1
|
Chen D, Han Z, Liang X, Liu Y. Engineering a DNA polymerase for modifying large RNA at specific positions. Nat Chem 2025:10.1038/s41557-024-01707-6. [PMID: 39806142 DOI: 10.1038/s41557-024-01707-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 11/28/2024] [Indexed: 01/16/2025]
Abstract
The synthesis of large RNA with precise modifications at specific positions is in high demand for both basic research and therapeutic applications, but efficient methods are limited. Engineered DNA polymerases have recently emerged as attractive tools for RNA labelling, offering distinct advantages over conventional RNA polymerases. Here, through semi-rational designs, we engineered a DNA polymerase variant and used it to precisely incorporate a diverse range of modifications, including base modifications, 2'-ribose modifications and backbone modifications, into desired positions within RNA. We achieved efficiencies exceeding 85% in the majority of modification cases, demonstrating success in introducing 2'-O-methyl, phosphorothioate, N4-acetylcytidine and a fluorophore to specific sites in eGFP and Firefly luciferase messenger RNA. Our mRNA products with N4-acetylcytidine, 2'-O-methyl and/or phosphorothioate have demonstrated the ability to enhance stability and affect protein production. This method presents a promising tool for the comprehensive functionalization of RNA, enabling the introduction of plentiful modifications irrespective of RNA lengths and sequences.
Collapse
Affiliation(s)
- Dian Chen
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhanghui Han
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoge Liang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Cui S, Yu S, Huang HY, Lin YCD, Huang Y, Zhang B, Xiao J, Zuo H, Wang J, Li Z, Li G, Ma J, Chen B, Zhang H, Fu J, Wang L, Huang HD. miRTarBase 2025: updates to the collection of experimentally validated microRNA-target interactions. Nucleic Acids Res 2025; 53:D147-D156. [PMID: 39578692 PMCID: PMC11701613 DOI: 10.1093/nar/gkae1072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/02/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs (18-26 nucleotides) that regulate gene expression by interacting with target mRNAs, affecting various physiological and pathological processes. miRTarBase, a database of experimentally validated miRNA-target interactions (MTIs), now features over 3 817 550 validated MTIs from 13 690 articles, significantly expanding its previous version. The updated database includes miRNA interactions with therapeutic agents, revealing roles in drug resistance and therapeutic strategies. It also highlights miRNAs as predictive, safety and monitoring biomarkers for toxicity assessment, clinical treatment guidance and therapeutic optimization. The expansion of miRNA-mRNA and miRNA-miRNA networks allows the identification of key regulatory genes and co-regulatory miRNAs, providing deeper insights into miRNA functions and critical target genes. Information on oxidized miRNA sequences has been added, shedding light on how oxidative modifications influence miRNA targeting and regulation. The integration of the LLAMA3 model into the NLP pipeline, alongside prompt engineering, enables the efficient identification of MTIs and miRNA-disease associations without large training datasets. An updated data integration and a redesigned user interface enhance accessibility, reinforcing miRTarBase as an essential resource for molecular oncology, drug development and related fields. The updated miRTarBase is available at https://mirtarbase.cuhk.edu.cn/∼miRTarBase/miRTarBase_2025.
Collapse
Affiliation(s)
- Shidong Cui
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Sicong Yu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Hsi-Yuan Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Yang-Chi-Dung Lin
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Yixian Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Bojian Zhang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Jihan Xiao
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Huali Zuo
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Jiayi Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Zhuoran Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Guanghao Li
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Jiajun Ma
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Baiming Chen
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Haoxuan Zhang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Jiehui Fu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Liang Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Hsien-Da Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P.R. China
- Department of Endocrinology, Key Laboratory of Endocrinology of National Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| |
Collapse
|
3
|
Kim H, Lee YY, Kim VN. The biogenesis and regulation of animal microRNAs. Nat Rev Mol Cell Biol 2024:10.1038/s41580-024-00805-0. [PMID: 39702526 DOI: 10.1038/s41580-024-00805-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 12/21/2024]
Abstract
MicroRNAs (miRNAs) are small, yet profoundly influential, non-coding RNAs that base-pair with mRNAs to induce RNA silencing. Although the basic principles of miRNA biogenesis and function have been established, recent breakthroughs have yielded important new insights into the molecular mechanisms of miRNA biogenesis. In this Review, we discuss the metazoan miRNA biogenesis pathway step-by-step, focusing on the key biogenesis machinery, including the Drosha-DGCR8 complex (Microprocessor), exportin-5, Dicer and Argonaute. We also highlight newly identified cis-acting elements and their impact on miRNA maturation, informed by advanced high-throughput and structural studies, and discuss recently discovered mechanisms of clustered miRNA processing, target recognition and target-directed miRNA decay (TDMD). Lastly, we explore multiple regulatory layers of miRNA biogenesis, mediated by RNA-protein interactions, miRNA tailing (uridylation or adenylation) and RNA modifications.
