, thereby upregulating the expression of the miR-93-5p downstream targets Smad7/p21(CDKN1A) and forming a negative feedback loop to regulate transforming growth factor-β (TGF-β) mediated epithelial-mesenchymal transition. Furthermore, cESRP1 overexpression and TGF-β pathway inhibition both altered tumour responsiveness to chemotherapy in an acquired chemoresistant patient-derived xenograft model. Importantly, cESRP1 expression was downregulated in SCLC patient tissues and was associated with survival. Our findings reveal, for the first time, that cESRP1 plays crucial a role in SCLC chemosensitivity by sponging miR-93-5p to inhibit the TGF-β pathway, suggesting that cESRP1 may serve as a valuable prognostic biomarker and a potential therapeutic target in SCLC patients.
Collapse
Affiliation(s)
- Weimei Huang
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yunchu Yang
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jingfang Wu
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuchun Niu
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Oncology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Yao Yao
- Department of Pathology, Peking University Third Hospital, Beijing, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoxian Huang
- Clinical Laboratory, Gushang Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shumei Liang
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Rui Chen
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Size Chen
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China.
| | - Linlang Guo
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
34
|
Fan Z, Fan K, Deng S, Gong Y, Qian Y, Huang Q, Yang C, Cheng H, Jin K, Luo G, Liu C, Yu X. HNF-1a promotes pancreatic cancer growth and apoptosis resistance via its target gene PKLR. Acta Biochim Biophys Sin (Shanghai) 2020; 52:241-250. [PMID: 32072180 DOI: 10.1093/abbs/gmz169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/17/2019] [Accepted: 12/26/2019] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma is one of the deadliest malignant tumors, and many genes play important roles in its development. The hepatocyte nuclear factor-1a (HNF-1a) gene encodes HNF-1a, which is a transcriptional activator. HNF-1a regulates the tissue-specific expression of multiple genes, especially in pancreatic islet cells and in the liver. However, the role of the HNF-1a gene in the development of pancreatic cancer is still unclear. Here, we used immunohistochemical staining and real-time PCR to analyze HNF-1a expression in pancreatic cancer tissue. Stable cell lines with HNF-1a knockdown or overexpression were established to analyze the role of HNF-1a in pancreatic cancer cell proliferation and apoptosis by colony formation assay and flow cytometry. We also analyzed the L-type pyruvate kinase (PKLR) promoter sequence to identify the regulatory effect of HNF-1a on PKLR transcription and confirmed the HNF-1a binding site in the PKLR promoter via a chromatin immunoprecipitation assay. HNF-1a was found to be overexpressed in pancreatic cancer and promoted proliferation while inhibiting apoptosis in pancreatic cancer cells. PKLR was identified as the downstream target gene of HNF-1a and binding of HNF-1a at two sites in PKLR (-1931/-1926 and -966/-961) regulated PKLR transcription. In conclusion, HNF-1a is overexpressed in pancreatic cancer, and the transcription factor HNF-1a can promote pancreatic cancer growth and apoptosis resistance via its target gene PKLR.
Collapse
Affiliation(s)
- Zhiyao Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China, and
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032 China
| | - Kun Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China, and
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032 China
| | - Shengming Deng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China, and
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032 China
| | - Yitao Gong
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China, and
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032 China
| | - Yunzhen Qian
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China, and
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032 China
| | - Qiuyi Huang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China, and
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032 China
| | - Chao Yang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China, and
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032 China
| | - He Cheng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China, and
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032 China
| | - Kaizhou Jin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China, and
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032 China
| | - Guopei Luo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China, and
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032 China
| | - Chen Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China, and
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032 China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China, and
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032 China
| |
Collapse
|
35
|
Ouseph MM, Taber A, Khurshid H, Madison R, Aswad BI, Resnick MB, Yakirevich E, Ali SM, Patel NR. TKI-resistant ALK-rearranged lung adenocarcinoma with secondary CTNNB1 p.S45V and tertiary ALK p.I1171N mutations. LUNG CANCER-TARGETS AND THERAPY 2019; 10:81-86. [PMID: 31616196 PMCID: PMC6699522 DOI: 10.2147/lctt.s212406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/04/2019] [Indexed: 11/23/2022]
Abstract
Anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC) is an important molecular subgroup of tumors that are typically sensitive to tyrosine kinase inhibitors (TKIs). Although a substantial portion of patients benefit from TKIs, this approach is complicated by intrinsic and acquired resistance. We report a patient with ALK-rearranged NSCLC who showed an initial response to targeted therapy, but developed resistance to multiple TKIs. Serial comprehensive genomic profiling (CGP) was performed at four independent points during the clinical course. We review the pathology and clonal progression of the tumor, with CGP identifying a secondary CTNNB1 p.S45V mutation after the initiation of targeted therapy, followed by tertiary ALK p.I1171N. The presence of an alteration in a second oncogenic driver gene suggests a possible mechanism for resistance, and a secondary therapeutic target. Due to the involvement of Wnt signaling in the pathogenesis of many tumors and its association with immune evasion, a variety of therapeutic strategies are being developed to target this pathway. This case exemplifies the challenges of targeted therapeutics in the face of tumor progression, as well as the increasing role of genomics in understanding tumor biology.
