1
|
Pisegna G, Saha S, Golestanian R. Emergent polar order in nonpolar mixtures with nonreciprocal interactions. Proc Natl Acad Sci U S A 2024; 121:e2407705121. [PMID: 39665762 DOI: 10.1073/pnas.2407705121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 11/12/2024] [Indexed: 12/13/2024] Open
Abstract
Phenomenological rules that govern the collective behavior of complex physical systems are powerful tools because they can make concrete predictions about their universality class based on generic considerations, such as symmetries, conservation laws, and dimensionality. While in most cases such considerations are manifestly ingrained in the constituents, novel phenomenology can emerge when composite units associated with emergent symmetries dominate the behavior of the system. We study a generic class of active matter systems with nonreciprocal interactions and demonstrate the existence of true long-range polar order in two dimensions and above, both at the linear level and by including all relevant nonlinearities in the Renormalization Group sense. We achieve this by uncovering a mapping of our scalar active mixture theory to the Toner-Tu theory of dry polar active matter by employing a suitably defined polar order parameter. We then demonstrate that the complete effective field theory-which includes all the soft modes and the relevant nonlinear terms-belongs to the (Burgers-) Kardar-Parisi-Zhang universality class. This classification allows us to prove the stability of the emergent polar long-range order in scalar nonreciprocal mixtures in two dimensions, and hence a conclusive violation of the Mermin-Wagner theorem.
Collapse
Affiliation(s)
- Giulia Pisegna
- Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, Göttingen 37077, Germany
| | - Suropriya Saha
- Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, Göttingen 37077, Germany
| | - Ramin Golestanian
- Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, Göttingen 37077, Germany
- Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
2
|
Al Harraq A, Patel R, Lee JG, Owoyele O, Chun J, Bharti B. Non-Reciprocity, Metastability, and Dynamic Reconfiguration in Co-Assembly of Active and Passive Particles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2409489. [PMID: 39630594 DOI: 10.1002/advs.202409489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/31/2024] [Indexed: 12/07/2024]
Abstract
Living organisms often exhibit non-reciprocal interactions where the forces acting on the objects are not equal in magnitude or opposite in direction. The combination of reciprocal and non-reciprocal interactions between synthetic building blocks remains largely unexplored. Here, out-of-equilibrium assemblies of non-motile isotropic passive and metal-patched motile active particles are formed by overlapping bulk interactions with directed self-propulsion. An external alternating current (AC) electric field generates concurrent dipolar and induced-charge electrophoretic forces between the particles which are evaluated using microscopy. The interaction force measurements allow to determine the degree of reciprocity in interactions, which is tunable by designing the active particle and its trajectory. While linearly-propelled active particles evade assembly with passive particles, helically propelled active particles form active-passive clusters with dynamic reconfiguration and long-lived metastability. Large clusters display programmable fluctuations and reconfigurability by controlling the fraction of active particles. The study establishes principles of integrating reciprocal and non-reciprocal interactions in guided colloidal assembly of reconfigurable metastable structures.
Collapse
Affiliation(s)
- Ahmed Al Harraq
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
- Center for the Physics of Biological Function, Princeton University, Princeton, NJ, 08544, USA
| | - Ruchi Patel
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Jin Gyun Lee
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, 80303, USA
| | - Ope Owoyele
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Jaehun Chun
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Bhuvnesh Bharti
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| |
Collapse
|
3
|
Liu Y, Kailasham R, Moerman PG, Khair AS, Zarzar LD. Self-Organized Patterns in Non-Reciprocal Active Droplet Systems. Angew Chem Int Ed Engl 2024; 63:e202409382. [PMID: 39321140 PMCID: PMC11586706 DOI: 10.1002/anie.202409382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 09/27/2024]
Abstract
Non-equilibrium patterns are widespread in nature and often arise from the self-organization of constituents through nonreciprocal chemotactic interactions. In this study, we demonstrate how active oil-in-water droplet mixtures with predator-prey interactions can result in a variety of self-organized patterns. By manipulating physical parameters, the droplet diameter ratio and number ratio, we identify distinct classes of patterns within a binary droplet system, rationalize the pattern formation, and quantify motilities. Experimental results are recapitulated in numerical simulations using a minimal computational model that solely incorporates chemotactic interactions and steric repulsion among the constituents. The time evolution of the patterns is investigated and chemically explained. We also investigate how patterns vary with differing interaction strength by altering surfactant composition. Leveraging insights from the binary droplet system, the framework is extended to a ternary droplet mixture composed of multiple chasing droplet pairs to create chemically directed hierarchical organization. Our findings demonstrate how rationalizable, self-organized patterns can be programmed in a chemically minimal system and provide the basis for exploration of emergent organization and higher order complexity in active colloids.
Collapse
Affiliation(s)
- Yutong Liu
- Department of ChemistryThe Pennsylvania State UniversityUniversity Park16802PAUSA
| | - R. Kailasham
- Department of Chemical EngineeringCarnegie Mellon University15213PittsburghPAUSA
- Present address: Department of Chemical EngineeringIndian Institute of Technology IndoreKhandwa Road453552SimrolMadhya PradeshIndia
| | - Pepijn G. Moerman
- Department of Chemical Engineering and ChemistryEindhoven University of Technology5612, APEindhovenNetherlands
| | - Aditya S. Khair
- Department of Chemical EngineeringCarnegie Mellon University15213PittsburghPAUSA
| | - Lauren D. Zarzar
- Department of ChemistryThe Pennsylvania State UniversityUniversity Park16802PAUSA
- Department of Material Science and EngineeringThe Pennsylvania State UniversityUniversity Park16802PAUSA
| |
Collapse
|
4
|
Kengmana E, Ornelas-Gatdula E, Chen KL, Schulman R. Spatial Control over Reactions via Localized Transcription within Membraneless DNA Nanostar Droplets. J Am Chem Soc 2024. [PMID: 39565729 DOI: 10.1021/jacs.4c07274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Biomolecular condensates control where and how fast many chemical reactions occur in cells by partitioning reactants and catalysts, enabling simultaneous reactions in different spatial locations of a cell. Even without a membrane or physical barrier, the partitioning of the reactants can affect the rates of downstream reaction cascades in ways that depend on reaction location. Such effects can enable systems of biomolecular condensates to spatiotemporally orchestrate chemical reaction networks in cells to facilitate complex behaviors such as ribosome assembly. Here, we develop a system for developing such control in synthetic systems. We localize different transcription templates within different phase-separated, membraneless DNA nanostar (NS) droplets─programmable, in vitro liquid-liquid phase separation systems for partitioning of substrates and localization of reactions to membraneless droplets. When RNA produced within such droplets is also degraded in the bulk, droplet-localized transcription creates RNA concentration gradients. Consistent with the formation of these gradients, toehold-mediated strand displacement reactions involving transcripts are 2-fold slower far from the site of transcription than when nearby. We then demonstrate how multiple such gradients can form and be maintained independently by simultaneous transcription reactions occurring in tandem, each localized to different NS droplet types. Our results provide a means for constructing reaction systems in which different reactions are spatially localized and controlled without the need for physical membranes. This system also provides a means for generally studying how localized reactions and the exchange of reaction products might occur between protocells.
Collapse
Affiliation(s)
- Eli Kengmana
- Chemistry-Biology Interface Program, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Elysse Ornelas-Gatdula
- Chemistry-Biology Interface Program, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kuan-Lin Chen
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Rebecca Schulman
- Chemistry-Biology Interface Program, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
5
|
Basharat M, Zhang J, Yu N, Li R, Zhang Y, Wang Y, Gao Y. In-situ isomerization and reversible self-assembly of photoresponsive polymeric colloidal molecules enabled by ON and OFF light control. J Colloid Interface Sci 2024; 680:278-285. [PMID: 39566415 DOI: 10.1016/j.jcis.2024.11.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/24/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024]
Abstract
Photocatalytic colloids enable light-triggered nonequilibrium interactions and are emerging as key components for the self-assembly of colloidal molecules (CMs) out of equilibrium. However, the material choices have largely been limited to inorganic substances and the potential for reconfiguring structures through dynamic light control remains underexplored, despite light being a convenient handle for tuning nonequilibrium interactions. Here, we introduce photoresponsive N,O-containing covalent organic polymer (NOCOP) colloids, which display multi-wavelength triggered fluorescence and switchable diffusiophoretic interactions with the addition of triethanolamine. Our system can form various flexible structures, including ABn-type molecules and linear chains. By varying the relative sizes of active to passive colloids, we significantly increase the structural diversity of A2B2-type molecules. Most importantly, we demonstrate in-situ transitions between different isomeric configurations and the reversible assembly of various structures, enabled by on-demand light ON and OFF control of diffusiophoretic interactions. Our work introduces a new photoresponsive colloidal system and a novel strategy for constructing and reconfiguring colloidal assemblies, with promising applications in microrobotics, optical devices, and smart materials.
Collapse
Affiliation(s)
- Majid Basharat
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060, China
| | - Jiayu Zhang
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060, China
| | - Nan Yu
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060, China
| | - Ruiyao Li
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060, China
| | - Yiyang Zhang
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060, China
| | - Yufeng Wang
- Department of Chemistry, the University of Hong Kong, Hong Kong 999077, China
| | - Yongxiang Gao
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060, China.
| |
Collapse
|
6
|
Holstein LR, Suematsu NJ, Takeuchi M, Harano K, Banno T, Takai A. Reduction-Induced Self-Propelled Oscillatory Motion of Perylenediimides on Water. Angew Chem Int Ed Engl 2024; 63:e202410671. [PMID: 39083634 DOI: 10.1002/anie.202410671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024]
Abstract
The emergence of macroscopic self-propelled oscillatory motion based on molecular design has attracted continual attention in relation to autonomous systems in living organisms. Herein, a series of perylenediimides (PDIs) with various imide side chains was prepared to explore the impact of molecular design and alignment on the self-propelled motion at the air-water interface. When placed on an aqueous solution containing a reductant, a solid disk of neutral PDI was reduced to form the water-soluble, surface-active PDI dianion species, which induces a surface tension gradient in the vicinity of the disk for self-propelled motion. We found that centimeter-scale oscillatory motion could be elicited by controlling the supply rate of PDI dianion species through the reductant concentration and the structure of the imide side chains. Furthermore, we found that the onset and speed of the self-propelled motion could be changed by the crystallinity of PDI at the water surface. This design principle using π-conjugated molecules and their self-assemblies could advance self-propelled, non-equilibrium systems powered by chemical energy.
