1
|
Dong B, Qi W, Chen Y, Zhang Y, Gu S, Zhao J, Zhou Q, Shen J, Xie L. Stabilized Carbon Radical-Mediated Assembly of Arylthianthrenium Salts, Alkenes and Amino Acid/Peptide Derivatives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411579. [PMID: 39573977 PMCID: PMC11727398 DOI: 10.1002/advs.202411579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/07/2024] [Indexed: 01/14/2025]
Abstract
Efficiently assembling amino acids and peptides with bioactive molecules facilitates the modular and streamlined synthesis of a diverse library of peptide-related compounds. Particularly notable is their application in pharmaceutical development, leveraging site-selective late-stage functionalization. Here, a visible light-induced three-component reaction involving arylthianthrenium salts, amino acid/peptide derivatives, and alkenes are introduced. This approach utilizes captodatively-stabilized carbon radicals to enable radical-radical C─C coupling, effectively constructing complex bioactive molecules. This method offers a promising alternative route for modular synthesis of peptide-derived bio-relevant compounds.
Collapse
Affiliation(s)
- Bo Dong
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
| | - Weiguan Qi
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
| | - Yifeng Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
| | - Yufei Zhang
- State Key Laboratory of Natural MedicinesDepartment of Organic ChemistryChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Shiyu Gu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
| | - Jianlin Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
| | - Qingfa Zhou
- State Key Laboratory of Natural MedicinesDepartment of Organic ChemistryChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
- Jiangsu Engineering Research Center of Interfacial ChemistryNanjing UniversityNanjing210023P. R. China
| | - Lan‐Gui Xie
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
| |
Collapse
|
2
|
Pu T, Wu SH, Cai L, Pu W, Yuan Y, Zhuang Z, Yang S, Wang L. Regio- and Stereoselective β-Sulfonylamination of Alkynes via Photosensitized Bifunctional N-S Bond Homolysis. Org Lett 2024; 26:10604-10610. [PMID: 39629853 DOI: 10.1021/acs.orglett.4c04091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Nitrogen central radicals (NCRs) are versatile synthetic intermediates for creating functional nitrogen-containing molecules. Herein, a photosensitized β-sulfonylamination of terminal alkynes as well as acetylene has been established by employing N-sulfonyl heteroaromatics as bifunctional reagents (BFRs) to efficiently deliver versatile (E)-β-sulfonylvinylamines with excellent regio- and stereoselectivities. Mechanistic studies suggest a base-accelerated energy transfer (EnT) photocatalysis involving aromatic NCR formation, radical addition to alkynes, and sulfonylation processes.
Collapse
Affiliation(s)
- Tonglv Pu
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Si-Hai Wu
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Liuyan Cai
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Wenjia Pu
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Yilong Yuan
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Zhenjing Zhuang
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Shumin Yang
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Lianhui Wang
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| |
Collapse
|
3
|
Kim D, Ju H, Lee W, Hong S. Photocatalytic 1,3-oxyheteroarylation of aryl cyclopropanes with azine N-oxides. Chem Sci 2024; 15:20433-20439. [PMID: 39583564 PMCID: PMC11580519 DOI: 10.1039/d4sc06723a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024] Open
Abstract
Cyclopropanes, valuable C3 building blocks in organic synthesis, possess high strain energy and inherent stability. We present an efficient, environmentally benign 1,3-oxyheteroarylation of aryl cyclopropanes using azine N-oxides as bifunctional reagents under visible light irradiation. This metal-free method yields β-pyridyl ketones under mild conditions. Mechanistic studies reveal a photo-induced radical pathway involving single-electron oxidation of both aryl cyclopropanes and azine N-oxides, followed by stepwise ring opening. The dual oxidation mechanism accommodates diverse cyclopropane and azine N-oxide combinations based on their oxidation potentials. This green chemistry method enhances the synthetic utility of aryl cyclopropanes while introducing an efficient strategy for their difunctionalization. The methodology aligns with sustainable organic synthesis principles, offering an environmentally conscious route to valuable synthetic intermediates.
