1
|
Del Rio Flores A, Zhai R, Zhang W. Isonitrile biosynthesis by non-heme iron(II)-dependent oxidases/decarboxylases. Methods Enzymol 2024; 704:143-172. [PMID: 39300646 PMCID: PMC11424024 DOI: 10.1016/bs.mie.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The isonitrile group is a compact, electron-rich moiety coveted for its commonplace as a building block and bioorthogonal functionality in synthetic chemistry and chemical biology. Hundreds of natural products containing an isonitrile group with intriguing bioactive properties have been isolated from diverse organisms. Our recent discovery of a conserved biosynthetic gene cluster in some Actinobacteria species highlighted a novel enzymatic pathway to isonitrile formation involving a non-heme iron(II) and α-ketoglutarate-dependent dioxygenase. Here, we focus this chapter on recent advances in understanding and probing the biosynthetic machinery for isonitrile synthesis by non-heme iron(II) and α-ketoglutarate-dependent dioxygenases. We will begin by describing how to harness isonitrile enzymatic machinery through heterologous expression, purification, synthetic strategies, and in vitro biochemical/kinetic characterization. We will then describe a generalizable strategy to probe the mechanism for isonitrile formation by combining various spectroscopic methods. The chapter will also cover strategies to study other enzyme homologs by implementing coupled assays using biosynthetic pathway enzymes. We will conclude this chapter by addressing current challenges and future directions in understanding and engineering isonitrile synthesis.
Collapse
Affiliation(s)
- Antonio Del Rio Flores
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, United States
| | - Rui Zhai
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, United States
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, United States.
| |
Collapse
|
2
|
Strickland KA, Martinez Rodriguez B, Holland AA, Wagner S, Luna-Alva M, Graham DE, Caranto JD. Activity assays of NnlA homologs suggest the natural product N-nitroglycine is degraded by diverse bacteria. Beilstein J Org Chem 2024; 20:830-840. [PMID: 38655556 PMCID: PMC11035981 DOI: 10.3762/bjoc.20.75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/04/2024] [Indexed: 04/26/2024] Open
Abstract
Linear nitramines (R-N(R')NO2; R' = H or alkyl) are toxic compounds, some with environmental relevance, while others are rare natural product nitramines. One of these natural product nitramines is N-nitroglycine (NNG), which is produced by some Streptomyces strains and exhibits antibiotic activity towards Gram-negative bacteria. An NNG degrading heme enzyme, called NnlA, has recently been discovered in the genome of Variovorax sp. strain JS1663 (Vs NnlA). Evidence is presented that NnlA and therefore, NNG degradation activity is widespread. To achieve this objective, we characterized and tested the NNG degradation activity of five Vs NnlA homologs originating from bacteria spanning several classes and isolated from geographically distinct locations. E. coli transformants containing all five homologs converted NNG to nitrite. Four of these five homologs were isolated and characterized. Each isolated homolog exhibited similar oligomerization and heme occupancy as Vs NnlA. Reduction of this heme was shown to be required for NnlA activity in each homolog, and each homolog degraded NNG to glyoxylate, NO2- and NH4+ in accordance with observations of Vs NnlA. It was also shown that NnlA cannot degrade the NNG analog 2-nitroaminoethanol. The combined data strongly suggest that NnlA enzymes specifically degrade NNG and are found in diverse bacteria and environments. These results imply that NNG is also produced in diverse environments and NnlA may act as a detoxification enzyme to protect bacteria from exposure to NNG.
Collapse
Affiliation(s)
- Kara A Strickland
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA
| | | | - Ashley A Holland
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA
| | - Shelby Wagner
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA
| | - Michelle Luna-Alva
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA
| | - David E Graham
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jonathan D Caranto
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
3
|
Gui C, Kalkreuter E, Liu YC, Li G, Steele AD, Yang D, Chang C, Shen B. Cofactorless oxygenases guide anthraquinone-fused enediyne biosynthesis. Nat Chem Biol 2024; 20:243-250. [PMID: 37945897 DOI: 10.1038/s41589-023-01476-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023]
Abstract
The anthraquinone-fused enediynes (AFEs) combine an anthraquinone moiety and a ten-membered enediyne core capable of generating a cytotoxic diradical species. AFE cyclization is triggered by opening the F-ring epoxide, which is also the site of the most structural diversity. Previous studies of tiancimycin A, a heavily modified AFE, have revealed a cryptic aldehyde blocking installation of the epoxide, and no unassigned oxidases could be predicted within the tnm biosynthetic gene cluster. Here we identify two consecutively acting cofactorless oxygenases derived from methyltransferase and α/β-hydrolase protein folds, TnmJ and TnmK2, respectively, that are responsible for F-ring tailoring in tiancimycin biosynthesis by comparative genomics. Further biochemical and structural characterizations reveal that the electron-rich AFE anthraquinone moiety assists in catalyzing deformylation, epoxidation and oxidative ring cleavage without exogenous cofactors. These enzymes therefore fill important knowledge gaps for the biosynthesis of this class of molecules and the underappreciated family of cofactorless oxygenases.