Collapse
Affiliation(s)
- Lara Rae Holstein
- Molecular Design and Function Group, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
- Department of Materials Science and Engineering, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Nobuhiko J Suematsu
- School of Interdisciplinary Mathematical Sciences; Graduate School of Advanced Mathematical Sciences, Meiji Institute for Advanced Study of Mathematical Sciences (MIMS), Meiji University, 4-21-1, Nakano, Tokyo, 164-8525, Japan
| | - Masayuki Takeuchi
- Molecular Design and Function Group, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
- Department of Materials Science and Engineering, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Koji Harano
- Center for Basic Research on Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Taisuke Banno
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Atsuro Takai
- Molecular Design and Function Group, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| |
Collapse
|
7
|
Liu K, Blokhuis AWP, Dijt SJ, Wu J, Hamed S, Kiani A, Matysiak BM, Otto S. Molecular-scale dissipative chemistry drives the formation of nanoscale assemblies and their macroscale transport. Nat Chem 2024:10.1038/s41557-024-01665-z. [PMID: 39516669 DOI: 10.1038/s41557-024-01665-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
Fuelled chemical systems have considerable functional potential that remains largely unexplored. Here we report an approach to transient amide bond formation and use it to harness chemical energy and convert it to mechanical motion by integrating dissipative self-assembly and the Marangoni effect in a source-sink system. Droplets are formed through dissipative self-assembly following the reaction of octylamine with 2,3-dimethylmaleic anhydride. The resulting amides are hydrolytically labile, making the droplets transient, which enables them to act as a source of octylamine. A sink for octylamine was created by placing a drop of oleic acid at the air-water interface. This source-sink system sets up a gradient in surface tension, which gives rise to a macroscopic Marangoni flow that can transport the droplets in solution with tunable speed. Carbodiimides can fuel this motion by converting diacid waste back to anhydride. This study shows how fuelling at the molecular level can, via assembly at the supramolecular level, lead to liquid flow at the macroscopic level.
Collapse
Affiliation(s)
- Kai Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Alex W P Blokhuis
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Groningen, the Netherlands
| | - Sietse J Dijt
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Groningen, the Netherlands
| | - Juntian Wu
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Groningen, the Netherlands
| | - Shana Hamed
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Groningen, the Netherlands
| | - Armin Kiani
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Groningen, the Netherlands
| | - Bartosz M Matysiak
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Groningen, the Netherlands
| | - Sijbren Otto
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
8
|
de Visser PJ, Neeleman M, Dankloff PFJ, Derks MTGM, Korevaar PA. Positional Information-Based Organization of Surfactant Droplet Swarms Emerging from Competition Between Local and Global Marangoni Effects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403720. [PMID: 39169705 PMCID: PMC11579963 DOI: 10.1002/smll.202403720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/02/2024] [Indexed: 08/23/2024]
Abstract
Positional information is key for particles to adapt their behavior based on their position in external concentration gradients, and thereby self-organize into complex patterns. Here, position-dependent behavior of floating surfactant droplets that self-organize in a pH gradient is demonstrated, using the Marangoni effect to translate gradients of surface-active molecules into motion. First, fields of surfactant microliter-droplets are generated, in which droplets floating on water drive local, outbound Marangoni flows upon dissolution of surfactant and concomitantly grow myelin filaments. Next, a competing surfactant based on a hydrolysable amide is introduced, which is more surface active than the myelin surfactant and thereby inhibits the local Marangoni flows and myelin growth from the droplets. Upon introducing a pH gradient, the amide surfactant hydrolyses in the acidic region, so that the local Marangoni flows and myelin growth are reestablished. The resulting combination of local and global surface tension gradients produces a region of myelin-growing droplets and a region where myelin growth is suppressed, separated by a wave front of closely packed droplets, of which the position can be controlled by the pH gradient. Thereby, it is shown how "French flag"-patterns, in synthetic settings typically emerging from reaction-diffusion systems, can also be established via surfactant droplet systems.
Collapse
Affiliation(s)
- Pieter J. de Visser
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| | - Mink Neeleman
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| | - Pim F. J. Dankloff
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| | - Max T. G. M. Derks
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| | - Peter A. Korevaar
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| |
Collapse
|
9
|
Baghdady EA, Medlin JW, Schwartz DK. Enhancing the Self-Propelled Motion of Hydrogen Peroxide Fueled Active Particles with Formic Acid and Other Oxygen Scavengers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21097-21105. [PMID: 39324832 DOI: 10.1021/acs.langmuir.4c02482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
We report enhanced active particle motion in hydrogen peroxide-fueled self-diffusiophoretic active particle systems of up to 400% via addition of low concentrations of oxygen scavenging agents such as formic acid (as well as other organic acids, hydrazine, and citric acid), whereas active motion was inhibited at higher concentrations. Control experiments showed that enhanced motion was decoupled from catalytic hydrogen peroxide decomposition rate and insensitive to particle surface chemistry. Experimental results point to bulk oxygen scavenging as the cause for the enhanced active motion, representing a realization of recently predicted promotional effects of product sinks on self-diffusiophoretic motion. Diminished active motion at high oxygen scavenger concentrations was attributed to catalytic site blocking by adsorbed solute.
Collapse
Affiliation(s)
- Ezra A Baghdady
- Chemical and Biological Engineering, University of Colorado Boulder, UCB 596, Boulder, Colorado 80309, United States
| | - J Will Medlin
- Chemical and Biological Engineering, University of Colorado Boulder, UCB 596, Boulder, Colorado 80309, United States
| | - Daniel K Schwartz
- Chemical and Biological Engineering, University of Colorado Boulder, UCB 596, Boulder, Colorado 80309, United States
| |
Collapse
|
10
|
Raskatla V, Liu T, Li J, MacDonald KF, Zheludev NI. Continuous Space-Time Crystal State Driven by Nonreciprocal Optical Forces. PHYSICAL REVIEW LETTERS 2024; 133:136202. [PMID: 39392983 DOI: 10.1103/physrevlett.133.136202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/19/2024] [Accepted: 08/19/2024] [Indexed: 10/13/2024]
Abstract
We show that the continuous time crystal state can arise in an ensemble of linear oscillators from nonconservative coupling via optical radiation pressure forces. This new mechanism comprehensively explains observations of the time crystal state in an array of nanowires illuminated with light [T. Liu et al., Nat. Phys. 19, 986 (2023).NPAHAX1745-247310.1038/s41567-023-02023-5]. Being fundamentally different from regimes of nonlinear synchronization, it has relevance to a wide range of interacting many-body systems, including in the realms of chemistry, biology, weather, and nanoscale matter.
Collapse
|
11
|
Balaj RV, Xue W, Bayati P, Mallory S, Zarzar LD. Dynamic Partitioning of Surfactants into Nonequilibrium Emulsion Droplets. J Am Chem Soc 2024; 146:26340-26350. [PMID: 39255056 DOI: 10.1021/jacs.4c08917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Characterizing the propensity of molecules to distribute between fluid phases is key to describing chemical concentrations in heterogeneous mixtures and the corresponding physiochemical properties of a system. Typically, partitioning is studied under equilibrium conditions. However, some mixtures form a single phase at equilibrium but exist in multiple phases when out-of-equilibrium, such as oil-in-water emulsion droplets stabilized by surfactants. Such droplets persist for extended times but ultimately disappear due to droplet dissolution and micellar solubilization. Consequently, equilibrium properties like oil-water partition coefficients may not accurately describe out-of-equilibrium droplets. This study investigates the partitioning of nonionic surfactants between shrinking microscale oil droplets and water under nonequilibrium conditions. Quantitative mass spectrometry is used to analyze the composition of individual microdroplets over time under conditions of varying surfactant composition, concentrations, and oil molecular structures. Within minutes, nonionic surfactants partition into oil droplets, reaching a nonequilibrium steady-state concentration that can be over an order of magnitude higher than that in the aqueous phase. As the droplets solubilize over hours, the surfactants are released back into water, leading to transiently high surfactant concentrations near the droplet-water interface and the formation of a microemulsion phase with a low interfacial tension. Introducing ionic surfactants that form mixed micelles with nonionic surfactants reduces partitioning. Based on this observation, stimuli-responsive ionic surfactants are used to modulate the nonionic surfactant partitioning and trigger reversible phase separation and mixing inside binary oil droplets. This study reveals generalizable nonequilibrium states and conditions experienced by solubilizing oil droplets that influence emulsion properties.