Collapse
Affiliation(s)
- Doyoung Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Korea
| | - Hyewon Ju
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Korea
| | - Wooseok Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Korea
| |
Collapse
|
4
|
Biswas P, Maity A, Figgins MT, Powers DC. Aziridine Group Transfer via Transient N-Aziridinyl Radicals. J Am Chem Soc 2024; 146:30796-30801. [PMID: 39497240 PMCID: PMC11565639 DOI: 10.1021/jacs.4c14169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/14/2024]
Abstract
Aziridines are the smallest nitrogen-containing heterocycles. Strain-enhanced electrophilicity renders aziridines useful synthetic intermediates and gives rise to biological activity. Classical aziridine syntheses─based on either [2 + 1] cycloadditions or intramolecular substitution chemistry─assemble aziridines from acyclic precursors. Here, we introduce N-aziridinyl radicals as a reactive intermediate that enables the transfer of intact aziridine fragments in organic synthesis. Transient N-aziridinyl radicals are generated by the reductive activation of N-pyridinium aziridines and are directly characterized by spin-trapped EPR spectroscopy. In the presence of O2, N-aziridinyl radicals are added to styrenyl olefins to afford 1,2-hydroxyaziridination products. These results establish aziridinyl radicals as new reactive intermediates in synthetic chemistry and demonstrate aziridine group transfer as a viable synthetic disconnection.
Collapse
Affiliation(s)
- Promita Biswas
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Asim Maity
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Matthew T. Figgins
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David C. Powers
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
5
|
Tang Y, Huang M, Yan Z, Tang S, Zhang X, Sun J. Oxy-pyridinium Ylides Mediated 1,4-Pyridyl/Aryl Translocation. Org Lett 2024. [PMID: 39526936 DOI: 10.1021/acs.orglett.4c03656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Molecular rearrangement via carbene transfer is a powerful tool to access molecular diversity. Herein, we describe an efficient approach to selective pyridyl/aryl relocation via a rhodium-catalyzed aminoarylation of diazo compounds, providing a promising strategy to access ortho-pyridyl N-alkylated pyridone scaffolds in a single operation. This reaction features the novel reactivity of oxy-pyridinium ylide, rhodium-associated five-membered transition state, and 1,4-pyridyl/aryl relocation. A computational study discloses the initial oxy-pyridinium ylide formation, keto-enol tautomerization, and 1,4-pyridyl migration to complete the whole rearrangement.
Collapse
Affiliation(s)
- Yaping Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Meirong Huang
- Shenzhen Bay Laboratory, Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, People's Republic of China
| | - Zichun Yan
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Shengbiao Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Xinhao Zhang
- Shenzhen Bay Laboratory, Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, People's Republic of China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| |
Collapse
|
6
|
Cai Y, Roy TK, Zähringer TJB, Lansbergen B, Kerzig C, Ritter T. Arylthianthrenium Salts for Triplet Energy Transfer Catalysis. J Am Chem Soc 2024; 146:30474-30482. [PMID: 39466322 PMCID: PMC11544621 DOI: 10.1021/jacs.4c11099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024]
Abstract
Sigma bond cleavage through electronically excited states allows synthetically useful transformations with two radical species. Direct excitation of simple aryl halides to form both aryl and halogen radicals necessitates UV-C light, so undesired side reactions are often observed and specific equipment is required. Moreover, only aryl halides with extended π systems and comparatively low triplet energy are applicable to synthetically useful energy transfer catalysis. Here we show the conceptual advantages of arylthianthrenium salts (ArTTs) for energy transfer catalysis with high energy efficiency compared to conventional aryl (pseudo)halides and their utility in arylation reactions of ethylene. The fundamental advance is enabled by the low triplet energy of ArTTs that may originate in large part from the electronic interplay between the distinct sulfur atoms in the tricyclic thianthrene scaffold, which is not accessible in either simple (pseudo)halides or other conventional sulfonium salts.
