1
|
Xavier V, Martinelli S, Corbyn R, Pennie R, Rakovic K, Powley IR, Officer-Jones L, Ruscica V, Galloway A, Carlin LM, Cowling VH, Le Quesne J, Martinou JC, MacVicar T. Mitochondrial double-stranded RNA homeostasis depends on cell-cycle progression. Life Sci Alliance 2024; 7:e202402764. [PMID: 39209534 PMCID: PMC11361371 DOI: 10.26508/lsa.202402764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Mitochondrial gene expression is a compartmentalised process essential for metabolic function. The replication and transcription of mitochondrial DNA (mtDNA) take place at nucleoids, whereas the subsequent processing and maturation of mitochondrial RNA (mtRNA) and mitoribosome assembly are localised to mitochondrial RNA granules. The bidirectional transcription of circular mtDNA can lead to the hybridisation of polycistronic transcripts and the formation of immunogenic mitochondrial double-stranded RNA (mt-dsRNA). However, the mechanisms that regulate mt-dsRNA localisation and homeostasis are largely unknown. With super-resolution microscopy, we show that mt-dsRNA overlaps with the RNA core and associated proteins of mitochondrial RNA granules but not nucleoids. Mt-dsRNA foci accumulate upon the stimulation of cell proliferation and their abundance depends on mitochondrial ribonucleotide supply by the nucleoside diphosphate kinase, NME6. Consequently, mt-dsRNA foci are profuse in cultured cancer cells and malignant cells of human tumour biopsies. Our results establish a new link between cell proliferation and mitochondrial nucleic acid homeostasis.
Collapse
Affiliation(s)
- Vanessa Xavier
- The CRUK Scotland Institute, Glasgow, UK
- Department of Molecular and Cellular Biology, University of Geneva, Genève, Switzerland
| | - Silvia Martinelli
- The CRUK Scotland Institute, Glasgow, UK
- https://ror.org/00vtgdb53 School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Rachel Pennie
- The CRUK Scotland Institute, Glasgow, UK
- https://ror.org/00vtgdb53 School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Kai Rakovic
- The CRUK Scotland Institute, Glasgow, UK
- https://ror.org/00vtgdb53 School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Ian R Powley
- The CRUK Scotland Institute, Glasgow, UK
- https://ror.org/00vtgdb53 School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Leah Officer-Jones
- The CRUK Scotland Institute, Glasgow, UK
- https://ror.org/00vtgdb53 School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Vincenzo Ruscica
- https://ror.org/00vtgdb53 MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | - Leo M Carlin
- The CRUK Scotland Institute, Glasgow, UK
- https://ror.org/00vtgdb53 School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Victoria H Cowling
- The CRUK Scotland Institute, Glasgow, UK
- https://ror.org/00vtgdb53 School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - John Le Quesne
- The CRUK Scotland Institute, Glasgow, UK
- https://ror.org/00vtgdb53 School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jean-Claude Martinou
- Department of Molecular and Cellular Biology, University of Geneva, Genève, Switzerland
| | - Thomas MacVicar
- The CRUK Scotland Institute, Glasgow, UK
- https://ror.org/00vtgdb53 School of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
2
|
Monnens Y, Theodoropoulou A, Rosier K, Bhalla K, Mahy A, Vanhoutte R, Meulemans S, Cavani E, Antanasijevic A, Lemmens I, Lee JA, Spellicy CJ, Schroer RJ, Maselli RA, Laverty CG, Agostinis P, Pagliarini DJ, Verhelst S, Marcaida MJ, Rochtus A, Dal Peraro M, Creemers JW. Missense variants in CMS22 patients reveal that PREPL has both enzymatic and nonenzymatic functions. JCI Insight 2024; 9:e179276. [PMID: 39078710 PMCID: PMC11385081 DOI: 10.1172/jci.insight.179276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/23/2024] [Indexed: 08/28/2024] Open
Abstract
Congenital myasthenic syndrome-22 (CMS22, OMIM 616224) is a rare genetic disorder caused by deleterious genetic variation in the prolyl endopeptidase-like (PREPL) gene. Previous reports have described patients with deletions and nonsense variants in PREPL, but nothing is known about the effect of missense variants in the pathology of CMS22. In this study, we have functionally characterized missense variants in PREPL from 3 patients with CMS22, all with hallmark phenotypes. Biochemical evaluation revealed that these missense variants do not impair hydrolase activity, thereby challenging the conventional diagnostic criteria and disease mechanism. Structural analysis showed that the variants affect regions most likely involved in intraprotein or protein-protein interactions. Indeed, binding to a selected group of known interactors was differentially reduced for the 3 variants. The importance of nonhydrolytic functions of PREPL was investigated in catalytically inactive PREPL p.Ser559Ala cell lines, which showed that hydrolytic activity of PREPL is needed for normal mitochondrial function but not for regulating AP1-mediated transport in the transgolgi network. In conclusion, these studies showed that CMS22 can be caused not only by deletion and truncation of PREPL but also by missense variants that do not necessarily result in a loss of hydrolytic activity of PREPL.