Collapse
Affiliation(s)
- Rebecca V Balaj
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Wangyang Xue
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Parvin Bayati
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Stewart Mallory
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Lauren D Zarzar
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
12
|
Kim KE, Balaj RV, Zarzar LD. Chemical Programming of Solubilizing, Nonequilibrium Active Droplets. Acc Chem Res 2024; 57:2372-2382. [PMID: 39116001 DOI: 10.1021/acs.accounts.4c00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
ConspectusThe multifunctionality and resilience of living systems has inspired an explosion of interest in creating materials with life-like properties. Just as life persists out-of-equilibrium, we too should try to design materials that are thermodynamically unstable but can be harnessed to achieve desirable, adaptive behaviors. Studying minimalistic chemical systems that exhibit relatively simple emergent behaviors, such as motility, communication, or self-organization, can provide insight into fundamental principles which may enable the design of more complex and life-like synthetic materials in the future.Emulsions, which are composed of liquid droplets dispersed in another immiscible fluid phase, have emerged as fascinating chemically minimal materials in which to study nonequilibrium, life-like properties. As covered in this Account, our group has focused on studying oil-in-water emulsions, specifically those which destabilize by solubilization, a process wherein oil is released into the continuous phase over time to create gradients of oil-filled micelles. These chemical gradients can create interfacial tension gradients that lead to droplet self-propulsion as well as mediate communication between neighboring oil droplets. As such, oil-in-water emulsions present an interesting platform for studying active matter. However, despite being chemically minimal with sometimes as few as three chemicals (oil, water, and a surfactant), emulsions present surprising complexity across the molecular to macroscale. Fundamental processes governing their active behavior, such as micelle-mediated interfacial transport, are still not well understood. This complexity is compounded by the challenges of studying systems out-of-equilibrium which typically require new analytical methods and may break our intuition derived from equilibrium thermodynamics.In this Account, we highlight our group's efforts toward developing chemical frameworks for understanding active and interactive oil-in-water emulsions. How do the chemical properties and physical spatial organization of the oil, water, and surfactant combine to yield colloidal-scale active properties? Our group tackles this question by employing systematic studies of active behavior working across the chemical space of oils and surfactants to link molecular structure to active behavior. The Account begins with an introduction to the self-propulsion of single, isolated droplets and how by applying biases, such as with a gravitational field or interfacially adsorbed particles, drop speeds can be manipulated. Next, we illustrate that some droplets can be attractive, as well as self-propulsive/repulsive, which does not fall in line with the current understanding of the impact of oil-filled micelle gradients on interfacial tensions. The mechanisms by which oil-filled micelles influence interfacial tensions of nonequilibrium interfaces is poorly understood and requires deeper molecular understanding. Regardless, we extend our knowledge of droplet motility to design emulsions with nonreciprocal predator-prey interactions and describe the dynamic self-organization that arises from the combination of reciprocal and nonreciprocal interactions between droplets. Finally, we highlight our group's progress toward answering key chemical questions surrounding nonequilibrium processes in emulsions that remain to be answered. We hope that our progress in understanding the chemical principles governing the dynamic nonequilibrium properties of oil-in-water droplets can help inform research in tangential research areas such as cell biology and origins of life.
Collapse
Affiliation(s)
- Kueyoung E Kim
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16082, United States
| | - Rebecca V Balaj
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16082, United States
| | - Lauren D Zarzar
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16082, United States
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16082, United States
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16082, United States
| |
Collapse
|
13
|
Navas SF, Klapp SHL. Impact of non-reciprocal interactions on colloidal self-assembly with tunable anisotropy. J Chem Phys 2024; 161:054908. [PMID: 39105552 DOI: 10.1063/5.0214730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/19/2024] [Indexed: 08/07/2024] Open
Abstract
Non-reciprocal (NR) effective interactions violating Newton's third law occur in many biological systems, but can also be engineered in synthetic, colloidal systems. Recent research has shown that such NR interactions can have tremendous effects on the overall collective behavior and pattern formation, but can also influence aggregation processes on the particle scale. Here, we focus on the impact of non-reciprocity on the self-assembly of a colloidal system (originally passive) with anisotropic interactions whose character is tunable by external fields. In the absence of non-reciprocity, that is, under equilibrium conditions, the colloids form square-like and hexagonal aggregates with extremely long lifetimes yet no large-scale phase separation [Kogler et al., Soft Matter 11, 7356 (2015)], indicating kinetic trapping. Here, we study, based on Brownian dynamics simulations in 2D, an NR version of this model consisting of two species with reciprocal isotropic, but NR anisotropic interactions. We find that NR induces an effective propulsion of particle pairs and small aggregates ("active colloidal molecules") forming at the initial stages of self-assembly, an indication of the NR-induced non-equilibrium. The shape and stability of these initial clusters strongly depend on the degree of anisotropy. At longer times, we find, for weak NR interactions, large (even system-spanning) clusters where single particles can escape and enter at the boundaries, in stark contrast to the small rigid aggregates appearing at the same time in the passive case. In this sense, weak NR shortcuts the aggregation. Increasing the degree of NR (and thus, propulsion), we even observe large-scale phase separation if the interactions are weakly anisotropic. In contrast, systems with strong NR and anisotropy remain essentially disordered. Overall, the NR interactions are shown to destabilize the rigid aggregates interrupting self-assembly and phase separation in the passive case, thereby helping the system to overcome kinetic barriers.
Collapse
Affiliation(s)
- Salman Fariz Navas
- Institute for Theoretical Physics, Technical University of Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| | - Sabine H L Klapp
- Institute for Theoretical Physics, Technical University of Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| |
Collapse
|
14
|
de Visser PJ, Karagrigoriou D, Nguindjel AC, Korevaar PA. Quorum Sensing in Emulsion Droplet Swarms Driven by a Surfactant Competition System. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307919. [PMID: 38887869 PMCID: PMC11321703 DOI: 10.1002/advs.202307919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/23/2024] [Indexed: 06/20/2024]
Abstract
Quorum sensing enables unicellular organisms to probe their population density and perform behavior that exclusively occurs above a critical density. Quorum sensing is established in emulsion droplet swarms that float at a water surface and cluster above a critical density. The design involves competition between 1) a surface tension gradient that is generated upon release of a surfactant from the oil droplets, and thereby drives their mutual repulsion, and 2) the release of a surfactant precursor from the droplets, that forms a strong imine surfactant which suppresses the surface tension gradient and thereby causes droplet clustering upon capillary (Cheerios) attraction. The production of the imine-surfactant depends on the population density of the droplets releasing the precursor so that the clustering only occurs above a critical population density. The pH-dependence of the imine-surfactant formation is exploited to trigger quorum sensing upon a base stimulus: dynamic droplet swarms are generated that cluster and spread upon spatiotemporally varying acid and base conditions. Next, the clustering of two droplet subpopulations is coupled to a chemical reaction that generates a fluorescent signal. It is foreseen that quorum sensing enables control mechanisms in droplet-based systems that display collective responses in contexts of, e.g., sensing, optics, or dynamically controlled droplet-reactors.
Collapse
Affiliation(s)
- Pieter J. de Visser
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| | - Dimitrios Karagrigoriou
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| | - Anne‐Déborah C. Nguindjel
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| | - Peter A. Korevaar
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| |
Collapse
|
15
|
Kumar P, Dwivedi P, Ashraf S, Pillai D, Mangal R. Motility and pairwise interactions of chemically active droplets in one-dimensional confinement. Phys Rev E 2024; 110:024612. [PMID: 39295064 DOI: 10.1103/physreve.110.024612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/09/2024] [Indexed: 09/21/2024]
Abstract
Self-propelled droplets serve as ideal model systems to delve deeper into understanding the motion of biological microswimmers by simulating their motility. Biological microorganisms are renowned for showcasing a diverse array of dynamic swimming behaviors when confronted with physical constraints. This study aims to elucidate the impact of physical constraints on swimming characteristics of biological microorganisms. To achieve this, we present observations on the individual and pairwise behavior of micellar solubilized self-propelled 4-cyano-4'-pentyl-biphenyl (5CB) oil droplets in a square capillary channel filled with a surfactant trimethyl ammonium bromide aqueous solution. To explore the effect of the underlying Péclet number of the swimming droplets, the study is also performed in the presence of additives such as high molecular weight polymer polyethylene oxide and molecular solute glycerol. The capillary confinement restricts droplet to predominantly one-dimensional motion, albeit with noticeable differences in their motion across the three scenarios. Through a characterization of the chemical and hydrodynamic flow fields surrounding the droplets, we illustrate that the modification of the droplets' chemical field due to confinement varies significantly based on the underlying differences in the Péclet number in these cases. This alteration in the chemical field distribution notably affects the individual droplets' motion. Moreover, these distinct chemical field interactions between the droplets also lead to variations in their pairwise motion, ranging from behaviors like chasing to scattering.
Collapse
|
16
|
Wang X, Yang Y, Roh S, Hormozi S, Gianneschi NC, Abbott NL. Self-Timed and Spatially Targeted Delivery of Chemical Cargo by Motile Liquid Crystal. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311311. [PMID: 38422370 DOI: 10.1002/adma.202311311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/12/2024] [Indexed: 03/02/2024]
Abstract
A key challenge underlying the design of miniature machines is encoding materials with time- and space-specific functional behaviors that require little human intervention. Dissipative processes that drive materials beyond equilibrium and evolve continuously with time and location represent one promising strategy to achieve such complex functions. This work reports how internal nonequilibrium states of liquid crystal (LC) emulsion droplets undergoing chemotaxis can be used to time the delivery of a chemical agent to a targeted location. During ballistic motion, hydrodynamic shear forces dominate LC elastic interactions, dispersing microdroplet inclusions (microcargo) within double emulsion droplets. Scale-dependent colloidal forces then hinder the escape of dispersed microcargo from the propelling droplet. Upon arrival at the targeted location, a circulatory flow of diminished strength allows the microcargo to cluster within the LC elastic environment such that hydrodynamic forces grow to exceed colloidal forces and thus trigger the escape of the microcargo. This work illustrates the utility of the approach by using microcargo that initiate polymerization upon release through the outer interface of the carrier droplet. These findings provide a platform that utilizes nonequilibrium strategies to design autonomous spatial and temporal functions into active materials.