Collapse
Affiliation(s)
- Yuan Cai
- Max-Planck-Institut
für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
| | - Triptesh Kumar Roy
- Max-Planck-Institut
für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
- Institute
of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Till J. B. Zähringer
- Department
of Chemistry, Johannes Gutenberg University
Mainz, 55128 Mainz, Germany
| | | | - Christoph Kerzig
- Department
of Chemistry, Johannes Gutenberg University
Mainz, 55128 Mainz, Germany
| | - Tobias Ritter
- Max-Planck-Institut
für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
- Institute
of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
7
|
Dey S, Das A, Yadav RN, Boruah PJ, Sarkar K, Paul AK, Hossain MF. Electron donor-acceptor complex enabled photocascade strategy for the synthesis of trans-dihydrofuro[3,2- c]chromen-4-one scaffolds via radical conjugate addition of pyridinium ylide. Chem Commun (Camb) 2024. [PMID: 39450510 DOI: 10.1039/d4cc04720f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
A visible-light-induced photocascade strategy is disclosed for the synthesis of trans-dihydrofuro[3,2-c]chromen-4-one scaffolds. The photocascade consists of electron donor-acceptor (EDA) complex enabled formation of arylidene coumarinone, followed by 1,4-radical conjugate addition (1,4-RCA) of an in situ generated pyridinium ylide radical (PyYR) towards diastereoselective formation of the trans-dihydrofuro[3,2-c]chromen-4-one scaffold in good to excellent yield. Thorough mechanistic investigations comprising photophysical, spectroscopic, electrochemical and DFT studies provide further insights into the reaction mechanism.
Collapse
Affiliation(s)
- Sovan Dey
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling-734013, India.
| | - Arindam Das
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling-734013, India.
| | - Ram Naresh Yadav
- Department of Chemistry, Faculty of Engineering and Technology, Veer Bahadur Singh Purvanchal University, Jaunpur-222003, UP, India
| | | | - Koushik Sarkar
- Department of Chemical Sciences, IISER Kolkata, Mohanpur-741246, Nadia, WB, India
| | - Amit Kumar Paul
- Bose Institute, Unified Academic Campus, EN 80, Sector V, Salt Lake, Kolkata-700091, India
| | - Md Firoj Hossain
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling-734013, India.
| |
Collapse
|
8
|
Malo S, Santra S, Saha J, Ghosh D, Das I. External photocatalyst-free photocycloaddition between triplet vinylnitrenes with 1,3-biradical character and activated olefins under 420 nm LEDs. Chem Commun (Camb) 2024; 60:12545-12548. [PMID: 39380367 DOI: 10.1039/d4cc03484h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Herein, we report that triplet vinylnitrenes with 1,3-biradical character can directly participate in photocycloaddition reactions with olefins to produce single diastereomers of the corresponding 1-pyrrolines under 420 nm LEDs in acetonitrile solvent. Moreover, a one-pot method has been developed to produce pyrroles directly through photocycloaddition and oxidation sequences. The excited state of the substrate olefin can sensitize vinyl azide via energy transfer, eliminating the need for an external photocatalyst or sensitizer.
Collapse
Affiliation(s)
- Sidhartha Malo
- CSIR-Indian Institute of Chemical Biology, Organic and Medicinal Chemistry Division, Kolkata 700032, West Bengal, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Supriyo Santra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, West Bengal, India.
| | - Jayanta Saha
- CSIR-Indian Institute of Chemical Biology, Organic and Medicinal Chemistry Division, Kolkata 700032, West Bengal, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debashree Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, West Bengal, India.
| | - Indrajit Das
- CSIR-Indian Institute of Chemical Biology, Organic and Medicinal Chemistry Division, Kolkata 700032, West Bengal, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
9
|
Entgelmeier LM, Mori S, Sendo S, Yamaguchi R, Suzuki R, Yanai T, García Mancheño O, Ohmatsu K, Ooi T. Zwitterionic Acridinium Amidate: A Nitrogen-Centered Radical Catalyst for Photoinduced Direct Hydrogen Atom Transfer. Angew Chem Int Ed Engl 2024; 63:e202404890. [PMID: 38923134 DOI: 10.1002/anie.202404890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
The development of small organic molecules that can convert light energy into chemical energy to directly promote molecular transformation is of fundamental importance in chemical science. Herein, we report a zwitterionic acridinium amidate as a catalyst for the direct functionalization of aliphatic C-H bonds. This organic zwitterion absorbs visible light to generate the corresponding amidyl radical in the form of excited-state triplet diradical with prominent reactivity for hydrogen atom transfer to facilitate C-H alkylation with a high turnover number. The experimental and theoretical investigations revealed that the noncovalent interactions between the anionic amidate nitrogen and a pertinent hydrogen-bond donor, such as hexafluoroisopropanol, are crucial for ensuring the efficient generation of catalytically active species, thereby fully eliciting the distinct reactivity of the acridinium amidate as a photoinduced direct hydrogen atom transfer catalyst.