Collapse
Affiliation(s)
- Yenthe Monnens
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Anastasia Theodoropoulou
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Karen Rosier
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Kritika Bhalla
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Alexia Mahy
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Roeland Vanhoutte
- Laboratory for Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Sandra Meulemans
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Edoardo Cavani
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Aleksandar Antanasijevic
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Irma Lemmens
- VIB-UGent Center for Medical Biotechnology, Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | | | | | | | | | | | - Patrizia Agostinis
- Laboratory for Cell death Research & Therapy, VIB, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - David J. Pagliarini
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Steven Verhelst
- Laboratory for Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Maria J. Marcaida
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Matteo Dal Peraro
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - John W.M. Creemers
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Proust B, Horvat A, Tadijan A, Vlašić I, Herak Bosnar M. Mitochondrial NME6 Influences Basic Cellular Processes in Tumor Cells In Vitro. Int J Mol Sci 2024; 25:9580. [PMID: 39273527 PMCID: PMC11395177 DOI: 10.3390/ijms25179580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
NME6 belongs to the family of nucleoside diphosphate kinase enzymes, whose major role is to transfer the terminal phosphate from NTPs, mostly ATP, to other (d)NDPs via a high-energy intermediate. Beside this basic enzymatic activity, the family, comprising 10 genes/proteins in humans, executes a number of diverse biochemical/biological functions in the cell. A few previous studies have reported that NME6 resides in the mitochondria and influences oxidative phosphorylation while interacting with RCC1L, a GTPase involved in mitochondrial ribosome assembly and translation. Considering the multifunctional role of NME family members, the goal of the present study was to assess the influence of the overexpression or silencing of NME6 on fundamental cellular events of MDA-MB-231T metastatic breast cancer cells. Using flow cytometry, Western blotting, and a wound-healing assay, we demonstrated that the overexpression of NME6 reduces cell migration and alters the expression of EMT (epithelial-mesenchymal transition) markers. In addition, NME6 overexpression influences cell cycle distribution exclusively upon DNA damage and impacts the MAPK/ERK signaling pathway, while it has no effect on apoptosis. To conclude, our results demonstrate that NME6 is involved in different cellular processes, providing a solid basis for future, more precise investigations of its role.
Collapse
Affiliation(s)
| | | | | | | | - Maja Herak Bosnar
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10002 Zagreb, Croatia; (B.P.); (A.H.); (A.T.); (I.V.)
| |
Collapse
|
4
|
Proust B, Herak Bosnar M, Ćetković H, Tokarska-Schlattner M, Schlattner U. Mitochondrial NME6: A Paradigm Change within the NME/NDP Kinase Protein Family? Cells 2024; 13:1278. [PMID: 39120309 PMCID: PMC11312278 DOI: 10.3390/cells13151278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/27/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024] Open
Abstract
Eukaryotic NMEs/NDP kinases are a family of 10 multifunctional proteins that occur in different cellular compartments and interact with various cellular components (proteins, membranes, and DNA). In contrast to the well-studied Group I NMEs (NME1-4), little is known about the more divergent Group II NMEs (NME5-9). Three recent publications now shed new light on NME6. First, NME6 is a third mitochondrial NME, largely localized in the matrix space, associated with the mitochondrial inner membrane. Second, while its monomeric form is inactive, NME6 gains NDP kinase activity through interaction with mitochondrial RCC1L. This challenges the current notion that mammalian NMEs require the formation of hexamers to become active. The formation of complexes between NME6 and RCC1L, likely heterodimers, seemingly obviates the necessity for hexamer formation, stabilizing a NDP kinase-competent conformation. Third, NME6 is involved in mitochondrial gene maintenance and expression by providing (d)NTPs for replication and transcription (in particular the pyrimidine nucleotides) and by a less characterized mechanism that supports mitoribosome function. This review offers an overview of NME evolution and structure and highlights the new insight into NME6. The new findings position NME6 as the most comprehensively studied protein in NME Group II and may even suggest it as a new paradigm for related family members.