Collapse
Affiliation(s)
- Xin Wang
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Yu Yang
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Sangchul Roh
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14850, USA
- School of Chemical Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sarah Hormozi
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Nathan C Gianneschi
- Department of Chemistry, Materials Science & Engineering, Biomedical Engineering and Pharmacology, Northwestern University, Evanston, IL, 60208, USA
| | - Nicholas L Abbott
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14850, USA
| |
Collapse
|
17
|
Wu X, Xue H, Fink Z, Helms BA, Ashby PD, Omar AK, Russell TP. Oversaturating Liquid Interfaces with Nanoparticle-Surfactants. Angew Chem Int Ed Engl 2024; 63:e202403790. [PMID: 38589294 DOI: 10.1002/anie.202403790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
Assemblies of nanoparticles at liquid interfaces hold promise as dynamic "active" systems when there are convenient methods to drive the system out of equilibrium via crowding. To this end, we show that oversaturated assemblies of charged nanoparticles can be realized and held in that state with an external electric field. Upon removal of the field, strong interparticle repulsive forces cause a high in-plane electrostatic pressure that is released in an explosive emulsification. We quantify the packing of the assembly as it is driven into the oversaturated state under an applied electric field. Physiochemical conditions substantially affect the intensity of the induced explosive emulsification, underscoring the crucial role of interparticle electrostatic repulsion.
Collapse
Affiliation(s)
- Xuefei Wu
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA-94720, USA
| | - Han Xue
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA-94720, USA
| | - Zachary Fink
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA-94720, USA
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, MA-01003, USA
| | - Brett A Helms
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA-94720, USA
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA-94720, USA
| | - Paul D Ashby
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA-94720, USA
| | - Ahmad K Omar
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA-94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA-94720, USA
| | - Thomas P Russell
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA-94720, USA
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, MA-01003, USA
- Advanced Institute for Materials Research (AIMR), Tohoku University, 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan
| |
Collapse
|
18
|
Kumar M, Murali A, Subramaniam AG, Singh R, Thutupalli S. Emergent dynamics due to chemo-hydrodynamic self-interactions in active polymers. Nat Commun 2024; 15:4903. [PMID: 38851777 PMCID: PMC11162426 DOI: 10.1038/s41467-024-49155-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/24/2024] [Indexed: 06/10/2024] Open
Abstract
The field of synthetic active matter has, thus far, been led by efforts to create point-like, isolated (yet interacting) self-propelled objects (e.g. colloids, droplets, microrobots) and understanding their collective dynamics. The design of flexible, freely jointed active assemblies from autonomously powered sub-components remains a challenge. Here, we report freely-jointed active polymers created using self-propelled droplets as monomeric units. Our experiments reveal that the self-shaping chemo-hydrodynamic interactions between the monomeric droplets give rise to an emergent rigidity (the acquisition of a stereotypical asymmetric C-shape) and associated ballistic propulsion of the active polymers. The rigidity and propulsion of the chains vary systematically with their lengths. Using simulations of a minimal model, we establish that the emergent polymer dynamics are a generic consequence of quasi two-dimensional confinement and auto-repulsive trail-mediated chemical interactions between the freely jointed active droplets. Finally, we tune the interplay between the chemical and hydrodynamic fields to experimentally demonstrate oscillatory dynamics of the rigid polymer propulsion. Altogether, our work highlights the possible first steps towards synthetic self-morphic active matter.
Collapse
Affiliation(s)
- Manoj Kumar
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.
| | - Aniruddh Murali
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | | | - Rajesh Singh
- Department of Physics, Indian Institute of Technology, Chennai, India.
| | - Shashi Thutupalli
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore, India.
| |
Collapse
|
19
|
Mandal R, Jaramillo SS, Sollich P. Robustness of traveling states in generic nonreciprocal mixtures. Phys Rev E 2024; 109:L062602. [PMID: 39020950 DOI: 10.1103/physreve.109.l062602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/26/2024] [Indexed: 07/20/2024]
Abstract
Emergent nonreciprocal interactions violating Newton's third law are widespread in out-of-equilibrium systems. Phase separating mixtures with such interactions exhibit traveling states with no equilibrium counterpart. Using extensive Brownian dynamics simulations, we investigate the existence and stability of such traveling states in a generic nonreciprocal particle system. By varying a broad range of parameters including aggregate state of mixture components, diffusivity, degree of nonreciprocity, effective spatial dimension and density, we determine that traveling states do exist below the predator-prey regime, but nonetheless are only found in a narrow region of the parameter space. Our work also sheds light on the physical mechanisms for the disappearance of traveling states when relevant parameters are being varied, and has implications for a range of nonequilibrium systems including nonreciprocal phase separating mixtures, nonequilibrium pattern formation and predator-prey models.
Collapse
|
20
|
Soto R, Pinto M, Brito R. Kinetic Theory of Motility Induced Phase Separation for Active Brownian Particles. PHYSICAL REVIEW LETTERS 2024; 132:208301. [PMID: 38829083 DOI: 10.1103/physrevlett.132.208301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/22/2024] [Indexed: 06/05/2024]
Abstract
When two active Brownian particles collide, they slide along each other until they can continue their free motion. For persistence lengths much larger than the particle diameter, the directors do not change, but the collision can be modeled as producing a net displacement on the particles compared to their free motion in the absence of the encounter. With these elements, a Boltzmann-Enskog-like kinetic theory is built. A linear stability analysis of the homogeneous state predicts a density instability resulting from the effective velocity reduction of tagged particles predicted by the theory.
Collapse
Affiliation(s)
- Rodrigo Soto
- Departamento de Física, FCFM, Universidad de Chile, Santiago, Chile
| | - Martín Pinto
- Departamento de Física, FCFM, Universidad de Chile, Santiago, Chile
| | - Ricardo Brito
- Departamento de Estructura de la Materia, Física Térmica y Electrónica and GISC, Universidad Complutense de Madrid, Spain
| |
Collapse
|
21
|
Jambon-Puillet E, Testa A, Lorenz C, Style RW, Rebane AA, Dufresne ER. Phase-separated droplets swim to their dissolution. Nat Commun 2024; 15:3919. [PMID: 38724503 PMCID: PMC11082165 DOI: 10.1038/s41467-024-47889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Biological macromolecules can condense into liquid domains. In cells, these condensates form membraneless organelles that can organize chemical reactions. However, little is known about the physical consequences of chemical activity in and around condensates. Working with model bovine serum albumin (BSA) condensates, we show that droplets swim along chemical gradients. Active BSA droplets loaded with urease swim toward each other. Passive BSA droplets show diverse responses to externally applied gradients of the enzyme's substrate and products. In all these cases, droplets swim toward solvent conditions that favor their dissolution. We call this behavior "dialytaxis", and expect it to be generic, as conditions which favor dissolution typically reduce interfacial tension, whose gradients are well-known to drive droplet motion through the Marangoni effect. These results could potentially suggest alternative physical mechanisms for active transport in living cells, and may enable the design of fluid micro-robots.
Collapse
Affiliation(s)
- Etienne Jambon-Puillet
- Department of Materials, ETH Zürich, Zürich, Switzerland
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Andrea Testa
- Department of Materials, ETH Zürich, Zürich, Switzerland
| | - Charlotta Lorenz
- Department of Materials, ETH Zürich, Zürich, Switzerland
- Department of Materials Science and Engineering, Department of Physics, Cornell University, Ithaca, NY, USA
| | - Robert W Style
- Department of Materials, ETH Zürich, Zürich, Switzerland
| | - Aleksander A Rebane
- Department of Materials, ETH Zürich, Zürich, Switzerland
- Life Molecules and Materials Lab, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Eric R Dufresne
- Department of Materials, ETH Zürich, Zürich, Switzerland.
- Department of Materials Science and Engineering, Department of Physics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
22
|
Markovich T, Lubensky TC. Nonreciprocity and odd viscosity in chiral active fluids. Proc Natl Acad Sci U S A 2024; 121:e2219385121. [PMID: 38701120 PMCID: PMC11087745 DOI: 10.1073/pnas.2219385121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/06/2024] [Indexed: 05/05/2024] Open
Abstract
Odd viscosity couples stress to strain rate in a dissipationless way. It has been studied in plasmas under magnetic fields, superfluid [Formula: see text], quantum-Hall fluids, and recently in the context of chiral active matter. In most of these studies, odd terms in the viscosity obey Onsager reciprocal relations. Although this is expected in equilibrium systems, it is not obvious that Onsager relations hold in active materials. By directly coarse-graining the kinetic energy and independently using both the Poisson-bracket formalism and a kinetic theory derivation, we find that the appearance of a nonvanishing angular momentum density, which is a hallmark of chiral active materials, necessarily breaks Onsager reciprocal relations. This leads to a non-Hermitian dynamical matrix for the total hydrodynamic momentum and to the appearance of odd viscosity and other nondissipative contributions to the viscosity. Furthermore, by accounting for both the angular momentum density and interactions that lead to odd viscosity, we find regions in the parameter space in which 3D odd mechanical waves propagate and regions in which they are mechanically unstable. The lines separating these regions are continuous lines of exceptional points, suggesting a possible nonreciprocal phase transition.
Collapse
Affiliation(s)
- Tomer Markovich
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv69978, Israel
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv69978, Israel
| | - Tom C. Lubensky
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
23
|
Fernandez L, Hess S, Klapp SHL. Nonequilibrium dynamics and entropy production of a trapped colloidal particle in a complex nonreciprocal medium. Phys Rev E 2024; 109:054129. [PMID: 38907489 DOI: 10.1103/physreve.109.054129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/02/2024] [Indexed: 06/24/2024]
Abstract
We discuss the two-dimensional motion of a Brownian particle that is confined to a harmonic trap and driven by a shear flow. The surrounding medium induces memory effects modeled by a linear, typically nonreciprocal coupling of the particle coordinates to an auxiliary (hidden) variable. The system's behavior resulting from the microscopic Langevin equations for the three variables is analyzed by means of exact moment equations derived from the Fokker-Planck representation, and numerical Brownian dynamics simulations. Increasing the shear rate beyond a critical value we observe, for suitable coupling scenarios with nonreciprocal elements, a transition from a stationary to a nonstationary state, corresponding to an escape from the trap. We analyze this behavior, analytically and numerically, in terms of the associated moments of the probability distribution, and from the perspective of nonequilibrium thermodynamics. Intriguingly, the entropy production rate remains finite when crossing the stability threshold.