Collapse
Affiliation(s)
| | - Soichiro Mori
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Shion Sendo
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Rie Yamaguchi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601, Japan
| | - Ryuhei Suzuki
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Takeshi Yanai
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601, Japan
| | | | - Kohsuke Ohmatsu
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601, Japan
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, 223-8522, Japan
| | - Takashi Ooi
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601, Japan
| |
Collapse
|
10
|
Li M, Wu Y, Song X, Sun J, Zhang Z, Zheng G, Zhang Q. Visible light-mediated organocatalyzed 1,3-aminoacylation of cyclopropane employing N-benzoyl saccharin as bifunctional reagent. Nat Commun 2024; 15:8930. [PMID: 39414792 PMCID: PMC11484876 DOI: 10.1038/s41467-024-53202-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024] Open
Abstract
The carboamination of unsaturated molecules using bifunctional reagents is considered an attractive approach for the synthesis of nitrogen-containing compounds. However, bifunctional C-N reagents have never been employed in the carboamination of cyclopropane. In this study, we use an N-heterocyclic carbene (NHC), N-benzoyl saccharin, as a bifunctional reagent and a photoredox catalyst for a dual-catalyzed 1,3-aminoacylation of cyclopropane. NHCs play multiple roles, functioning as Lewis base catalysts to activate C-N bonds, promoting the oxidative quenching process of PC*, and acting as efficient acyl radical transfer catalysts for the formation of C-C bonds. The oxidative quenching process between the excited-state PC* and acyl NHC adduct is the key to the photooxidation generality of aryl cyclopropanes.
Collapse
Affiliation(s)
- Mingrui Li
- Department of Chemistry, Northeast Normal University, Changchun, China
| | - Yingtao Wu
- Department of Chemistry, Northeast Normal University, Changchun, China
| | - Xiao Song
- Department of Chemistry, Northeast Normal University, Changchun, China
| | - Jiaqiong Sun
- Department of Chemistry, Northeast Normal University, Changchun, China.
- School of Environment, Northeast Normal University, Changchun, China.
| | - Zuxiao Zhang
- Department of Chemistry, University of Hawai'i at Mānoa. 2545 McCarthy Mall, Honolulu, HI, USA
| | - Guangfan Zheng
- Department of Chemistry, Northeast Normal University, Changchun, China.
| | - Qian Zhang
- Department of Chemistry, Northeast Normal University, Changchun, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu, Shanghai, China
| |
Collapse
|
11
|
Li H, Zhang X, Wang Z, Sun C, Huang M, Liu J, Li Y, Zou Z, Pan Y, Zhang W, Wang Y. Pyridinium-Based Fluorosulfonamide Reagents Enabled Photoredox-Catalyzed Radical Fluorosulfonamidation. Org Lett 2024; 26:6714-6719. [PMID: 39058587 DOI: 10.1021/acs.orglett.4c02344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Sulfamoyl fluorides, as a crucial building block of SuFEx, have garnered extensive research interest due to their unique properties. However, the direct radical fluorosulfonamidation process for the synthesis of sulfamoyl fluorides has been overlooked. We herein disclosed a practical procedure for constructing a redox-active fluorosulfonamide radical reagent named fluorosulfonyl-N-pyridinium tetrafluoroborate (PNSF) from SO2F2. These reagents can facilitate a range of reactions, including the N-(fluorosulfonyl) sulfonamidation of (hetero)arenes, sequential radical stereoselective fluorosulfonamidation, and 1,2-difunctionalization of alkenes.
Collapse
Affiliation(s)
- Heyin Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xian Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhen Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chao Sun
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Mengjun Huang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing Liu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yifan Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhenlei Zou
- Anhui Technology Research Center of Optoelectronic Technology Appliance, Biomimetic Energy Laboratory, School of Electrical Engineering, Tongling University, Tongling 244000, China
| | - Yi Pan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Weigang Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
12
|
Guo SY, Liu YP, Huang JS, He LB, He GC, Ji DW, Wan B, Chen QA. Visible light-induced chemoselective 1,2-diheteroarylation of alkenes. Nat Commun 2024; 15:6102. [PMID: 39030211 PMCID: PMC11271625 DOI: 10.1038/s41467-024-50460-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024] Open
Abstract
Visible-light photocatalysis has evolved as a powerful technique to enable controllable radical reactions. Exploring unique photocatalytic mode for obtaining new chemoselectivity and product diversity is of great significance. Herein, we present a photo-induced chemoselective 1,2-diheteroarylation of unactivated alkenes utilizing halopyridines and quinolines. The ring-fused azaarenes serve as not only substrate, but also potential precursors for halogen-atom abstraction for pyridyl radical generation in this photocatalysis. As a complement to metal catalysis, this photo-induced radical process with mild and redox neutral conditions assembles two different heteroaryl groups into alkenes regioselectively and contribute to broad substrates scope. The obtained products containing aza-arene units permit various further diversifications, demonstrating the synthetic utility of this protocol. We anticipate that this protocol will trigger the further advancement of photo-induced alkyl/aryl halides activation.