Collapse
Affiliation(s)
- Chun Gui
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Edward Kalkreuter
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Yu-Chen Liu
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Gengnan Li
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Andrew D Steele
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Dong Yang
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
- Natural Products Discovery Center, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Changsoo Chang
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Ben Shen
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA.
- Natural Products Discovery Center, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA.
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA.
| |
Collapse
|
4
|
Stierhof M, Myronovskyi M, Zapp J, Luzhetskyy A. Heterologous Production and Biosynthesis of Threonine-16:0dioic acids with a Hydroxamate Moiety. JOURNAL OF NATURAL PRODUCTS 2023; 86:2258-2269. [PMID: 37728876 PMCID: PMC10616846 DOI: 10.1021/acs.jnatprod.3c00097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Indexed: 09/21/2023]
Abstract
Dereplication and genome mining in Streptomyces aureus LU18118 combined with heterologous expression of selected biosynthetic gene clusters (BGCs) led to the discovery of various threonine-16:0dioic acids named lipothrenins. Lipothrenins consist of the core elements l-Thr, d-allo-Thr, or Dhb, which are linked to hexadecanedioic acid by an amide bond. The main compound lipothrenin A (1) carries the N-hydroxylated d-allo form of threonine and expresses a siderophore activity. The lipothrenin BGC was analyzed by a series of deletion experiments. As a result, a variety of interesting genes involved in the recruitment and selective activation of linear 16:0dioic acids, amide bond formation, and the epimerization of l-Thr were revealed. Furthermore, a diiron N-oxygenase was identified that may be directly involved in the monooxygenation of the amide bond. This is divergent from the usual hydroxamate formation mechanism in siderophores, which involves hydroxylation of the free amine prior to amide bond formation. Siderophore activity was observed for all N-hydroxylated lipothrenins by application of the CAS assay method.
Collapse
Affiliation(s)
- Marc Stierhof
- Department
of Pharmaceutical Biotechnology and Department of Pharmaceutical Biology, Saarland University, 66123 Saarbruecken, Germany
| | - Maksym Myronovskyi
- Department
of Pharmaceutical Biotechnology and Department of Pharmaceutical Biology, Saarland University, 66123 Saarbruecken, Germany
| | - Josef Zapp
- Department
of Pharmaceutical Biotechnology and Department of Pharmaceutical Biology, Saarland University, 66123 Saarbruecken, Germany
| | - Andriy Luzhetskyy
- Department
of Pharmaceutical Biotechnology and Department of Pharmaceutical Biology, Saarland University, 66123 Saarbruecken, Germany
- Helmholtz
Institute for Pharmaceutical Research Saarland, Saarland University, 66123 Saarbruecken, Germany
| |
Collapse
|
5
|
Komaki H, Tamura T, Igarashi Y. Taxonomic Positions and Secondary Metabolite-Biosynthetic Gene Clusters of Akazaoxime- and Levantilide-Producers. Life (Basel) 2023; 13:life13020542. [PMID: 36836900 PMCID: PMC9967187 DOI: 10.3390/life13020542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Micromonospora sp. AKA109 is a producer of akazaoxime and A-76356, whereas Micromonospora sp. AKA38 is that of levantilide C. We aimed to clarify their taxonomic positions and identify biosynthetic gene clusters (BGCs) of these compounds. In 16S rRNA gene and DNA gyrase subunit B gene (gyrB) sequence analyses, strains AKA109 and AKA38 were the most closely related to Micromonospora humidisoli MMS20-R2-29T and Micromonospora schwarzwaldensis HKI0641T, respectively. Although Micromonospora sp. AKA109 was identified as M. humidisoli by the gyrB sequence similarity and DNA-DNA relatedness based on whole genome sequences, Micromonospora sp. AKA38 was classified to a new genomospecies. M. humidisoli AKA109 harbored six type-I polyketide synthase (PKS), one type-II PKS, one type-III PKS, three non-ribosomal peptide synthetase (NRPS) and three hybrid PKS/NRPS gene clusters, among which the BGC of akazaoxime and A-76356 was identified. These gene clusters are conserved in M. humidisoli MMS20-R2-29T. Micromonospora sp. AKA38 harbored two type-I PKS, one of which was responsible for levantilide C, one type-II PKS, one type-III PKS, two NRPS and five hybrid PKS/NRPS gene clusters. We predicted products derived from these gene clusters through bioinformatic analyses. Consequently, these two strains are revealed to be promising sources for diverse non-ribosomal peptide and polyketide compounds.