Collapse
|
24
|
Illien P, Golestanian R. Chemotactic particles as strong electrolytes: Debye-Hückel approximation and effective mobility law. J Chem Phys 2024; 160:154901. [PMID: 38624127 DOI: 10.1063/5.0203593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/28/2024] [Indexed: 04/17/2024] Open
Abstract
We consider a binary mixture of chemically active particles that produce or consume solute molecules and that interact with each other through the long-range concentration fields they generate. We analytically calculate the effective phoretic mobility of these particles when the mixture is submitted to a constant, external concentration gradient, at leading order in the overall concentration. Relying on an analogy with the modeling of strong electrolytes, we show that the effective phoretic mobility decays with the square root of the concentration: our result is, therefore, a nonequilibrium counterpart to the celebrated Kohlrausch and Debye-Hückel-Onsager conductivity laws for electrolytes, which are extended here to particles with long-range nonreciprocal interactions. The effective mobility law we derive reveals the existence of a regime of maximal mobility and could find applications in the description of nanoscale transport phenomena in living cells.
Collapse
Affiliation(s)
- Pierre Illien
- Laboratoire PHENIX (Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux), CNRS, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - Ramin Golestanian
- Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, D-37077 Göttingen, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, OX1 3PU Oxford, United Kingdom
| |
Collapse
|
25
|
Albers T, Delnoij S, Schramma N, Jalaal M. Billiards with Spatial Memory. PHYSICAL REVIEW LETTERS 2024; 132:157101. [PMID: 38682997 DOI: 10.1103/physrevlett.132.157101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/20/2024] [Indexed: 05/01/2024]
Abstract
Many classes of active matter develop spatial memory by encoding information in space. We present a framework based on mathematical billiards, wherein particles remember their past trajectories. Despite its deterministic rules, such a system is strongly nonergodic and exhibits intermittent statistics and complex pattern formation. We show how these features emerge from the dynamic change of topology. Our work illustrates how the dynamics of a single-body system can dramatically change with spatial memory, laying the groundwork to further explore systems with complex memory kernels.
Collapse
Affiliation(s)
- Thijs Albers
- Van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Stijn Delnoij
- Van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Nico Schramma
- Van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Maziyar Jalaal
- Van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
26
|
Singh K, Raman H, Tripathi S, Sharma H, Choudhary A, Mangal R. Pair Interactions of Self-Propelled SiO 2-Pt Janus Colloids: Chemically Mediated Encounters. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7328-7343. [PMID: 38526954 DOI: 10.1021/acs.langmuir.3c03415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Driven by the necessity to achieve a thorough comprehension of the bottom-up fabrication process of functional materials, this experimental study investigates the pairwise interactions or collisions between chemically active SiO2-Pt Janus colloids. These collisions are categorized based on the Janus colloids' orientations before and after they make physical contact. In addition to the hydrodynamic interactions, the Janus colloids are also known to affect each other's chemical field, resulting in chemophoretic interactions, which depend on the degree of surface anisotropy in reactivity of Janus colloid and the solute-surface interaction at play. Our study reveals that these interactions lead to a noticeable decrease in particle speed and changes in orientation that correlate with the contact duration and yield different collision types. Distinct configurations of contact during collisions were found, whose mechanisms and likelihood are found to be dependent primarily on the chemical interactions. Such estimates of collision and their characterization in dilute suspensions shall have a key impact in determining the arrangement and time scales of dynamical structures and assemblies of denser suspensions and potentially the functional materials of the future.
Collapse
Affiliation(s)
- Karnika Singh
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Harishwar Raman
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Shwetabh Tripathi
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Hrithik Sharma
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Akash Choudhary
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Rahul Mangal
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
27
|
Yang Q, Jiang M, Picano F, Zhu L. Shaping active matter from crystalline solids to active turbulence. Nat Commun 2024; 15:2874. [PMID: 38570495 PMCID: PMC11258367 DOI: 10.1038/s41467-024-46520-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024] Open
Abstract
Active matter drives its constituent agents to move autonomously by harnessing free energy, leading to diverse emergent states with relevance to both biological processes and inanimate functionalities. Achieving maximum reconfigurability of active materials with minimal control remains a desirable yet challenging goal. Here, we employ large-scale, agent-resolved simulations to demonstrate that modulating the activity of a wet phoretic medium alone can govern its solid-liquid-gas phase transitions and, subsequently, laminar-turbulent transitions in fluid phases, thereby shaping its emergent pattern. These two progressively emerging transitions, hitherto unreported, bring us closer to perceiving the parallels between active matter and traditional matter. Our work reproduces and reconciles seemingly conflicting experimental observations on chemically active systems, presenting a unified landscape of phoretic collective dynamics. These findings enhance the understanding of long-range, many-body interactions among phoretic agents, offer new insights into their non-equilibrium collective behaviors, and provide potential guidelines for designing reconfigurable materials.
Collapse
Affiliation(s)
- Qianhong Yang
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Maoqiang Jiang
- School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan, Hubei, PR China
| | - Francesco Picano
- Department of Industrial Engineering and CISAS "G. Colombo", University of Padova, Padova, Italy
| | - Lailai Zhu
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
28
|
Chen J, Lei X, Xiang Y, Duan M, Peng X, Zhang HP. Emergent Chirality and Hyperuniformity in an Active Mixture with Nonreciprocal Interactions. PHYSICAL REVIEW LETTERS 2024; 132:118301. [PMID: 38563944 DOI: 10.1103/physrevlett.132.118301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/21/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
We investigate collective dynamics in a binary mixture of programmable robots in experiments and simulations. While robots of the same species align their motion direction, interaction between species is distinctly nonreciprocal: species A aligns with B and species B antialigns with A. This nonreciprocal interaction gives rise to the emergence of collective chiral motion that can be stabilized by limiting the robot angular speed to be below a threshold. Within the chiral phase, increasing the robot density or extending the range of local repulsive interactions can drive the system through an absorbing-active transition. At the transition point, the robots exhibit a remarkable capacity for self-organization, forming disordered hyperuniform states.
Collapse
Affiliation(s)
- Jianchao Chen
- School of Physics and Astronomy, Institute of Natural Sciences and MOE-LSC, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaokang Lei
- Faculty of Electronic and Information Engineering, and MOE Key Lab for Intelligent Networks and Network Security, Xi'an Jiaotong University, Xi'an, 710049, China
- College of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yalun Xiang
- School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Mengyuan Duan
- College of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xingguang Peng
- School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, China
| | - H P Zhang
- School of Physics and Astronomy, Institute of Natural Sciences and MOE-LSC, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
29
|
Nguindjel AD, Franssen SCM, Korevaar PA. Reconfigurable Droplet-Droplet Communication Mediated by Photochemical Marangoni Flows. J Am Chem Soc 2024; 146:6006-6015. [PMID: 38391388 PMCID: PMC10921405 DOI: 10.1021/jacs.3c12882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/19/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Droplets are attractive building blocks for dynamic matter that organizes into adaptive structures. Communication among collectively operating droplets opens untapped potential in settings that vary from sensing, optics, protocells, computing, or adaptive matter. Inspired by the transmission of signals among decentralized units in slime mold Physarum polycephalum, we introduce a combination of surfactants, self-assembly, and photochemistry to establish chemical signal transfer among droplets. To connect droplets that float at an air-water interface, surfactant triethylene glycol monododecylether (C12E3) is used for its ability to self-assemble into wires called myelins. We show how the trajectory of these myelins can be directed toward selected photoactive droplets upon UV exposure. To this end, we developed a strategy for photocontrolled Marangoni flow, which comprises (1) the liquid crystalline coating formed at the surface of an oleic acid/sodium oleate (OA/NaO) droplet when in contact with water, (2) a photoacid generator that protonates sodium oleate upon UV exposure and therefore disintegrates the coating, and (3) the surface tension gradient that is generated upon depletion of the surfactant from the air-water interface by the uncoated droplet. Therefore, localized UV exposure of selected OA/NaO droplets results in attraction of the myelins such that they establish reconfigurable connections that self-organize among the C12E3 and OA/NaO droplets. As an example of communication, we demonstrate how the myelins transfer fluorescent dyes, which are selectively delivered in the droplet interior upon photochemical regulation of the liquid crystalline coating.
Collapse
Affiliation(s)
- Anne-Déborah
C. Nguindjel
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Stan C. M. Franssen
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Peter A. Korevaar
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| |
Collapse
|
30
|
Huang Y, Wu C, Chen J, Tang J. Colloidal Self-Assembly: From Passive to Active Systems. Angew Chem Int Ed Engl 2024; 63:e202313885. [PMID: 38059754 DOI: 10.1002/anie.202313885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 12/08/2023]
Abstract
Self-assembly fundamentally implies the organization of small sub-units into large structures or patterns without the intervention of specific local interactions. This process is commonly observed in nature, occurring at various scales ranging from atomic/molecular assembly to the formation of complex biological structures. Colloidal particles may serve as micrometer-scale surrogates for studying assembly, particularly for the poorly understood kinetic and dynamic processes at the atomic scale. Recent advances in colloidal self-assembly have enabled the programmable creation of novel materials with tailored properties. We here provide an overview and comparison of both passive and active colloidal self-assembly, with a discussion on the energy landscape and interactions governing both types. In the realm of passive colloidal assembly, many impressive and important structures have been realized, including colloidal molecules, one-dimensional chains, two-dimensional lattices, and three-dimensional crystals. In contrast, active colloidal self-assembly, driven by optical, electric, chemical, or other fields, involves more intricate dynamic processes, offering more flexibility and potential new applications. A comparative analysis underscores the critical distinctions between passive and active colloidal assemblies, highlighting the unique collective behaviors emerging in active systems. These behaviors encompass collective motion, motility-induced phase segregation, and exotic properties arising from out-of-equilibrium thermodynamics. Through this comparison, we aim to identify the future opportunities in active assembly research, which may suggest new application domains.