Collapse
Affiliation(s)
- Shi-Yu Guo
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yi-Peng Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Jin-Song Huang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Li-Bowen He
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Gu-Cheng He
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ding-Wei Ji
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Boshun Wan
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
13
|
Lei J, Xu ZG. Reaction strategies for the meta-selective functionalization of pyridine through dearomatization. Mol Divers 2024:10.1007/s11030-024-10861-5. [PMID: 38647989 DOI: 10.1007/s11030-024-10861-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
The pyridine moiety is a crucial structural component in various pharmaceuticals. While the direct ortho- and para-functionalization of pyridines is relatively straightforward, the meta-selective C-H functionalization remains a significant challenge. This review highlights dearomatization strategies as a key area of interest in expanding the application of meta-C-H functionalization of pyridines. Dearomatization enables the meta-functionalization through various catalytic methods that directly generate dearomatization products, and some products can be rearomatized back to pyridine derivatives. Furthermore, this article also covers the dearomatization of multiple positions of pyridine in the synthesis of polycyclic compounds. It offers a comprehensive overview of the latest advancements in dearomatization at different positions of pyridine, aiming to provide a valuable resource for researchers in this field. It also highlights the advantages and limitations of existing technologies, aiming to inform a broader audience about this important field and foster its future development.
Collapse
Affiliation(s)
- Jie Lei
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Zhi-Gang Xu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| |
Collapse
|
14
|
Hu SP, Gao CH, Liu TM, Miao BY, Wang HC, Yu W, Han B. Integrating Olefin Carboamination and Hofmann-Löffler-Freytag Reaction by Radical Deconstruction of Hydrazonyl N-N Bond. Angew Chem Int Ed Engl 2024; 63:e202400168. [PMID: 38380865 DOI: 10.1002/anie.202400168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 02/22/2024]
Abstract
As a type of elementary organic compounds containing N-N single bond, hydrazone involved chemical conversions are extremely extensive, but they are mainly limited to N2-retention and N2-removal modes. We report herein an unprecedented protocol for the realization of division utilization of the N2-moiety of hydrazone by a radical facilitated N-N bond deconstruction strategy. This new conversion mode enables the successful combination of alkene carboamination and Hofmann-Löffler-Freytag reaction by the reaction of N-homoallyl mesitylenesulfonyl hydrazones with ethyl difluoroiodoacetate under photocatalytic redox neutral conditions. Mechanism studies reveal that the reaction undergoes a radical relay involving addition, crucial remote imino-N migration and H-atom transfer. Consequently, a series of structurally significant ϵ-N-sulphonamide-α,α-difluoro-γ-amino acid esters are efficiently produced via continuous C-C bond and dual C-N bonds forging.
Collapse
Affiliation(s)
- Si-Pei Hu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Chen-Hui Gao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Tu-Ming Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Bing-Yang Miao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Hong-Chen Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Wei Yu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Bing Han
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
15
|
Wang J, Gu J, Zou JY, Zhang MJ, Shen R, Ye Z, Xu PX, He Y. Photocatalytic Z/E isomerization unlocking the stereodivergent construction of axially chiral alkene frameworks. Nat Commun 2024; 15:3254. [PMID: 38627395 PMCID: PMC11021481 DOI: 10.1038/s41467-024-47404-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/31/2024] [Indexed: 04/19/2024] Open
Abstract
The past century has witnessed a large number of reports on the Z/E isomerization of alkenes. However, the vast majority of them are still limited to the isomerization of di- and tri-substituted alkenes. The stereospecific Z/E isomerization of tetrasubstituted alkenes remains to be an underdeveloped area, thus lacking in a stereodivergent synthesis of axially chiral alkenes. Herein we report the atroposelective synthesis of tetrasubstituted alkene analogues by asymmetric allylic substitution-isomerization, followed by their Z/E isomerization via triplet energy transfer photocatalysis. In this regard, the stereodivergent synthesis of axially chiral N-vinylquinolinones is achieved efficiently. Mechanistic studies indicate that the benzylic radical generation and distribution are two key factors for preserving the enantioselectivities of axially chiral compounds.