Collapse
Affiliation(s)
- Haedong Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Young-Yoon Lee
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea.
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Jia H, Kang L, Huang B, Lu S, Ding Z, Chen Z, Wang C, Song J, Zou Y, Sun Y. o 8G-miR-6513-5p/BCL2L13 Axis Regulates Mitophagy during Oxidative Stress in the Human Saphenous Vein Endothelial Cells. Adv Biol (Weinh) 2024; 8:e2400218. [PMID: 39307929 DOI: 10.1002/adbi.202400218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/15/2024] [Indexed: 12/14/2024]
Abstract
Venous graft decay (VGD) occurs in coronary artery bypass grafting (CABG), and ischemia-reperfusion oxidative stress injury during the operation is involved in VGD. To explore the cellular phenotypic changes during this process, a stable oxidative stress model of human saphenous vein endothelial cells (HSVECs) is constructed. Through proteomics and cell experiments, it is found that the expression of BCL2L13 is upregulated during oxidative stress of HSVECs, and BCL2L13 regulated mitophagy through receptor-mediated interaction with LC3 and plays a role in cell protection. During oxidative stress, intracellular o8G epigenetic modification occurs, and the o8G modification of miR-6513-5p causes this molecule to lose its targeted regulation of BCL2L13 and participates in the upregulation of BCL2L13. There is a regulatory pathway of o8G modification-BCL2L13-LC3-mitophagy when oxidative stress occurs in HSVECs.
Collapse
Affiliation(s)
- Hao Jia
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200030, China
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100032, China
| | - Le Kang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200030, China
| | - Ben Huang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200030, China
| | - Shuyang Lu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200030, China
| | - Zhiwen Ding
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, 200030, China
| | - Zhenhang Chen
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200030, China
| | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200030, China
| | - Jiangping Song
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100032, China
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100032, China
- National Centre for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100032, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, 200030, China
| | - Yongxin Sun
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200030, China
| |
Collapse
|
5
|
Mangiapane G, D'Agostino VG, Tell G. Emerging roles of bases modifications and DNA repair proteins in onco-miRNA processing: novel insights in cancer biology. Cancer Gene Ther 2024; 31:1765-1772. [PMID: 39322751 DOI: 10.1038/s41417-024-00836-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
Onco-microRNAs (onco-miRNAs) are essential players in the post-transcriptional regulation of gene expression and exert a crucial role in tumorigenesis. Novel information about the epitranscriptomic modifications, involved in onco-miRNAs biogenesis, and in the modulation of their interplay with regulatory factors responsible for their processing and sorting are emerging. In this review, we highlight the contribution of bases modifications, sequence motifs, and secondary structures on miRNAs processing and sorting. We focus on several modes of action of RNA binding proteins (RBPs) on these processes. Moreover, we describe the new emerging scenario that shows an unexpected though essential role of selected DNA repair proteins in actively participating in these events, highlighting the original intervention represented by the non-canonical functions of Apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1), a central player in Base Excision Repair (BER) pathway of DNA lesions. Taking advantage of this new knowledge will help in prospecting new cancer diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Giovanna Mangiapane
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DMED), University of Udine, Udine, Italy
| | - Vito Giuseppe D'Agostino
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DMED), University of Udine, Udine, Italy.