Collapse
Affiliation(s)
- Yaxin Huang
- Department of Chemistry, The University of Hong Kong, Hong Kong, 999077, China
| | - Changjin Wu
- Department of Chemistry, The University of Hong Kong, Hong Kong, 999077, China
| | - Jingyuan Chen
- Department of Chemistry, The University of Hong Kong, Hong Kong, 999077, China
| | - Jinyao Tang
- Department of Chemistry, The University of Hong Kong, Hong Kong, 999077, China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
31
|
Tanjeem N, Kreienbrink KM, Hayward RC. Modulating photothermocapillary interactions for logic operations at the air-water interface. SOFT MATTER 2024; 20:1689-1693. [PMID: 38323528 DOI: 10.1039/d3sm01487h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
We demonstrate a system for performing logical operations (OR, AND, and NOT gates) at the air-water interface based on Marangoni optical trapping and repulsion between photothermal particles. We identify a critical separation distance at which the trapped particle assemblies become unstable, providing insight into the potential for scaling to larger arrays of logic elements.
Collapse
Affiliation(s)
- Nabila Tanjeem
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, USA.
- Department of Physics, California State University, Fullerton, California 92831, USA
| | - Kendra M Kreienbrink
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80303, USA
| | - Ryan C Hayward
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, USA.
| |
Collapse
|
32
|
Lin M, Kim P, Arunachalam S, Hardian R, Adera S, Aizenberg J, Yao X, Daniel D. Emergent Collective Motion of Self-Propelled Condensate Droplets. PHYSICAL REVIEW LETTERS 2024; 132:058203. [PMID: 38364153 DOI: 10.1103/physrevlett.132.058203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/16/2023] [Accepted: 12/13/2023] [Indexed: 02/18/2024]
Abstract
Recently, there is much interest in droplet condensation on soft or liquid or liquidlike substrates. Droplets can deform soft and liquid interfaces resulting in a wealth of phenomena not observed on hard, solid surfaces (e.g., increased nucleation, interdroplet attraction). Here, we describe a unique collective motion of condensate water droplets that emerges spontaneously when a solid substrate is covered with a thin oil film. Droplets move first in a serpentine, self-avoiding fashion before transitioning to circular motions. We show that this self-propulsion (with speeds in the 0.1-1 mm s^{-1} range) is fueled by the interfacial energy release upon merging with newly condensed but much smaller droplets. The resultant collective motion spans multiple length scales from submillimeter to several centimeters, with potentially important heat-transfer and water-harvesting applications.
Collapse
Affiliation(s)
- Marcus Lin
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Philseok Kim
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Sankara Arunachalam
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Rifan Hardian
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Solomon Adera
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Joanna Aizenberg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Xi Yao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Dan Daniel
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
33
|
Peng Z, Kapral R. Self-organization of active colloids mediated by chemical interactions. SOFT MATTER 2024; 20:1100-1113. [PMID: 38221884 DOI: 10.1039/d3sm01272g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Self-propelled colloidal particles exhibit rich non-equilibrium phenomena and have promising applications in fields such as drug delivery and self-assembled active materials. Previous experimental and theoretical studies have shown that chemically active colloids that consume or produce a chemical can self-organize into clusters with diverse characteristics depending on the effective phoretic interactions. In this paper, we investigate self-organization in systems with multiple chemical species that undergo a network of reactions and multiple colloidal species that participate in different reactions. Active colloids propelled by complex chemical reactions with potentially nonlinear kinetics can be realized using enzymatic reactions that occur on the surface of enzyme-coated particles. To demonstrate how the self-organizing behavior depends on the chemical reactions active colloids catalyze and their chemical environment, we consider first a single type of colloid undergoing a simple catalytic reaction, and compare this often-studied case with self-organization in binary mixtures of colloids with sequential reactions, and binary mixtures with nonlinear autocatalytic reactions. Our results show that in general active colloids at low particle densities can form localized clusters in the presence of bulk chemical reactions and phoretic attractions. The characteristics of the clusters, however, depend on the reaction kinetics in the bulk and on the particles and phoretic coefficients. With one or two chemical species that only undergo surface reactions, the space for possible self-organizations are limited. By considering the additional system parameters that enter the chemical reaction network involving reactions on the colloids and in the fluid, the design space of colloidal self-organization can be enlarged, leading to a variety of non-equilibrium structures.
Collapse
Affiliation(s)
- Zhiwei Peng
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada.
| | - Raymond Kapral
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada.
| |
Collapse
|
34
|
Alston H, Cocconi L, Bertrand T. Irreversibility across a Nonreciprocal PT-Symmetry-Breaking Phase Transition. PHYSICAL REVIEW LETTERS 2023; 131:258301. [PMID: 38181344 DOI: 10.1103/physrevlett.131.258301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/30/2023] [Indexed: 01/07/2024]
Abstract
Nonreciprocal interactions are commonplace in continuum-level descriptions of both biological and synthetic active matter, yet studies addressing their implications for time reversibility have so far been limited to microscopic models. Here, we derive a general expression for the average rate of informational entropy production in the most generic mixture of conserved phase fields with nonreciprocal couplings and additive conservative noise. For the particular case of a binary system with Cahn-Hilliard dynamics augmented by nonreciprocal cross-diffusion terms, we observe a nontrivial scaling of the entropy production rate across a parity-time symmetry breaking phase transition. We derive a closed-form analytic expression in the weak-noise regime for the entropy production rate due to the emergence of a macroscopic dynamic phase, showing it can be written in terms of the global polar order parameter, a measure of parity-time symmetry breaking.
Collapse
Affiliation(s)
- Henry Alston
- Department of Mathematics, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Luca Cocconi
- Department of Mathematics, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
- The Francis Crick Institute, London NW1 1AT, United Kingdom
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany
| | - Thibault Bertrand
- Department of Mathematics, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| |
Collapse
|
35
|
Kach JI, Walker LM, Khair AS. Nonequilibrium structure formation in electrohydrodynamic emulsions. SOFT MATTER 2023; 19:9179-9194. [PMID: 37997174 DOI: 10.1039/d3sm01110k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Application of an electric field across the interface of two fluids with low, but non-zero, conductivities gives rise to a sustained electrohydrodynamic (EHD) fluid flow. In the presence of neighboring drops, drops interact via the EHD flows of their neighbors, as well as through a dielectrophoretic (DEP) force, a consequence of drops encountering disturbance electric fields around their neighbors. We explore the collective dynamics of emulsions with drops undergoing EHD and DEP interactions. The interplay between EHD and DEP results in a rich set of emergent behaviors. We simulate the collective behavior of large numbers of drops; in two dimensions, where drops are confined to a plane; and three dimensions. In monodisperse emulsions, drops in two dimensions cluster or crystallize depending on the relative strengths of EHD and DEP, and form spaced clusters when EHD and DEP balance. In three dimensions, chain formation observed under DEP alone is suppressed by EHD, and lost entirely when EHD dominates. When a second population of drops are introduced, such that the electrical conductivity, permittivity, or viscosity are different from the first population of drops, the interaction between the drops becomes non-reciprocal, an apparent violation of Newton's Third Law. The breadth of consequences due to these non-reciprocal interactions are vast: we show selected cases in two dimensions, where drops cluster into active dimers, trimers, and larger clusters that continue to translate and rotate over long timescales; and three dimensions, where drops form stratified chains, or combine into a single dynamic sheet.
Collapse
Affiliation(s)
- Jeremy I Kach
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.
| | - Lynn M Walker
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.
| | - Aditya S Khair
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
36
|
Ai BQ. Brownian motors powered by nonreciprocal interactions. Phys Rev E 2023; 108:064409. [PMID: 38243494 DOI: 10.1103/physreve.108.064409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/28/2023] [Indexed: 01/21/2024]
Abstract
Traditional models for molecular (Brownian) motors predominantly depend on nonequilibrium driving, while particle interactions rigorously adhere to Newton's third law. However, numerous living and natural systems at various scales seem to defy this well-established law. In this study, we investigated the transport of mixed Brownian particles in a two-dimensional ratchet potential with nonreciprocal interactions. Our findings reveal that these nonreciprocal interactions can introduce a zero-mean nonequilibrium driving force. This force is capable of disrupting the thermodynamic equilibrium and inducing directed motion. The direction of this motion is determined by the asymmetry of the potential. Interestingly, the average velocity is a peaked function of the degree of nonreciprocity, while the effective diffusion consistently increases with the increase of nonreciprocity. There exists an optimal temperature or packing fraction at which the average velocity reaches its maximum value. We share a mechanism for particle rectification, devoid of particle-autonomous nonequilibrium drive, with potential usage in systems characterized by nonreciprocal interactions.
Collapse
Affiliation(s)
- Bao-Quan Ai
- Key Laboratory of Atomic and Subatomic Structure and Quantum Control (Ministry of Education), Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, School of Physics, South China Normal University, Guangzhou 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, and Guangdong-Hong Kong Joint Laboratory of Quantum Matter, South China Normal University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
37
|
Frank B, Antonietti M, Giusto P, Zeininger L. Photocharging of Carbon Nitride Thin Films for Controllable Manipulation of Droplet Force Gradient Sensors. J Am Chem Soc 2023; 145. [PMID: 37934048 PMCID: PMC10655103 DOI: 10.1021/jacs.3c09084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023]
Abstract
Intentional generation, amplification, and discharging of chemical gradients is central to many nano- and micromanipulative technologies. We describe a straightforward strategy to direct chemical gradients inside a solution via local photoelectric surface charging of organic semiconducting thin films. We observed that the irradiation of carbon nitride thin films with ultraviolet light generates local and sustained surface charges in illuminated regions, inducing chemical gradients in adjacent solutions via charge-selective immobilization of surfactants onto the substrate. We studied these gradients using droplet force gradient sensors, complex emulsions with simultaneous and independent responsive modalities to transduce information on transient gradients in temperature, chemistry, and concentration via tilting, morphological reconfiguration, and chemotaxis. Fine control over the interaction between local, photoelectrically patterned, semiconducting carbon nitride thin films and their environment yields a new method to design chemomechanically responsive materials, potentially applicable to micromanipulative technologies including microfluidics, lab-on-a-chip devices, soft robotics, biochemical assays, and the sorting of colloids and cells.
