1
|
Li X, Waser J. Forging 1,1'-Bicyclopropenyls by Synergistic Au/Ag Dual-Catalyzed Cyclopropenyl Cross-Coupling. J Am Chem Soc 2024; 146:29712-29719. [PMID: 39424282 PMCID: PMC11528445 DOI: 10.1021/jacs.4c10996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
1,1'-Bicyclopropenyl is a constitutional isomer of benzene comprising two coupled cyclopropene units with the endocyclic double bonds in conjugation. Due to the intrinsic high strain energy, it remains a long-standing challenge to prepare 1,1'-bicyclopropenyl derivatives, particularly multisubstituted, nonsymmetrical ones, in an efficient and modular manner. Herein a straightforward Au/Ag bimetallic-catalyzed cyclopropenyl cross-coupling has been developed, providing a robust and versatile strategy for the rapid assembly of symmetrical and unsymmetrical 1,1'-bicyclopropenyl derivatives from cyclopropenyl benziodoxoles (CpBXs) and terminal cyclopropenes. Advantages of this strategy include tolerance to a wide range of synthetically useful functional groups, mild reaction conditions, and a simple catalytic system. The obtained 1,1'-bicyclopropenyl derivatives were shown to be valuable synthetic intermediates through selective downstream manipulations.
Collapse
Affiliation(s)
- Xiangdong Li
- Laboratory of Catalysis and
Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Jérôme Waser
- Laboratory of Catalysis and
Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| |
Collapse
|
2
|
Tsuji Y, Okazawa K, Tatsumi T, Yoshizawa K. σ Interference: Through-Space and Through-Bond Dichotomy. J Am Chem Soc 2024. [PMID: 39448234 DOI: 10.1021/jacs.4c09771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Dividing orbital interactions into through-space (TS) and through-bond (TB) modes is valuable for understanding various molecular properties. In this paper, we elucidate how the quantum interference phenomenon known as σ interference in electron transport through σ systems arises from TS and TB interactions. We performed electron transport calculations using a combination of density functional theory and nonequilibrium Green's function methods, focusing on ethylenediamine, a classical molecule that effectively highlights the contrast between TS and TB interactions. Our results confirm that destructive σ interference occurs in the syn and gauche conformers of this molecule. To further investigate both TS and TB interactions, we employed two analytical methods: the fragment molecular orbital (FMO) method, which captures the effects of both TS and TB interactions, and the chemical graph theory method, which specializes in TB interactions. The FMO analysis demonstrated that TB interactions lead to the characteristic distribution and energy level alignment of the frontier orbitals. Additionally, it was clarified that a change in TS interaction, due to a variation in the dihedral angle of the molecule, alters the energy gap between these orbitals, resulting in the manifestation of σ interference in the syn and gauche conformers, but not in the trans conformer. The chemical graph theory analysis based on the ladder C model, aimed at exploring the topological origin of σ interference from the network of TB interactions, revealed that σ interference is caused by the cancellation between the walk associated with geminal interactions (σ-conjugation) and the one related to vicinal interaction (σ-hyperconjugation). Notably, it was found that the vicinal interaction, which changes sign with the dihedral angle, has a decisive influence on whether this cancellation occurs. These findings clarify that σ interference arises from the interplay between TS and TB interactions. This insight will be valuable for designing molecular systems that utilize σ interference.
Collapse
Affiliation(s)
- Yuta Tsuji
- Faculty of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| | - Kazuki Okazawa
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Toshinobu Tatsumi
- Faculty of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| | - Kazunari Yoshizawa
- Fukui Institute for Fundamental Chemistry, Kyoto University, Sakyo-ku, Kyoto 606-8103, Japan
| |
Collapse
|
3
|
Long YJ, Shen JH, Wei Y, Shi M. Substrate-Controlled [8 + 3] Cycloaddition of Tropsulfimides and Tropones with Zwitterionic Allenyl Palladium Species Derived from Vinylidenecyclopropane-diesters. J Org Chem 2024; 89:14831-14850. [PMID: 39365947 DOI: 10.1021/acs.joc.4c01579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
A palladium-catalyzed regioselective [8 + 3] cycloaddition of tropsulfimides and tropones with vinylidenecyclopropane-diesters (VDCP-diesters) has been disclosed in this paper, affording decahydro-1H-cyclohepta[b]pyridine derivatives bearing an allene moiety or decahydro-1H-cyclohepta[b]pyran derivatives having a conjugated diene unit in moderate to good yields. The reactions proceed through a zwitterionic allenyl palladium species derived from VDCP-diesters. The substrate scopes have been investigated and the plausible reaction mechanisms have also been proposed according to the previous work, the first captured zwitterionic Pd-allenyl intermediate, and control experiments.