| |
Collapse
|
6
|
Chen LL, Kim VN. Small and long non-coding RNAs: Past, present, and future. Cell 2024; 187:6451-6485. [PMID: 39547208 DOI: 10.1016/j.cell.2024.10.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
Since the introduction of the central dogma of molecular biology in 1958, various RNA species have been discovered. Messenger RNAs transmit genetic instructions from DNA to make proteins, a process facilitated by housekeeping non-coding RNAs (ncRNAs) such as small nuclear RNAs (snRNAs), ribosomal RNAs (rRNAs), and transfer RNAs (tRNAs). Over the past four decades, a wide array of regulatory ncRNAs have emerged as crucial players in gene regulation. In celebration of Cell's 50th anniversary, this Review explores our current understanding of the most extensively studied regulatory ncRNAs-small RNAs and long non-coding RNAs (lncRNAs)-which have profoundly shaped the field of RNA biology and beyond. While small RNA pathways have been well documented with clearly defined mechanisms, lncRNAs exhibit a greater diversity of mechanisms, many of which remain unknown. This Review covers pivotal events in their discovery, biogenesis pathways, evolutionary traits, action mechanisms, functions, and crosstalks among ncRNAs. We also highlight their roles in pathophysiological contexts and propose future research directions to decipher the unknowns of lncRNAs by leveraging lessons from small RNAs.
Collapse
Affiliation(s)
- Ling-Ling Chen
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; New Cornerstone Science Laboratory, Shenzhen, China.
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
7
|
Wheeler HB, Madrigal AA, Chaim IA. Mapping the future of oxidative RNA damage in neurodegeneration: Rethinking the status quo with new tools. Proc Natl Acad Sci U S A 2024; 121:e2317860121. [PMID: 39495912 PMCID: PMC11572933 DOI: 10.1073/pnas.2317860121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024] Open
Abstract
Over two decades ago, increased levels of RNA oxidation were reported in postmortem patients with ALS, Alzheimer's, Parkinson's, and other neurodegenerative diseases. Interestingly, not all cell types and transcripts were equally oxidized. Furthermore, it was shown that RNA oxidation is an early phenomenon, altogether indicating that oxidative RNA damage could be a driver, and not a consequence, of disease. Despite all these exciting observations, the field appears to have stagnated since then. We argue that this is a consequence of the shortcomings of technologies to model these diseases, limiting our understanding of which transcripts are being oxidized, which RNA-binding proteins are interacting with these RNAs, what their implications are in RNA processing, and as a result, what their potential role is in disease onset and progression. Here, we discuss the limits of previous technologies and propose ways by which advancements in iPSC-derived disease modeling, proteomics, and sequencing technologies can be combined and leveraged to answer new and decades-old questions.
Collapse
Affiliation(s)
- Hailey B. Wheeler
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA92093
| | - Assael A. Madrigal
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA92093
| | - Isaac A. Chaim
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
8
|
Bellina A, Malfatti MC, Salgado G, Fleming AM, Antoniali G, Othman Z, Gualandi N, La Manna S, Marasco D, Dassi E, Burrows CJ, Tell G. Apurinic/Apyrimidinic Endodeoxyribonuclease 1 modulates RNA G-quadruplex folding of miR-92b and controls its expression in cancer cells. Proc Natl Acad Sci U S A 2024; 121:e2317861121. [PMID: 39495925 PMCID: PMC11572961 DOI: 10.1073/pnas.2317861121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 10/09/2024] [Indexed: 11/06/2024] Open
Abstract
In the last decade, several novel functions of the mammalian Apurinic/Apyrimidinic Endodeoxyribonuclease 1 (APE1) have been discovered, going far beyond its canonical function as DNA repair enzyme and unveiling its potential roles in cancer development. Indeed, it was shown to be involved in DNA G-quadruplex biology and RNA metabolism, most importantly in the miRNA maturation pathway and the decay of oxidized or abasic miRNAs during oxidative stress conditions. In recent years, several noncanonical pathways of miRNA biogenesis have emerged, with a specific focus on guanosine-rich precursors that can form RNA G-quadruplex (rG4) structures. Here, we show that several miRNA precursors, dysregulated upon APE1 depletion, contain an rG4 motif and that their corresponding target genes are up-regulated after APE1 depletion. We also demonstrate, both by in vitro assays and by using different cancer cell lines, that APE1 can modulate the folding of an rG4 structure contained in pre-miR-92b, with a mechanism strictly dependent on lysine residues present in its N-terminal disordered region. Furthermore, APE1 cellular depletion alters the maturation process of miR-92b, mainly affecting the shuttling between the nucleus and cytosol. Bioinformatic analysis of APE1-regulated rG4-containing miRNAs supports the relevance of our findings in cancer biology. Specifically, these miRNAs exhibit high prognostic significance in lung, cervical, and liver tumors, as suggested by their involvement in several cancer-related pathways.