Collapse
Affiliation(s)
- Hisayuki Komaki
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), Chiba 292-0818, Japan
- Correspondence:
| | - Tomohiko Tamura
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), Chiba 292-0818, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Toyama 939-0398, Japan
| |
Collapse
|
6
|
Guo YY, Tian ZH, Wang L, Lai ZD, Li L, Li YQ. Chemoenzymatic Synthesis of Phenol Diarylamine Using Non-Heme Diiron N-Oxygenase. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Yuan-Yang Guo
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Ze-Hua Tian
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Luying Wang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Zheng-De Lai
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Lingjun Li
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Yong-Quan Li
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
7
|
Ushimaru R, Abe I. Unusual Dioxygen-Dependent Reactions Catalyzed by Nonheme Iron Enzymes in Natural Product Biosynthesis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- ACT-X, Japan Science and Technology Agency (JST), Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
8
|
Zhang H, Zhang C, Li Q, Ma J, Ju J. Metabolic Blockade-Based Genome Mining Reveals Lipochain-Linked Dihydro-β-alanine Synthetases Involved in Autucedine Biosynthesis. Org Lett 2022; 24:5535-5540. [PMID: 35876054 DOI: 10.1021/acs.orglett.2c01957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huaran Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Rd., Nansha District, Guangzhou 511458, China
- College of Oceanology, University of Chinese Academy of Sciences, Qingdao 266400, China
| | - Chunyan Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qinglian Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Rd., Nansha District, Guangzhou 511458, China
- College of Oceanology, University of Chinese Academy of Sciences, Qingdao 266400, China
| | - Junying Ma
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Rd., Nansha District, Guangzhou 511458, China
- College of Oceanology, University of Chinese Academy of Sciences, Qingdao 266400, China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Rd., Nansha District, Guangzhou 511458, China
- College of Oceanology, University of Chinese Academy of Sciences, Qingdao 266400, China
| |
Collapse
|
9
|
Del Rio Flores A, Kastner DW, Du Y, Narayanamoorthy M, Shen Y, Cai W, Vennelakanti V, Zill NA, Dell LB, Zhai R, Kulik HJ, Zhang W. Probing the Mechanism of Isonitrile Formation by a Non-Heme Iron(II)-Dependent Oxidase/Decarboxylase. J Am Chem Soc 2022; 144:5893-5901. [PMID: 35254829 PMCID: PMC8986608 DOI: 10.1021/jacs.1c12891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The isonitrile moiety is an electron-rich functionality that decorates various bioactive natural products isolated from diverse kingdoms of life. Isonitrile biosynthesis was restricted for over a decade to isonitrile synthases, a family of enzymes catalyzing a condensation reaction between l-Trp/l-Tyr and ribulose-5-phosphate. The discovery of ScoE, a non-heme iron(II) and α-ketoglutarate-dependent dioxygenase, demonstrated an alternative pathway employed by nature for isonitrile installation. Biochemical, crystallographic, and computational investigations of ScoE have previously been reported, yet the isonitrile formation mechanism remains obscure. In the present work, we employed in vitro biochemistry, chemical synthesis, spectroscopy techniques, and computational simulations that enabled us to propose a plausible molecular mechanism for isonitrile formation. Our findings demonstrate that the ScoE reaction initiates with C5 hydroxylation of (R)-3-((carboxymethyl)amino)butanoic acid to generate 1, which undergoes dehydration, presumably mediated by Tyr96 to synthesize 2 in a trans configuration. (R)-3-isocyanobutanoic acid is finally generated through radical-based decarboxylation of 2, instead of the common hydroxylation pathway employed by this enzyme superfamily.
Collapse
Affiliation(s)
- Antonio Del Rio Flores
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, United States 94720
| | - David W. Kastner
- Department of Bioengineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States 02139
| | - Yongle Du
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, United States 94720
| | - Maanasa Narayanamoorthy
- Department of Chemistry, University of California, Berkeley, California, United States 94720
| | - Yuanbo Shen
- Department of Chemistry, University of California, Berkeley, California, United States 94720
| | - Wenlong Cai
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, United States 94720
| | - Vyshnavi Vennelakanti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States 02139
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States 02139
| | - Nicholas A. Zill
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, United States 94720
| | - Luisa B. Dell
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, United States 94720
| | - Rui Zhai
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, United States 94720
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States 02139
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, United States 94720
- Chan Zuckerberg Biohub, San Francisco, California, United States 94158
| |
Collapse
|