Collapse
Affiliation(s)
- Yong-Jie Long
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Jia-Hao Shen
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| |
Collapse
|
4
|
Preethalayam P, Roldao JC, Castet F, Casanova D, Radenković S, Ottosson H. 3,4-Dimethylenecyclobutene: A Building Block for Design of Macrocycles with Excited State Aromatic Low-Lying High-Spin States. Chemistry 2024; 30:e202303549. [PMID: 38433097 DOI: 10.1002/chem.202303549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/25/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
3,4-Dimethylenecyclobutene (DMCB) is an unusual isomer of benzene. Motivated by recent synthetic progress to substituted derivatives of this scaffold, we carried out a theoretical and computational analysis with a particular focus on the extent of (anti)aromatic character in the lowest excited states of different multiplicities. We found that the parent DMCB is non-aromatic in its singlet ground state (S0), lowest triplet state (T1), and lowest singlet excited state (S1), while it is aromatic in its lowest quintet state (Q1) as this state is represented by a triplet multiplicity cyclobutadiene (CBD) ring and two uncoupled same-spin methylene radicals. Interestingly, the Q1 state, despite having four unpaired electrons, is placed merely 4.8 eV above S0, and there is a corresponding singlet tetraradical 0.16 eV above. The DMCB is potentially a highly useful structural motif for the design of larger molecular entities with interesting optoelectronic properties. Here, we designed macrocycles composed of fused DMCB units, and according to our computations, two of these have low-lying nonet states (i. e., octaradical states) at energies merely 2.40 and 0.37 eV above their S0 states as a result of local Hückel- and Baird-aromatic character of individual 6π- and 4π-electron monocycles.
Collapse
Affiliation(s)
| | - Juan Carlos Roldao
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
- Donostia International Physics Center (DIPC), 20018, Donostia, Euskadi, Spain
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33405 Cedex, Talence, France
| | - Frédéric Castet
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33405 Cedex, Talence, France
| | - David Casanova
- Donostia International Physics Center (DIPC), 20018, Donostia, Euskadi, Spain
- IKERBASQUE - Basque Foundation for Science, 48009, Bilbao, Euskadi, Spain
| | - Slavko Radenković
- University of Kragujevac, Faculty of Science, P. O. Box 60, 34000, Kragujevac, Serbia
| | - Henrik Ottosson
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Zhou BC, Chen BZ, Song TT, Yang Y, Zhang LM, Ji DW, Wan B, Chen QA. Hydrated [3+2] Cyclotelomerization of Butafulvenes to Create Multiple Contiguous Fully Substituted Carbon Centers. Angew Chem Int Ed Engl 2024; 63:e202317299. [PMID: 38105386 DOI: 10.1002/anie.202317299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 12/19/2023]
Abstract
The construction of multiple continuous fully substituted carbon centers, which serve as unique structural motif in natural products, is a challenging topic in organic synthesis. Herein, we report a hydrated [3+2] cyclotelomerization of butafulvenes to create contiguous fully substituted carbon backbone. In the presence of scandium triflate, all-carbon skeleton with spiro fused tricyclic ring can be constructed in high diastereoselectivity by utilizing butafulvene as the synthon. Mechanistic studies suggest that this atom-economic reaction probably proceeds through a synergistic process containing butafulvenes dimerization and nucleophilic attack by water. In addition, the tricyclic product can undergo a series of synthetic derivatizations, which highlights the potential applications of this strategy. The recyclability of Sc(OTf)3 has also been demonstrated to show its robust performance in this hydrated cyclotelomerization.
Collapse
Affiliation(s)
- Bo-Chao Zhou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing-Zhi Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting-Ting Song
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Yang Yang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Li-Ming Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ding-Wei Ji
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Boshun Wan
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Song TT, Mei YK, Liu Y, Wang XY, Guo SY, Ji DW, Wan B, Yuan W, Chen QA. Construction of Bridged Benzazepines via Photo-Induced Dearomatization. Angew Chem Int Ed Engl 2024; 63:e202314304. [PMID: 38009446 DOI: 10.1002/anie.202314304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 11/28/2023]
Abstract
Bridged benzazepine scaffolds, possessing unique structural and physicochemical activities, are widespread in various natural products and drugs. The construction of these skeletons often requires elaborate synthetic effort with low efficiency. Herein, we develop a simple and divergent approach for constructing various bridged benzazepines by a photocatalytic intermolecular dearomatization of naphthalene derivatives with readily available α-amino acids. The bridged motif is created via a cascade sequence involving photocatalytic 1,4-hydroaminoalkylation, alkene isomerization and cyclization. Interestingly, the diastereoselectivity can be regulated through different reaction modes in the cyclization step. Moreover, aminohydroxylation and its further bromination have also been demonstrated to access highly functionalized bridged benzazepines. Preliminary mechanistic studies have been performed to get insights into the mechanism. This method provides a divergent synthetic approach for construction of highly functionalized bridged benzazepines, which have been otherwise difficult to access.