Collapse
Affiliation(s)
- Alessia Bellina
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine33100, Italy
| | - Matilde Clarissa Malfatti
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine33100, Italy
- Liver Cancer Unit, Fondazione Italiana Fegato—Organizzazione Non Lucrativa di Utilità Sociale, Basovizza34149, Italy
| | - Gilmar Salgado
- Department of Life Sciences and Technology for Health, ARNA laboratory, INSERM U1212, CNRS, UMR 5320, University of Bordeaux, BordeauxF-33076, France
| | - Aaron M. Fleming
- Department of Chemistry, University of Utah, Salt Lake City, UT84112-0850
| | - Giulia Antoniali
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine33100, Italy
| | - Zahraa Othman
- Department of Life Sciences and Technology for Health, ARNA laboratory, INSERM U1212, CNRS, UMR 5320, University of Bordeaux, BordeauxF-33076, France
| | - Nicolò Gualandi
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine33100, Italy
| | - Sara La Manna
- STARS lab (Structure Activity Relationship Synthesis and Spectroscopy), Department of Pharmacy, University of Naples “Federico II”, Naples80131, Italy
| | - Daniela Marasco
- STARS lab (Structure Activity Relationship Synthesis and Spectroscopy), Department of Pharmacy, University of Naples “Federico II”, Naples80131, Italy
| | - Erik Dassi
- Laboratory of RNA Regulatory Networks, Department of Cellular, Computational and Integrative Biology, University of Trento, Trento38123, Italy
| | - Cynthia J. Burrows
- Department of Chemistry, University of Utah, Salt Lake City, UT84112-0850
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine33100, Italy
| |
Collapse
|
9
|
Wang K, Wang Y, Li Y, Fang B, Li B, Cheng W, Wang K, Yang S. The potential of RNA methylation in the treatment of cardiovascular diseases. iScience 2024; 27:110524. [PMID: 39165846 PMCID: PMC11334793 DOI: 10.1016/j.isci.2024.110524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024] Open
Abstract
RNA methylation has emerged as a dynamic regulatory mechanism that impacts gene expression and protein synthesis. Among the known RNA methylation modifications, N6-methyladenosine (m6A), 5-methylcytosine (m5C), 3-methylcytosine (m3C), and N7-methylguanosine (m7G) have been studied extensively. In particular, m6A is the most abundant RNA modification and has attracted significant attention due to its potential effect on multiple biological processes. Recent studies have demonstrated that RNA methylation plays an important role in the development and progression of cardiovascular disease (CVD). To identify key pathogenic genes of CVD and potential therapeutic targets, we reviewed several common RNA methylation and summarized the research progress of RNA methylation in diverse CVDs, intending to inspire effective treatment strategies.