Collapse
Affiliation(s)
- Bastien Proust
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | - Maja Herak Bosnar
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | - Helena Ćetković
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | | | - Uwe Schlattner
- Univ. Grenoble Alpes, Inserm U1055, Lab. of Fundamental and Applied Bioenergetics (LBFA), 38058 Grenoble, France;
- Institut Universitaire de France (IUF), 75231 Paris, France
| |
Collapse
|
5
|
Bhalla K, Rosier K, Monnens Y, Meulemans S, Vervoort E, Thorrez L, Agostinis P, Meier DT, Rochtus A, Resnick JL, Creemers JWM. Similar metabolic pathways are affected in both Congenital Myasthenic Syndrome-22 and Prader-Willi Syndrome. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167175. [PMID: 38626828 DOI: 10.1016/j.bbadis.2024.167175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
Loss of prolyl endopeptidase-like (PREPL) encoding a serine hydrolase with (thio)esterase activity leads to the recessive metabolic disorder Congenital Myasthenic Syndrome-22 (CMS22). It is characterized by severe neonatal hypotonia, feeding problems, growth retardation, and hyperphagia leading to rapid weight gain later in childhood. The phenotypic similarities with Prader-Willi syndrome (PWS) are striking, suggesting that similar pathways are affected. The aim of this study was to identify changes in the hypothalamic-pituitary axis in mouse models for both disorders and to examine mitochondrial function in skin fibroblasts of patients and knockout cell lines. We have demonstrated that Prepl is downregulated in the brains of neonatal PWS-IC-p/+m mice. In addition, the hypothalamic-pituitary axis is similarly affected in both Prepl-/- and PWS-IC-p/+m mice resulting in defective orexigenic signaling and growth retardation. Furthermore, we demonstrated that mitochondrial function is altered in PREPL knockout HEK293T cells and can be rescued with the supplementation of coenzyme Q10. Finally, PREPL-deficient and PWS patient skin fibroblasts display defective mitochondrial bioenergetics. The mitochondrial dysfunction in PWS fibroblasts can be rescued by overexpression of PREPL. In conclusion, we provide the first molecular parallels between CMS22 and PWS, raising the possibility that PREPL substrates might become therapeutic targets for treating both disorders.
Collapse
Affiliation(s)
- Kritika Bhalla
- Laboratory for Biochemical Neuroendocrinology, Department of Human genetics, KU Leuven, 3000 Leuven, Belgium
| | - Karen Rosier
- Laboratory for Biochemical Neuroendocrinology, Department of Human genetics, KU Leuven, 3000 Leuven, Belgium
| | - Yenthe Monnens
- Laboratory for Biochemical Neuroendocrinology, Department of Human genetics, KU Leuven, 3000 Leuven, Belgium
| | - Sandra Meulemans
- Laboratory for Biochemical Neuroendocrinology, Department of Human genetics, KU Leuven, 3000 Leuven, Belgium
| | - Ellen Vervoort
- Laboratory for Cell Death Research & Therapy, VIB, Department of Cellular and Molecular Medicine, Center for Cancer Biology, KU Leuven, 3000 Leuven, Belgium
| | - Lieven Thorrez
- Department of Development and Regeneration, KU Leuven Campus Kulak, 8500 Kortrijk, Belgium
| | - Patrizia Agostinis
- Laboratory for Cell Death Research & Therapy, VIB, Department of Cellular and Molecular Medicine, Center for Cancer Biology, KU Leuven, 3000 Leuven, Belgium
| | - Daniel T Meier
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Anne Rochtus
- Department of Development and Regeneration, UZ Leuven, 3000 Leuven, Belgium
| | - James L Resnick
- Department of Molecular genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - John W M Creemers
- Laboratory for Biochemical Neuroendocrinology, Department of Human genetics, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
6
|
Suomalainen A, Nunnari J. Mitochondria at the crossroads of health and disease. Cell 2024; 187:2601-2627. [PMID: 38788685 DOI: 10.1016/j.cell.2024.04.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024]
Abstract
Mitochondria reside at the crossroads of catabolic and anabolic metabolism-the essence of life. How their structure and function are dynamically tuned in response to tissue-specific needs for energy, growth repair, and renewal is being increasingly understood. Mitochondria respond to intrinsic and extrinsic stresses and can alter cell and organismal function by inducing metabolic signaling within cells and to distal cells and tissues. Here, we review how the centrality of mitochondrial functions manifests in health and a broad spectrum of diseases and aging.