Collapse
Affiliation(s)
- Ting-Ting Song
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Yong-Kang Mei
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Yu Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi-Yu Guo
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Ding-Wei Ji
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Boshun Wan
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Weiming Yuan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Zhao H, Lin Y, Jiang M, Su B. A general catalytic synthetic strategy for highly strained methylenecyclobutanes and spiromethylenecyclobutanes. Chem Sci 2023; 14:7897-7904. [PMID: 37502320 PMCID: PMC10370550 DOI: 10.1039/d3sc01103h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/09/2023] [Indexed: 07/29/2023] Open
Abstract
Highly strained methylenecyclobutanes (MCBs) are intriguing scaffolds in synthetic chemistry and drug discovery, but there is no such strategy that enables the synthesis of structurally diverse MCBs with defined stereochemistry. We report a general synthetic strategy for (boromethylene)cyclobutanes (BMCBs) and spiro-BMCBs by a challenging Cu-catalyzed highly chemo-, stereo-, and regioselective borylative cyclization of aliphatic alkynes. This strategy not only enables the installation of various functionalities at each site on the MCB skeleton with unambiguous stereochemistry but also introduces a versatile boromethylene unit that is readily transformable to a wide range of new functional groups; these features significantly expand the structural diversity of MCBs and are particularly valuable in drug discovery. The concise and divergent total syntheses of four cyclobutane-containing natural products were achieved from one common BMCB obtained by this strategy. The origin of the high regioselectivity in the borylcupration of alkynes and the high efficiency of the strained ring cyclization was also studied.
Collapse
Affiliation(s)
- Haotian Zhao
- State Key Laboratory of Medical Chemical Biology, College of Pharmacy, Nankai University 38 Tongyan Road, Jinnan District Tianjin 300350 P. R. China
| | - Yu Lin
- State Key Laboratory of Medical Chemical Biology, College of Pharmacy, Nankai University 38 Tongyan Road, Jinnan District Tianjin 300350 P. R. China
| | - Mingyu Jiang
- State Key Laboratory of Medical Chemical Biology, College of Pharmacy, Nankai University 38 Tongyan Road, Jinnan District Tianjin 300350 P. R. China
| | - Bo Su
- State Key Laboratory of Medical Chemical Biology, College of Pharmacy, Nankai University 38 Tongyan Road, Jinnan District Tianjin 300350 P. R. China
| |
Collapse
|
8
|
Li C, Zhou Z, Ma S. A Pd-catalyzed highly selective three-component protocol for trisubstituted allenes. Chem Sci 2023; 14:7709-7715. [PMID: 37476716 PMCID: PMC10355113 DOI: 10.1039/d3sc01849k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
Herein we report the first example of a Pd-catalyzed highly selective three-component reaction of alkynyl-1,4-diol dicarbonates, organoboronic acids, and malonate anions for the efficient synthesis of trisubstituted 2,3-allenyl malonates not readily available by the known protocols. The reaction demonstrates an excellent regio- and chemo-selectivity for both the oxidative addition referring to the two C-O bonds and the subsequent coupling with the nucleophile with a remarkable functional group compatibility. A series of control experiments confirm a unique mechanism involving β-O elimination forming alka-1,2,3-triene and the subsequent insertion of its terminal C[double bond, length as m-dash]C bond into the Ar-Pd bond.
Collapse
Affiliation(s)
- Can Li
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhengnan Zhou
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Shengming Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University 220 Handan Lu Shanghai 200433 P. R. China
| |
Collapse
|
9
|
Kelleghan AV, Bulger AS, Witkowski DC, Garg NK. Strain-promoted reactions of 1,2,3-cyclohexatriene and its derivatives. Nature 2023; 618:748-754. [PMID: 37075803 PMCID: PMC10460091 DOI: 10.1038/s41586-023-06075-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Since 18251, compounds with the molecular formula C6H6-most notably benzene-have been the subject of rigorous scientific investigation2-7. Of these compounds, 1,2,3-cyclohexatriene has been largely overlooked. This strained isomer is substantially (approximately 100 kcal mol-1) higher in energy compared with benzene and, similar to its relatives benzyne and 1,2-cyclohexadiene, should undergo strain-promoted reactions. However, few experimental studies of 1,2,3-cyclohexatriene are known8-12. Here we demonstrate that 1,2,3-cyclohexatriene and its derivatives participate in a host of reaction modes, including diverse cycloadditions, nucleophilic additions and σ-bond insertions. Experimental and computational studies of an unsymmetrical derivative of 1,2,3-cyclohexatriene demonstrate the potential for highly selective reactions of strained trienes despite their high reactivity and short lifetimes. Finally, the integration of 1,2,3-cyclohexatrienes into multistep syntheses demonstrates their use in rapidly assembling topologically and stereochemically complex molecules. Collectively, these efforts should enable further investigation of the strained C6H6 isomer 1,2,3-cyclohexatriene and its derivatives, as well as their application in the synthesis of important compounds.