Collapse
Affiliation(s)
- Kai Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - YuQin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - YingHui Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Bo Fang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Bo Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Wei Cheng
- Department of Cardiovascular Surgery, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - Kun Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - SuMin Yang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|
10
|
Qiao K, Xu C, Zhang C, Wang Q, Jiang J, Chen Z, Zhou L, Jia S, Cao L. Discovery of an 8-oxoguanine regulator PCBP1 inhibitor by virtual screening and its synergistic effects with ROS-modulating agents in pancreatic cancer. Front Mol Biosci 2024; 11:1441550. [PMID: 39170746 PMCID: PMC11336162 DOI: 10.3389/fmolb.2024.1441550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Introduction: Drugs that target reactive oxygen species (ROS) metabolism have progressed the treatment of pancreatic cancer treatment, yet their efficacy remains poor because of the adaptation of cancer cells to high concentration of ROS. Cells cope with ROS by recognizing 8-oxoguanine residues and processing severely oxidized RNA, which make it feasible to improve the efficacy of ROS-modulating drugs in pancreatic cancer by targeting 8-oxoguanine regulators. Methods: Poly(rC)-binding protein 1 (PCBP1) was identified as a potential oncogene in pancreatic cancer through datasets of The Cancer Genome Atlas (TCGA) project and Gene Expression Omnibus (GEO). High-throughput virtual screening was used to screen out potential inhibitors for PCBP1. Computational molecular dynamics simulations was used to verify the stable interaction between the two compounds and PCBP1 and their structure-activity relationships. In vitro experiments were performed for functional validation of silychristin. Results: In this study, we identified PCBP1 as a potential oncogene in pancreatic cancer. By applying high-throughput virtual screening, we identified Compound 102 and Compound 934 (silychristin) as potential PCBP1 inhibitors. Computational molecular dynamics simulations and virtual alanine mutagenesis verified the structure-activity correlation between PCBP1 and the two identified compounds. These two compounds interfere with the PCBP1-RNA interaction and impair the ability of PCBP1 to process RNA, leading to intracellular R loop accumulation. Compound 934 synergized with ROS agent hydrogen peroxide to strongly improve induced cell death in pancreatic cancer cells. Discussion: Our results provide valuable insights into the development of drugs that target PCBP1 and identified promising synergistic agents for ROS-modulating drugs in pancreatic cancer.
Collapse
Affiliation(s)
- Kexiong Qiao
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Chengjie Xu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Chaolei Zhang
- Department of Emergency Medicine, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang Province, China
| | - Qianqian Wang
- School of Medicine, Sir Run Run Shaw Hospital, Graduate School, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jun Jiang
- School of Medicine, Sir Run Run Shaw Hospital, Graduate School, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zongrong Chen
- School of Medicine, Sir Run Run Shaw Hospital, Graduate School, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liangjing Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Shengnan Jia
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Liping Cao
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine,, Hangzhou, Zhejiang Province, China
| |
Collapse
|
11
|
Ye X, Li Z, Ye S, Liang X, Bao C, He M, Wang H, Xia L, Cao X. Accurate identification of 8-oxoguanine in RNA with single-nucleotide resolution using ligase-dependent qPCR. Org Biomol Chem 2024; 22:5629-5635. [PMID: 38912549 DOI: 10.1039/d4ob00786g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
8-oxoguanine (o8G), a prevalent oxidative modification in RNA induced by reactive oxygen species (ROS), plays a pivotal role in regulating RNA functions. Accurate detection and quantification of o8G modifications is critical to understanding their biological significance and potential as disease biomarkers, but effective detection methods remain limited. Here, we have developed a highly specific T3 DNA ligase-dependent qPCR assay that exploits the enzyme's ability to discriminate o8G from guanine (G) with single-nucleotide resolution. This method can detect o8G in RNA at levels as low as 500 fM, with an up to 18-fold higher selectivity for discriminating o8G from G. By simulating oxidative stress conditions in SH-SY5Y and HS683 cell lines treated with rotenone, we successfully identified site-specific o8G modifications in key miRNAs associated with neuroprotective responses, including miR-124, let-7a and miR-29a. The developed assay holds significant promise for the practical identification of o8G, facilitating its potential for detailed studies of o8G dynamics in various biological contexts and diseases.