Collapse
Affiliation(s)
- Jie Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jun Gu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jia-Yu Zou
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Meng-Jie Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Rui Shen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zhiwen Ye
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ping-Xun Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ying He
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
16
|
Xin J, Bo X, Xiao W, Ding Y, Jin R, Yang S. Design of N-N ylide bond-based high energy density materials: a theoretical survey. RSC Adv 2024; 14:4456-4460. [PMID: 38312724 PMCID: PMC10835343 DOI: 10.1039/d3ra08799a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/19/2024] [Indexed: 02/06/2024] Open
Abstract
The generally encountered contradiction between large energy content and stability poses great difficulty in designing nitrogen-rich high-energy-density materials. Although N-N ylide bonds have been classified as the fourth type of homonuclear N-N bonds (besides >N-N<, -N[double bond, length as m-dash]N-, and N[triple bond, length as m-dash]N), accessible energetic molecules with N-N ylide bonds have rarely been explored. In this study, 225 molecules with six types of novel structures containing N-N ylide bonds were designed using density functional theory and CBS-QB3 methods. To guide future synthesis, the effects of substitution on the thermal stability, detonation velocity, and detonation pressure of the structures were evaluated under the premise that the N-N ylide skeleton remains stable. The calculations show that the bond dissociation energy values of the N-N ylide bonds of the designed 225 structures were in the range of 61.21-437.52 kJ mol-1, except for N-1NNH2. Many of the designed structures with N-N ylide bonds exhibit high detonation properties, which are superior to those of traditional energetic compounds. This study convincingly demonstrates the feasibility of the design strategy of introducing an N-N ylide bond to develop new types of energetic materials.
Collapse
Affiliation(s)
- Jingfan Xin
- Inner Mongolia Key Laboratory of Photoelectric Functional Materials, College of Chemistry and Life Science, Chifeng University Chifeng 024000 China
| | - Xiaoxu Bo
- Department of Agriculture and Biotechnology, Wenzhou Vocational College of Science and Technology No. 1000 Liuhongqiao Road Wenzhou 325006 People's Republic of China
| | - Wenmin Xiao
- Inner Mongolia Key Laboratory of Photoelectric Functional Materials, College of Chemistry and Life Science, Chifeng University Chifeng 024000 China
| | - Yihong Ding
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou 325035 P. R. China
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University Changchun China
| | - Ruifa Jin
- Inner Mongolia Key Laboratory of Photoelectric Functional Materials, College of Chemistry and Life Science, Chifeng University Chifeng 024000 China
| | - Suhua Yang
- Inner Mongolia Key Laboratory of Photoelectric Functional Materials, College of Chemistry and Life Science, Chifeng University Chifeng 024000 China
| |
Collapse
|
17
|
Lin Z, Su H, Huang W, Zhang X, Zhang G. 2D-Graph of intermolecular interactions predicts radical character of anion-π* type charge-transfer complexes. RSC Adv 2024; 14:3771-3775. [PMID: 38274166 PMCID: PMC10809263 DOI: 10.1039/d3ra07729b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024] Open
Abstract
The molecular orbital (MO) theory is one of the most useful methods to describe the formation of a new chemical bond between two molecules. However, it is less often employed for modelling non-bonded intermolecular interactions because of the small charge-transfer contribution. Here we introduce two simple descriptors, the energy difference (EDA) of the HOMO of an electron donor and the LUMO of an acceptor against such HOMO-LUMO overlap integral (SDA), to show that the MO theory could give a unified charge-transfer picture of both bonding and non-bonding interactions for two molecules. It is found that similar types of interactions tend to be closer to each other in this 2D graph. Notably, in a transition region from strong bonding to single-electron transfer, the interacting molecular pairs appear to present a "hybrid" between chemical bonding and a radical pair, such as anion-π* interactions. It is concluded that the number of nodes in the HOMO and LUMO play a crucial role in determining the bonding character of the molecular pair.