Collapse
Affiliation(s)
- Andrew V Kelleghan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ana S Bulger
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Dominick C Witkowski
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Neil K Garg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
10
|
An unexpected reaction of indole derivatives and EAA catalyzed with InCl3. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
11
|
Zhang WS, Ji DW, Li Y, Zhang XX, Mei YK, Chen BZ, Chen QA. Nickel-catalyzed divergent Mizoroki-Heck reaction of 1,3-dienes. Nat Commun 2023; 14:651. [PMID: 36746964 PMCID: PMC9902549 DOI: 10.1038/s41467-023-36237-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 01/19/2023] [Indexed: 02/08/2023] Open
Abstract
Developing efficient strategies to realize divergent arylation of dienes has been a long-standing synthetic challenge. Herein, a nickel catalyzed divergent Mizoroki-Heck reaction of 1,3-dienes has been demonstrated through the regulation of ligands and additives. In the presence of Mn/NEt3, the Mizoroki-Heck reaction of dienes delivers linear products under Ni(dppe)Cl2 catalysis in high regio- and stereoselectivities. With the help of catalytic amount of organoboron and NaF, the use of bulky ligand IPr diverts the selectivity from linear products to branched products. Highly aryl-substituted compounds can be transformed from dispersive Mizoroki-Heck products programmatically. Preliminary experimental studies are carried out to elucidate the role of additives.
Collapse
Affiliation(s)
- Wei-Song Zhang
- grid.9227.e0000000119573309Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 People’s Republic of China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Ding-Wei Ji
- grid.9227.e0000000119573309Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 People’s Republic of China
| | - Ying Li
- grid.9227.e0000000119573309Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 People’s Republic of China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Xiang-Xin Zhang
- grid.9227.e0000000119573309Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 People’s Republic of China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Yong-Kang Mei
- grid.9227.e0000000119573309Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 People’s Republic of China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Bing-Zhi Chen
- grid.9227.e0000000119573309Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 People’s Republic of China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China. .,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
12
|
Ji DW, Hu YC, Min XT, Liu H, Zhang WS, Li Y, Zhou YJ, Chen QA. Skeleton-Reorganizing Coupling Reactions of Cycloheptatriene and Cycloalkenones with Amines. Angew Chem Int Ed Engl 2023; 62:e202213074. [PMID: 36372782 DOI: 10.1002/anie.202213074] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Indexed: 11/15/2022]
Abstract
Skeletal reorganization reactions have emerged as an intriguing tool for converting readily available compounds into complicated molecules inaccessible by traditional methods. Herein, we report a unique skeleton-reorganizing coupling reaction of cycloheptatriene and cycloalkenones with amines. In the presence of Rh/acid catalysis, cycloheptatriene can selectively couple with anilines to deliver fused 1,2-dihydroquinoline products. Mechanistic studies indicate that the retro-Mannich type ring-opening and subsequent intramolecular Povarov reaction account for the ring reorganization. Our mechanistic studies also revealed that skeleton-reorganizing amination between anilines and cycloalkenones can be achieved with acid. The synthetic utilization of this skeleton-reorganizing coupling reaction was showcased with a gram-scale reaction, synthetic derivatizations, and the late-stage modification of commercial drugs.
Collapse
Affiliation(s)
- Ding-Wei Ji
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yan-Cheng Hu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xiang-Ting Min
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Heng Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei-Song Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongjin J Zhou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
13
|
Yu SH, Gong TJ, Fu Y. Synthesis of conjugated bisallenes by cooperative Cu/Pd-catalysed borylallenylation of 2-trifluoromethyl-1,3-enynes. Chem Commun (Camb) 2022; 58:12871-12874. [DOI: 10.1039/d2cc03745a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a cooperative Cu/Pd-catalysed borylallenylation of 2-trifluoromethyl-1,3-enynes with diboron reagents and propargylic carbonates access to a series of conjugated bisallenes with excellent functional group compatibility.
Collapse
Affiliation(s)
- Shang-Hai Yu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, P. R. China
| | - Tian-Jun Gong
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, P. R. China
| | - Yao Fu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, P. R. China
| |
Collapse
|