Collapse
Affiliation(s)
- Xidong Ye
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Zengguang Li
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Shangde Ye
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Xinqi Liang
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Chenyu Bao
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Mingyang He
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Hailan Wang
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Laixin Xia
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Xin Cao
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
12
|
Zhang J, Li Y, Chen Y, Zhang J, Jia Z, He M, Liao X, He S, Bian JS, Nie XW. o 8G Site-Specifically Modified tRF-1-AspGTC: A Novel Therapeutic Target and Biomarker for Pulmonary Hypertension. Circ Res 2024; 135:76-92. [PMID: 38747146 DOI: 10.1161/circresaha.124.324421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/18/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Hypoxia and oxidative stress contribute to the development of pulmonary hypertension (PH). tRNA-derived fragments play important roles in RNA interference and cell proliferation, but their epitranscriptional roles in PH development have not been investigated. We aimed to gain insight into the mechanistic contribution of oxidative stress-induced 8-oxoguanine in pulmonary vascular remodeling. METHODS Through small RNA modification array analysis and quantitative polymerase chain reaction, a significant upregulation of the 8-oxoguanine -modified tRF-1-AspGTC was found in the lung tissues and the serum of patients with PH. RESULTS This modification occurs at the position 5 of the tRF-1-AspGTC (5o8G tRF). Inhibition of the 5o8G tRF reversed hypoxia-induced proliferation and apoptosis resistance in pulmonary artery smooth muscle cells. Further investigation unveiled that the 5o8G tRF retargeted mRNA of WNT5A (Wingless-type MMTV integration site family, member 5A) and CASP3 (Caspase3) and inhibited their expression. Ultimately, BMPR2 (Bone morphogenetic protein receptor 2) -reactive oxygen species/5o8G tRF/WNT5A signaling pathway exacerbated the progression of PH. CONCLUSIONS Our study highlights the role of site-specific 8-oxoguanine-modified tRF in promoting the development of PH. Our findings present a promising therapeutic avenue for managing PH and propose 5o8G tRF as a potential innovative marker for diagnosing this disease.
Collapse
Affiliation(s)
- Junting Zhang
- Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, China (Junting Zhang, Y.L., Jianchao Zhang, Z.J., M.H., X.L., S.H., J.-S.B., X.-W.N.)
- The First Affiliated Hospital, Southern University of Science and Technology), China (Junting Zhang, Y.L., Jianchao Zhang, Z.J., M.H., X.L., S.H., J.-S.B., X.-W.N.)
- Post-Doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou, China (Junting Zhang, Y.L., S.H.)
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China (Junting Zhang, Z.J., M.H., J.-S.B.)
| | - Yiying Li
- Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, China (Junting Zhang, Y.L., Jianchao Zhang, Z.J., M.H., X.L., S.H., J.-S.B., X.-W.N.)
- The First Affiliated Hospital, Southern University of Science and Technology), China (Junting Zhang, Y.L., Jianchao Zhang, Z.J., M.H., X.L., S.H., J.-S.B., X.-W.N.)
- Post-Doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou, China (Junting Zhang, Y.L., S.H.)
| | - Yuan Chen
- Lung Transplant Group, Wuxi People's Hospital Affiliated to Nanjing Medical University, China (Y.C.)
| | - Jianchao Zhang
- Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, China (Junting Zhang, Y.L., Jianchao Zhang, Z.J., M.H., X.L., S.H., J.-S.B., X.-W.N.)
- The First Affiliated Hospital, Southern University of Science and Technology), China (Junting Zhang, Y.L., Jianchao Zhang, Z.J., M.H., X.L., S.H., J.-S.B., X.-W.N.)
| | - Zihui Jia
- Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, China (Junting Zhang, Y.L., Jianchao Zhang, Z.J., M.H., X.L., S.H., J.-S.B., X.-W.N.)
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China (Junting Zhang, Z.J., M.H., J.-S.B.)
| | - Muhua He
- Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, China (Junting Zhang, Y.L., Jianchao Zhang, Z.J., M.H., X.L., S.H., J.-S.B., X.-W.N.)
- The First Affiliated Hospital, Southern University of Science and Technology), China (Junting Zhang, Y.L., Jianchao Zhang, Z.J., M.H., X.L., S.H., J.-S.B., X.-W.N.)
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China (Junting Zhang, Z.J., M.H., J.-S.B.)
| | - Xueyi Liao
- Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, China (Junting Zhang, Y.L., Jianchao Zhang, Z.J., M.H., X.L., S.H., J.-S.B., X.-W.N.)