Collapse
Affiliation(s)
- Anu Suomalainen
- University of Helsinki, Stem Cells and Metabolism Program, Faculty of Medicine, Helsinki, Finland; HiLife, University of Helsinki, Helsinki, Finland; HUS Diagnostics, Helsinki University Hospital, Helsinki, Finland.
| | - Jodi Nunnari
- Altos Labs, Bay Area Institute, Redwood Shores, CA, USA.
| |
Collapse
|
7
|
Wang Y, Feng G, Huang Y. The Schizosaccharomyces pombe DEAD-box protein Mss116 is required for mitoribosome assembly and mitochondrial translation. Mitochondrion 2024; 76:101881. [PMID: 38604460 DOI: 10.1016/j.mito.2024.101881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
DEAD-box helicases are important players in mitochondrial gene expression, which is necessary for mitochondrial respiration. In this study, we characterized Schizosaccharomyces pombe Mss116 (spMss116), a member of the family of DEAD-box RNA helicases. Deletion of spmss116 in a mitochondrial intron-containing background significantly reduced the levels of mitochondrial DNA (mtDNA)-encoded cox1 and cob1 mRNAs and impaired mitochondrial translation, leading to a severe respiratory defect and a loss of cell viability during stationary phase. Deletion of mitochondrial introns restored the levels of cox1 and cob1 mRNAs to wide-type (WT) levels but could not restore mitochondrial translation and respiration in Δspmss116 cells. Furthermore, deletion of spmss116 in both mitochondrial intron-containing and intronless backgrounds impaired mitoribosome assembly and destabilization of mitoribosomal proteins. Our findings suggest that defective mitochondrial translation caused by deletion of spmss116 is most likely due to impaired mitoribosome assembly.
Collapse
Affiliation(s)
- Yirong Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Gang Feng
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China.
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
8
|
Ronayne CT, Latorre-Muro P. Navigating the landscape of mitochondrial-ER communication in health and disease. Front Mol Biosci 2024; 11:1356500. [PMID: 38323074 PMCID: PMC10844478 DOI: 10.3389/fmolb.2024.1356500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/10/2024] [Indexed: 02/08/2024] Open
Abstract
Intracellular organelle communication enables the maintenance of tissue homeostasis and health through synchronized adaptive processes triggered by environmental cues. Mitochondrial-Endoplasmic Reticulum (ER) communication sustains cellular fitness by adjusting protein synthesis and degradation, and metabolite and protein trafficking through organelle membranes. Mitochondrial-ER communication is bidirectional and requires that the ER-components of the Integrated Stress Response signal to mitochondria upon activation and, likewise, mitochondria signal to the ER under conditions of metabolite and protein overload to maintain proper functionality and ensure cellular survival. Declines in the mitochondrial-ER communication occur upon ageing and correlate with the onset of a myriad of heterogeneous age-related diseases such as obesity, type 2 diabetes, cancer, or neurodegenerative pathologies. Thus, the exploration of the molecular mechanisms of mitochondrial-ER signaling and regulation will provide insights into the most fundamental cellular adaptive processes with important therapeutical opportunities. In this review, we will discuss the pathways and mechanisms of mitochondrial-ER communication at the mitochondrial-ER interface and their implications in health and disease.
Collapse
Affiliation(s)
- Conor T. Ronayne
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
| | - Pedro Latorre-Muro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|