Collapse
Affiliation(s)
- Bradley
D. Frank
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Paolo Giusto
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Lukas Zeininger
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
38
|
Benois A, Jardat M, Dahirel V, Démery V, Agudo-Canalejo J, Golestanian R, Illien P. Enhanced diffusion of tracer particles in nonreciprocal mixtures. Phys Rev E 2023; 108:054606. [PMID: 38115513 DOI: 10.1103/physreve.108.054606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/19/2023] [Indexed: 12/21/2023]
Abstract
We study the diffusivity of a tagged particle in a binary mixture of Brownian particles with nonreciprocal interactions. Numerical simulations reveal that, for a broad class of interaction potentials, nonreciprocity can significantly increase the long-time diffusion coefficient of tracer particles and that this diffusion enhancement is associated with a breakdown of the Einstein relation. These observations are quantified and confirmed via two different and complementary analytical approaches: (i) a linearized stochastic density field theory, which is particularly accurate in the limit of soft interactions, and (ii) a reduced two-body description, which is exact at leading order in the density of particles. The latter reveals that diffusion enhancement can be attributed to the formation of transiently propelled dimers of particles, whose cohesion and speed are controlled by the nonreciprocal interactions.
Collapse
Affiliation(s)
- Anthony Benois
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), 75005 Paris, France
| | - Marie Jardat
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), 75005 Paris, France
| | - Vincent Dahirel
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), 75005 Paris, France
| | - Vincent Démery
- Gulliver, UMR CNRS 7083, ESPCI Paris PSL, 75005 Paris, France
- Université Lyon, ENS de Lyon, Université Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - Jaime Agudo-Canalejo
- Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, D-37077 Göttingen, Germany
| | - Ramin Golestanian
- Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, D-37077 Göttingen, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, OX1 3PU Oxford, United Kingdom
| | - Pierre Illien
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), 75005 Paris, France
| |
Collapse
|
39
|
Maity S, Morin A. Spontaneous Demixing of Binary Colloidal Flocks. PHYSICAL REVIEW LETTERS 2023; 131:178304. [PMID: 37955477 DOI: 10.1103/physrevlett.131.178304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/05/2023] [Indexed: 11/14/2023]
Abstract
Population heterogeneity is ubiquitous among active living systems, but little is known about its role in determining their spatial organization and large-scale dynamics. Combining evidence from synthetic active fluids assembled from self-propelled colloidal particles along with theoretical predictions at the continuum scale, we demonstrate the spontaneous demixing of binary polar liquids within circular confinement. Our analysis reveals how both active speed heterogeneity and nonreciprocal repulsive interactions lead to self-sorting behavior. By establishing general principles for the self-organization of binary polar liquids, our findings highlight the specificity of multicomponent active systems.
Collapse
Affiliation(s)
- Samadarshi Maity
- Huygens-Kamerlingh Onnes Laboratory, Universiteit Leiden, P.O. Box 9504, 2300 RA Leiden, Netherlands
| | - Alexandre Morin
- Huygens-Kamerlingh Onnes Laboratory, Universiteit Leiden, P.O. Box 9504, 2300 RA Leiden, Netherlands
| |
Collapse
|
40
|
Kailasham R, Khair AS. Effect of speed fluctuations on the collective dynamics of active disks. SOFT MATTER 2023; 19:7764-7774. [PMID: 37791487 DOI: 10.1039/d3sm00665d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Numerical simulations are performed on the collective dynamics of active disks, whose self-propulsion speed (U) varies in time, and whose orientation evolves according to rotational Brownian motion. Two protocols for the evolution of speed are considered: (i) a deterministic one involving a periodic change in U at a frequency ω; and (ii) a stochastic one in which the speeds are drawn from a power-law distribution at time-intervals governed by a Poissonian process of rate β. In the first case, an increase in ω causes the disks to go from a clustered state to a homogeneous one through an apparent phase-transition, provided that the direction of self-propulsion is allowed to reverse. Similarly, in the second case, for a fixed value of β, the extent of cluster-breakup is larger when reversals in the self-propulsion direction are permitted. Motility-induced phase separation of the disks may therefore be avoided in active matter suspensions in which the constituents are allowed to reverse their self-propulsion direction, immaterial of the precise temporal nature of the reversal (deterministic or stochastic). Equally, our results demonstrate that phase separation could occur even in the absence of a time-averaged motility of an individual active agent, provided that the rate of direction reversals is smaller than the orientational diffusion rate.
Collapse
Affiliation(s)
- R Kailasham
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Aditya S Khair
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
41
|
Ouazan-Reboul V, Golestanian R, Agudo-Canalejo J. Network Effects Lead to Self-Organization in Metabolic Cycles of Self-Repelling Catalysts. PHYSICAL REVIEW LETTERS 2023; 131:128301. [PMID: 37802958 DOI: 10.1103/physrevlett.131.128301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/27/2023] [Indexed: 10/08/2023]
Abstract
Mixtures of particles that interact through phoretic effects are known to aggregate if they belong to species that exhibit attractive self-interactions. We study self-organization in a model metabolic cycle composed of three species of catalytically active particles that are chemotactic toward the chemicals that define their connectivity network. We find that the self-organization can be controlled by the network properties, as exemplified by a case where a collapse instability is achieved by design for self-repelling species. Our findings highlight a possibility for controlling the intricate functions of metabolic networks by taking advantage of the physics of phoretic active matter.
Collapse
Affiliation(s)
- Vincent Ouazan-Reboul
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077 Göttingen, Germany
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077 Göttingen, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Jaime Agudo-Canalejo
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077 Göttingen, Germany
| |
Collapse
|
42
|
Gardi G, Sitti M. On-Demand Breaking of Action-Reaction Reciprocity between Magnetic Microdisks Using Global Stimuli. PHYSICAL REVIEW LETTERS 2023; 131:058301. [PMID: 37595233 PMCID: PMC7615123 DOI: 10.1103/physrevlett.131.058301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/18/2023] [Accepted: 06/21/2023] [Indexed: 08/20/2023]
Abstract
Coupled physical interactions induce emergent collective behaviors of many interacting objects. Nonreciprocity in the interactions generates unexpected behaviors. There is a lack of experimental model system that switches between the reciprocal and nonreciprocal regime on demand. Here, we study a system of magnetic microdisks that breaks action-reaction reciprocity via fluid-mediated hydrodynamic interactions, on demand. Via experiments and simulations, we demonstrate that nonreciprocal interactions generate self-propulsion-like behaviors of a pair of disks; group separation in collective of magnetically nonidentical disks; and decouples a part of the group from the rest. Our results could help in developing controllable microrobot collectives. Our approach highlights the effect of global stimuli in generating nonreciprocal interactions.
Collapse
Affiliation(s)
- Gaurav Gardi
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- Department of Physics, University of Stuttgart, 70569 Stuttgart, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- School of Medicine and College of Engineering, Koç University, 34450 Istanbul, Turkey
- Institute for Biomedical Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
43
|
Ikram M, Peng G, Hassan QU, Basharat M, Li Y, Zeb S, Gao Y. Photoactive and Intrinsically Fuel Sensing Metal-Organic Framework Motors for Tailoring Collective Behaviors of Active-Passive Colloids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301625. [PMID: 37093209 DOI: 10.1002/smll.202301625] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/25/2023] [Indexed: 05/03/2023]
Abstract
Microorganisms display nonequilibrium predator-prey behaviors, such as chasing-escaping and schooling via chemotactic interactions. Even though artificial systems have revealed such biomimetic behaviors, switching between them by control over chemotactic interactions is rare. Here, a spindle-like iron-based metal-organic framework (MOF) colloidal motor which self-propels in glucose and H2 O2 , triggered by UV light is reported. These motors display intrinsic UV light-triggered fuel-dependent chemotactic interactions, which are used to tailor the collective dynamics of active-passive colloidal mixtures. In particular, the mixtures of active MOF motors with passive colloids exhibit distinctive "chasing-escaping" or "schooling" behaviors, depending on glucose or hydrogen peroxide being used as the fuel. The transition in the collective behaviors is attributed to an alteration in the sign of ionic diffusiophoretic interactions, resulting from a change in the ionic clouds produced. This study offers a new strategy on tuning the communication between active and passive colloids, which holds substantial potentials for fundamental research in active matter and practical applications in cargo delivery, chemical sensing, and particle segregation.
Collapse
Affiliation(s)
- Muhammad Ikram
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450000, China
| | - Guogan Peng
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Qadeer Ul Hassan
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Majid Basharat
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yurou Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Shah Zeb
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yongxiang Gao
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
44
|
Sumino Y, Yamashita R, Miyaji K, Ishikawa H, Otani M, Yamamoto D, Okita E, Okamoto Y, Krafft MP, Yoshikawa K, Shioi A. Droplet duos on water display pairing, autonomous motion, and periodic eruption. Sci Rep 2023; 13:12377. [PMID: 37524759 PMCID: PMC10390526 DOI: 10.1038/s41598-023-39094-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 07/20/2023] [Indexed: 08/02/2023] Open
Abstract
Under non-equilibrium conditions, liquid droplets dynamically couple with their milieu through the continuous flux of matter and energy, forming active systems capable of self-organizing functions reminiscent of those of living organisms. Among the various dynamic behaviors demonstrated by cells, the pairing of heterogeneous cell units is necessary to enable collective activity and cell fusion (to reprogram somatic cells). Furthermore, the cyclic occurrence of eruptive events such as necroptosis or explosive cell lysis is necessary to maintain cell functions. However, unlike the self-propulsion behavior of cells, cyclic cellular behavior involving pairing and eruption has not been successfully modeled using artificial systems. Here, we show that a simple droplet system based on quasi-immiscible hydrophobic oils (perfluorodecalin and decane) deposited on water, mimics such complex cellular dynamics. Perfluorodecalin and decane droplet duos form autonomously moving Janus or coaxial structures, depending on their volumes. Notably, the system with a coaxial structure demonstrates cyclic behavior, alternating between autonomous motion and eruption. Despite their complexity, the dynamic behaviors of the system are consistently explained in terms of the spreading properties of perfluorodecalin/decane duplex interfacial films.