Collapse
Affiliation(s)
- Madhu M Ouseph
- Department of Pathology, Rhode Island Hospital and Alpert Medical School at Brown University, Providence, RI 02903, USA
| | - Angela Taber
- Division of Medical Oncology, Miriam Hospital and Alpert Medical School at Brown University, Providence, RI 02906, USA
| | - Humera Khurshid
- Division of Medical Oncology, Rhode Island Hospital and Alpert Medical School at Brown University, Providence, RI 02903, USA
| | | | - Bassam I Aswad
- Department of Pathology, Rhode Island Hospital and Alpert Medical School at Brown University, Providence, RI 02903, USA
| | - Murray B Resnick
- Department of Pathology, Rhode Island Hospital and Alpert Medical School at Brown University, Providence, RI 02903, USA
| | - Evgeny Yakirevich
- Department of Pathology, Rhode Island Hospital and Alpert Medical School at Brown University, Providence, RI 02903, USA
| | - Siraj M Ali
- Foundation Medicine, Inc ., Cambridge, MA 02141, USA
| | - Nimesh R Patel
- Department of Pathology, Rhode Island Hospital and Alpert Medical School at Brown University, Providence, RI 02903, USA
| |
Collapse
|
36
|
Yu Y, Feng XH. TGF-β signaling in cell fate control and cancer. Curr Opin Cell Biol 2019; 61:56-63. [PMID: 31382143 DOI: 10.1016/j.ceb.2019.07.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/05/2019] [Indexed: 12/11/2022]
Abstract
Members of the transforming growth factor-β (TGF-β) family regulate cell fate decisions during early embryonic development and tissue homeostasis in the adult. Deregulation of TGF-β family signaling contributes to developmental anomalies, fibrotic disorders, tumorigenesis and immune diseases. TGF-β exerts a wide spectrum of cellular functions by activating canonical (SMAD-dependent) or non-canonical (SMAD-independent) pathways in a cell type-specific and context-dependent manner. Here, we focus on recent advances in the understanding of the mechanisms and functions of SMAD and non-SMAD pathways in physiology and pathology.
Collapse
Affiliation(s)
- Yi Yu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xin-Hua Feng
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; DeBakey Department of Surgery and Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
37
|
Yuan B, Liu J, Cao J, Yu Y, Zhang H, Wang F, Zhu Y, Xiao M, Liu S, Ye Y, Ma L, Xu D, Xu N, Li Y, Zhao B, Xu P, Jin J, Xu J, Chen X, Shen L, Lin X, Feng X. PTPN3 acts as a tumor suppressor and boosts TGF-β signaling independent of its phosphatase activity. EMBO J 2019; 38:e99945. [PMID: 31304624 PMCID: PMC6627230 DOI: 10.15252/embj.201899945] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 03/14/2019] [Accepted: 03/28/2019] [Indexed: 12/22/2022] Open
Abstract
TGF-β controls a variety of cellular functions during development. Abnormal TGF-β responses are commonly found in human diseases such as cancer, suggesting that TGF-β signaling must be tightly regulated. Here, we report that protein tyrosine phosphatase non-receptor 3 (PTPN3) profoundly potentiates TGF-β signaling independent of its phosphatase activity. PTPN3 stabilizes TGF-β type I receptor (TβRI) through attenuating the interaction between Smurf2 and TβRI. Consequently, PTPN3 facilitates TGF-β-induced R-Smad phosphorylation, transcriptional responses, and subsequent physiological responses. Importantly, the leucine-to-arginine substitution at amino acid residue 232 (L232R) of PTPN3, a frequent mutation found in intrahepatic cholangiocarcinoma (ICC), disables its role in enhancing TGF-β signaling and abolishes its tumor-suppressive function. Our findings have revealed a vital role of PTPN3 in regulating TGF-β signaling during normal physiology and pathogenesis.
Collapse
Affiliation(s)
- Bo Yuan
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Jinquan Liu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Jin Cao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Yi Yu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Hanchenxi Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Fei Wang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Yezhang Zhu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Mu Xiao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Sisi Liu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Youqiong Ye
- Department of Biochemistry and Molecular BiologyUniversity of Texas Health Science CenterHoustonTXUSA
| | - Le Ma
- Department of Molecular & Cellular BiologyBaylor College of MedicineHoustonTXUSA
| | - Dewei Xu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Ningyi Xu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Yi Li
- Department of Molecular & Cellular BiologyBaylor College of MedicineHoustonTXUSA
| | - Bin Zhao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Pinglong Xu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Jianping Jin
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Jianming Xu
- Department of Molecular & Cellular BiologyBaylor College of MedicineHoustonTXUSA
| | - Xi Chen
- Department of Biochemistry and Molecular BiologyUniversity of Texas Health Science CenterHoustonTXUSA
| | - Li Shen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Xia Lin
- Michael DeBakey Department of SurgeryBaylor College of MedicineHoustonTXUSA
| | - Xin‐Hua Feng
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
- Department of Molecular & Cellular BiologyBaylor College of MedicineHoustonTXUSA
- Michael DeBakey Department of SurgeryBaylor College of MedicineHoustonTXUSA
| |
Collapse
|
38
|
ALK-mediated Tyr95 phosphorylation of Smad4 impairs its transcription activity and the tumor suppressive activity of TGF-β. SCIENCE CHINA-LIFE SCIENCES 2019; 62:431-432. [DOI: 10.1007/s11427-019-9506-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 02/20/2019] [Indexed: 12/28/2022]
|