- The First Affiliated Hospital, Southern University of Science and Technology), China (Junting Zhang, Y.L., Jianchao Zhang, Z.J., M.H., X.L., S.H., J.-S.B., X.-W.N.)
| | - Siyu He
- Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, China (Junting Zhang, Y.L., Jianchao Zhang, Z.J., M.H., X.L., S.H., J.-S.B., X.-W.N.)
- The First Affiliated Hospital, Southern University of Science and Technology), China (Junting Zhang, Y.L., Jianchao Zhang, Z.J., M.H., X.L., S.H., J.-S.B., X.-W.N.)
- Post-Doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou, China (Junting Zhang, Y.L., S.H.)
| | - Jin-Song Bian
- Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, China (Junting Zhang, Y.L., Jianchao Zhang, Z.J., M.H., X.L., S.H., J.-S.B., X.-W.N.)
- The First Affiliated Hospital, Southern University of Science and Technology), China (Junting Zhang, Y.L., Jianchao Zhang, Z.J., M.H., X.L., S.H., J.-S.B., X.-W.N.)
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China (Junting Zhang, Z.J., M.H., J.-S.B.)
| | - Xiao-Wei Nie
- Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, China (Junting Zhang, Y.L., Jianchao Zhang, Z.J., M.H., X.L., S.H., J.-S.B., X.-W.N.)
- The First Affiliated Hospital, Southern University of Science and Technology), China (Junting Zhang, Y.L., Jianchao Zhang, Z.J., M.H., X.L., S.H., J.-S.B., X.-W.N.)
| |
Collapse
|
13
|
Wu X, Zeng M, Wei Y, Lu R, Huang Z, Huang L, Huang Y, Lu Y, Li W, Wei H, Pu J. METTL3 and METTL14-mediated N 6-methyladenosine modification of SREBF2-AS1 facilitates hepatocellular carcinoma progression and sorafenib resistance through DNA demethylation of SREBF2. Sci Rep 2024; 14:6155. [PMID: 38486042 PMCID: PMC10940719 DOI: 10.1038/s41598-024-55932-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
As the most prevalent epitranscriptomic modification, N6-methyladenosine (m6A) shows important roles in a variety of diseases through regulating the processing, stability and translation of target RNAs. However, the potential contributions of m6A to RNA functions are unclear. Here, we identified a functional and prognosis-related m6A-modified RNA SREBF2-AS1 in hepatocellular carcinoma (HCC). The expression of SREBF2-AS1 and SREBF2 in HCC tissues and cells was measured by RT-qPCR. m6A modification level of SREBF2-AS1 was measured by methylated RNA immunoprecipitation assay. The roles of SREBF2-AS1 in HCC progression and sorafenib resistance were investigated by proliferation, apoptosis, migration, and cell viability assays. The regulatory mechanisms of SREBF2-AS1 on SREBF2 were investigated by Chromatin isolation by RNA purification, RNA immunoprecipitation, CUT&RUN, and bisulfite DNA sequencing assays. Our findings showed that the expression of SREBF2-AS1 was increased in HCC tissues and cells, and positively correlated with poor survival of HCC patients. m6A modification level of SREBF2-AS1 was also increased in HCC and positively correlated with poor prognosis of HCC patients. METTL3 and METTL14-induced m6A modification upregulated SREBF2-AS1 expression through increasing SREBF2-AS1 transcript stability. Functional assays showed that only m6A-modified, but not non-modified SREBF2-AS1 promoted HCC progression and sorafenib resistance. Mechanistic investigations revealed that m6A-modified SREBF2-AS1 bound and recruited m6A reader FXR1 and DNA 5-methylcytosine dioxygenase TET1 to SREBF2 promoter, leading to DNA demethylation at SREBF2 promoter and the upregulation of SREBF2 transcription. Functional rescue assays showed that SREBF2 was the critical mediator of the oncogenic roles of SREBF2-AS1 in HCC. Together, this study showed that m6A-modified SREBF2-AS1 exerted oncogenic roles in HCC through inducing DNA demethylation and transcriptional activation of SREBF2, and suggested m6A-modified SREBF2-AS1 as a prognostic biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Xianjian Wu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Zhongshan Two Road, Baise, 533000, China
| | - Min Zeng
- Graduate College of Youjiang Medical University for Nationalities, Baise, China
| | - Yunyu Wei
- Graduate College of Youjiang Medical University for Nationalities, Baise, China
| | - Rongzhou Lu
- Graduate College of Youjiang Medical University for Nationalities, Baise, China
| | - Zheng Huang
- Graduate College of Youjiang Medical University for Nationalities, Baise, China
| | - Lizheng Huang
- Graduate College of Youjiang Medical University for Nationalities, Baise, China
| | - Yanyan Huang
- Graduate College of Youjiang Medical University for Nationalities, Baise, China
| | - Yuan Lu
- Graduate College of Youjiang Medical University for Nationalities, Baise, China
| | - Wenchuan Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Zhongshan Two Road, Baise, 533000, China
| | - Huamei Wei
- Clinical Pathological Diagnosis and Research Center, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jian Pu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Zhongshan Two Road, Baise, 533000, China.