Collapse
Affiliation(s)
- Yutaka Sumino
- Department of Applied Physics, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo, 125-8585, Japan.
| | - Ryo Yamashita
- Department of Chemical Engineering and Materials Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto, 610-0321, Japan
| | - Kazuki Miyaji
- Department of Chemical Engineering and Materials Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto, 610-0321, Japan
| | - Hiroaki Ishikawa
- Department of Physics, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Maho Otani
- Department of Chemical Engineering and Materials Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto, 610-0321, Japan
| | - Daigo Yamamoto
- Department of Chemical Engineering and Materials Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto, 610-0321, Japan
| | - Erika Okita
- Department of Chemical Engineering, Osaka Metropolitan University, Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Yasunao Okamoto
- Research Center for Membrane and Film Technology, Kobe University, Kobe, 657-8501, Japan
| | - Marie Pierre Krafft
- Institut Charles Sadron (CNRS), University of Strasbourg, 23 rue du Loess, 67034, Strasbourg, France.
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto, 606-8501, Japan
| | - Akihisa Shioi
- Department of Chemical Engineering and Materials Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto, 610-0321, Japan.
| |
Collapse
|
45
|
Ouazan-Reboul V, Agudo-Canalejo J, Golestanian R. Self-organization of primitive metabolic cycles due to non-reciprocal interactions. Nat Commun 2023; 14:4496. [PMID: 37495589 PMCID: PMC10372013 DOI: 10.1038/s41467-023-40241-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023] Open
Abstract
One of the greatest mysteries concerning the origin of life is how it has emerged so quickly after the formation of the earth. In particular, it is not understood how metabolic cycles, which power the non-equilibrium activity of cells, have come into existence in the first instances. While it is generally expected that non-equilibrium conditions would have been necessary for the formation of primitive metabolic structures, the focus has so far been on externally imposed non-equilibrium conditions, such as temperature or proton gradients. Here, we propose an alternative paradigm in which naturally occurring non-reciprocal interactions between catalysts that can partner together in a cyclic reaction lead to their recruitment into self-organized functional structures. We uncover different classes of self-organized cycles that form through exponentially rapid coarsening processes, depending on the parity of the cycle and the nature of the interaction motifs, which are all generic but have readily tuneable features.
Collapse
Affiliation(s)
- Vincent Ouazan-Reboul
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077, Göttingen, Germany
| | - Jaime Agudo-Canalejo
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077, Göttingen, Germany
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077, Göttingen, Germany.
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, OX1 3PU, Oxford, UK.
| |
Collapse
|
46
|
Birrer SG, Quinnan P, Zarzar LD. Ionic Liquid-in-Water Emulsions Stabilized by Molecular and Polymeric Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37478134 DOI: 10.1021/acs.langmuir.3c00684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Ionic liquids have drawn notable attention for their unique solvent properties and use in applications such as batteries and chemical separations. While many ionic liquids are water-soluble, there are numerous examples of ionic liquids that are sufficiently hydrophobic to remain phase separated from water. However, relatively little is known about the stability and properties of ionic liquid-in-water emulsions. Here, we survey a series of ionic liquid-in-water emulsions stabilized by a range of ionic and nonionic molecular surfactants and polymers. To assess droplet stability and dynamics, we characterize the ionic liquid-surfactant interfacial tension, describe qualitative coarsening rates, and quantify droplet solubilization rate. In some instances, we observe unexpected spontaneous formation of complex double and triple emulsions. Our observations highlight approaches for ionic liquid emulsion formulation and provide insight into how to address challenges surrounding stabilization of ionic liquid-in-water droplets with molecular surfactants.
Collapse
Affiliation(s)
- Samuel G Birrer
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Patrick Quinnan
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Lauren D Zarzar
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
47
|
Zeininger L. Responsive Janus droplets as modular sensory layers for the optical detection of bacteria. Anal Bioanal Chem 2023:10.1007/s00216-023-04838-w. [PMID: 37450000 PMCID: PMC10404245 DOI: 10.1007/s00216-023-04838-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
The field of biosensor development is fueled by innovations in new functional transduction materials and technologies. Material innovations promise to extend current sensor hardware limitations, reduce analysis costs, and ensure broad application of sensor methods. Optical sensors are particularly attractive because they enable sensitive and noninvasive analyte detection in near real-time. Optical transducers convert physical, chemical, or biological events into detectable changes in fluorescence, refractive index, or spectroscopic shifts. Thus, in addition to sophisticated biochemical selector designs, smart transducers can improve signal transmission and amplification, thereby greatly facilitating the practical applicability of biosensors, which, to date, is often hampered by complications such as difficult replication of reproducible selector-analyte interactions within a uniform and consistent sensing area. In this context, stimuli-responsive and optically active Janus emulsions, which are dispersions of kinetically stabilized biphasic fluid droplets, have emerged as a novel triggerable material platform that provides as a versatile and cost-effective alternative for the generation of reproducible, highly sensitive, and modular optical sensing layers. The intrinsic and unprecedented chemical-morphological-optical coupling inside Janus droplets has facilitated optical signal transduction and amplification in various chemo- and biosensor paradigms, which include examples for the rapid and cost-effective detection of major foodborne pathogens. These initial demonstrations resulted in detection limits that rival the capabilities of current commercial platforms. This trend article aims to present a conceptual summary of these initial efforts and to provide a concise and comprehensive overview of the pivotal kinetic and thermodynamic principles that govern the ability of Janus droplets to sensitively and selectively respond to and interact with bacteria.
Collapse
Affiliation(s)
- Lukas Zeininger
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany.
| |
Collapse
|
48
|
Abstract
Active colloids use energy input at the particle level to propel persistent motion and direct dynamic assemblies. We consider three types of colloids animated by chemical reactions, time-varying magnetic fields, and electric currents. For each type, we review the basic propulsion mechanisms at the particle level and discuss their consequences for collective behaviors in particle ensembles. These microscopic systems provide useful experimental models of nonequilibrium many-body physics in which dissipative currents break time-reversal symmetry. Freed from the constraints of thermodynamic equilibrium, active colloids assemble to form materials that move, reconfigure, heal, and adapt. Colloidal machines based on engineered particles and their assemblies provide a basis for mobile robots with increasing levels of autonomy. This review provides a conceptual framework for understanding and applying active colloids to create material systems that mimic the functions of living matter. We highlight opportunities for chemical engineers to contribute to this growing field.
Collapse
Affiliation(s)
- Kyle J M Bishop
- Department of Chemical Engineering, Columbia University, New York, NY, USA;
| | - Sibani Lisa Biswal
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas, USA
| | - Bhuvnesh Bharti
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
49
|
Levin M. Darwin's agential materials: evolutionary implications of multiscale competency in developmental biology. Cell Mol Life Sci 2023; 80:142. [PMID: 37156924 PMCID: PMC10167196 DOI: 10.1007/s00018-023-04790-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/10/2023]
Abstract
A critical aspect of evolution is the layer of developmental physiology that operates between the genotype and the anatomical phenotype. While much work has addressed the evolution of developmental mechanisms and the evolvability of specific genetic architectures with emergent complexity, one aspect has not been sufficiently explored: the implications of morphogenetic problem-solving competencies for the evolutionary process itself. The cells that evolution works with are not passive components: rather, they have numerous capabilities for behavior because they derive from ancestral unicellular organisms with rich repertoires. In multicellular organisms, these capabilities must be tamed, and can be exploited, by the evolutionary process. Specifically, biological structures have a multiscale competency architecture where cells, tissues, and organs exhibit regulative plasticity-the ability to adjust to perturbations such as external injury or internal modifications and still accomplish specific adaptive tasks across metabolic, transcriptional, physiological, and anatomical problem spaces. Here, I review examples illustrating how physiological circuits guiding cellular collective behavior impart computational properties to the agential material that serves as substrate for the evolutionary process. I then explore the ways in which the collective intelligence of cells during morphogenesis affect evolution, providing a new perspective on the evolutionary search process. This key feature of the physiological software of life helps explain the remarkable speed and robustness of biological evolution, and sheds new light on the relationship between genomes and functional anatomical phenotypes.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, 200 Boston Ave. 334 Research East, Medford, MA, 02155, USA.
- Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan St., Boston, MA, 02115, USA.
| |
Collapse
|
50
|
Winkens M, Vilcan A, de Visser PJ, de Graaf FV, Korevaar PA. Orbiting Self-Organization of Filament-Tethered Surface-Active Droplets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206800. [PMID: 36799188 DOI: 10.1002/smll.202206800] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/17/2023] [Indexed: 05/18/2023]
Abstract
Dissipative chemical systems hold the potential to enable life-like behavior in synthetic matter, such as self-organization, motility, and dynamic switching between different states. Here, out-of-equilibrium self-organization is demonstrated by interconnected source and drain droplets at an air-water interface, which display dynamic behavior due to a hydrolysis reaction that generates a concentration gradient around the drain droplets. This concentration gradient interferes with the adhesion of self-assembled amphiphile filaments that grow from a source droplet. The chemical gradient sustains a unique orbiting of the drain droplet, which is proposed to be driven by the selective adhesion of the filaments to the front of the moving droplet, while filaments approaching from behind are destabilized upon contact with the hydrolysis product in the trail of the droplet. Potential applications are foreseen in the transfer of chemical signals amongst communicating droplets in rearranging networks, and the implementation of chemical reactions to drive complex positioning routines in life-like systems.
Collapse
Affiliation(s)
- Mitch Winkens
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Alexandru Vilcan
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Pieter J de Visser
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Freek V de Graaf
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Peter A Korevaar
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| |
Collapse
|