- Guangxi Clinical Medical Research Center of Hepatobiliary Diseases, Baise, China.
| |
Collapse
|
14
|
Burroughs MR, Sweet PJ, Contreras LM. Optimized chemical labeling method for isolation of 8-oxoG-modified RNA, ChLoRox-Seq, identifies mRNAs enriched in oxidation and transcriptome-wide distribution biases of oxidation events post environmental stress. RNA Biol 2024; 21:132-148. [PMID: 39559912 PMCID: PMC11581162 DOI: 10.1080/15476286.2024.2427903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024] Open
Abstract
Bulk increases in nucleobase oxidation, most commonly manifesting as the guanine (G) nucleobase modification 8-oxo-7,8-dihydroguanine (8-oxoG), have been linked to several disease pathologies. Elucidating the effects of RNA oxidation on cellular homoeostasis is limited by a lack of effective tools for detecting specific regions modified with 8-oxoG. Building on a previously published method for studying 8-oxoG in DNA, we developed ChLoRox-Seq, which works by covalently functionalizing 8-oxoG sites in RNA with biotin. Importantly, this method enables antibody-free enrichment of 8-oxoG-containing RNA fragments for Next Generation Sequencing-based detection of modified regions transcriptome-wide. We demonstrate the high specificity of ChLoRox-Seq for functionalizing 8-oxoG over unmodified nucleobases in RNA and benchmark this specificity to a commonly used antibody-based approach. Key advantages of ChLoRox-Seq include: (1) heightened resolution of RNA oxidation regions (e.g. exon-level) and (2) lower experimental costs. By applying ChLoRox-Seq to mRNA extracted from human lung epithelial cells (BEAS-2B) after exposure to environmentally relevant stress, we observe that 8-oxoG modifications tend to cluster in regions that are G-rich and within mRNA transcripts possessing longer 5' UTR and CDS regions. These findings provide new insight into the complex mechanisms that bias the accumulation of RNA oxidation across the transcriptome. Notably, our analysis suggests the possibility that most mRNA oxidation events are probabilistically driven and that mRNAs that possess more favourable intrinsic properties are prone to incur oxidation events at elevated rates. ChLoRox-Seq can be readily applied in future studies to identify regions of elevated RNA oxidation in any cellular model of interest.
Collapse
Affiliation(s)
- Matthew R. Burroughs
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Philip J. Sweet
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Lydia M. Contreras
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
15
|
Montes M, Huarte M. 8G modifications rewire tumoral microRNAs. Nat Cell Biol 2023; 25:1243-1244. [PMID: 37696948 DOI: 10.1038/s41556-023-01179-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Affiliation(s)
- Marta Montes
- DNA and RNA Medicine Division, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdISNA), Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Maite Huarte
- DNA and RNA Medicine Division, Center for Applied Medical Research, University of Navarra, Pamplona, Spain.
- Instituto de Investigación Sanitaria de Navarra (IdISNA), Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain.
| |
Collapse
|