Collapse
Affiliation(s)
- Zhenda Lin
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China Hefei 230026 China
| | - Hao Su
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China Hefei 230026 China
| | - Wenhuan Huang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China Hefei 230026 China
| | - Xuepeng Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China Hefei 230026 China
| | - Guoqing Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
18
|
Niu K, Jiao H, Zhou P, Wang Q. Photoinduced Direct Electron Transfer between Quinoxalin-2(1 H)-ones and Alkyl Carboxylic Acids for C-H Alkylation. Org Lett 2023; 25:8970-8974. [PMID: 38085538 DOI: 10.1021/acs.orglett.3c03449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The progress of efficient and sustainable approaches for decarboxylative coupling reactions is synthetically appealing due to the structural diversity, lack of toxicity, and widespread commercial accessibility of carboxylic acids. However, the decarboxylation reaction still encounters challenges related to the utilization of oxidants, catalysts, and prefunctionalization conditions. We report herein a mild method that facilitates direct electron transfer between alkyl carboxylic acids and excited-state substrates for C-H alkylation of quinoxalin-2(1H)-ones without the involvement of any catalyst or additive.
Collapse
Affiliation(s)
- Kaikai Niu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, People's Republic of China
| | - Haoran Jiao
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Pan Zhou
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
19
|
Wang L, Shi M, Chen X, Su N, Luo W, Zhang X. Generation of Aromatic N-Heterocyclic Radicals for Functionalization of Unactivated Alkenes. Angew Chem Int Ed Engl 2023; 62:e202314312. [PMID: 37946626 DOI: 10.1002/anie.202314312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/12/2023]
Abstract
Nitrogen-centered radicals (NCRs) have been widely recognized as versatile synthetic intermediates for the construction of nitrogen containing molecules of high value. As such, there has been a long-standing interest in the field of organic synthesis to develop novel nitrogen-based radicals and explore their inherent reactivity. In this study, we present the generation of aromatic N-heterocyclic radicals and their application in a novel and diverse functionalization of unactivated alkenes. Bench-stable aromatic N-heterocyclic pyridinium salts were employed as crucial NCR precursors, which enabled the efficient conversion of various unactivated alkenes into medicinally relevant alkylated N-heterocyclic amines. This approach offers an unexplored retrosynthetic disconnection for the synthesis of related molecules that commonly possess therapeutic value. Furthermore, this platform can be extended to the synthesis of densely functionalized heterocyclic amines by utilizing disulfides and diethyl bromomalonate as radical quenchers. Mechanistic investigations indicate an energy transfer (EnT) pathway involving the formation of a transient aromatic N-heterocyclic radical, radical addition to unactivated alkenes, and subsequent generation of the amination product through either hydrogen atom transfer (HAT) or radical addition processes.
Collapse
Affiliation(s)
- Lu Wang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Minxu Shi
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Xiaoping Chen
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Nicholas Su
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Weili Luo
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Xiaheng Zhang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
20
|
Liu DH, Nagashima K, Liang H, Yue XL, Chu YP, Chen S, Ma J. Chemoselective Quinoline and Isoquinoline Reduction by Energy Transfer Catalysis Enabled Hydrogen Atom Transfer. Angew Chem Int Ed Engl 2023; 62:e202312203. [PMID: 37803457 DOI: 10.1002/anie.202312203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/08/2023]
Abstract
(Hetero)arene reduction is one of the key avenues for synthesizing related cyclic alkenes and alkanes. While catalytic hydrogenation and Birch reduction are the two broadly utilized approaches for (hetero)arene reduction across academia and industry over the last century, both methods have encountered significant chemoselectivity challenges. We hereby introduce a highly chemoselective quinoline and isoquinoline reduction protocol operating through selective energy transfer (EnT) catalysis, which enables subsequent hydrogen atom transfer (HAT). The design of this protocol bypasses the conventional metric of reduction reaction, that is, the reductive potential, and instead relies on the triplet energies of the chemical moieties and the kinetic barriers of energy and hydrogen atom transfer events. Many reducing labile functional groups, which were incompatible with previous (hetero)arene reduction reactions, are retained in this reaction. We anticipate that this protocol will trigger the further advancement of chemoselective arene reduction and enable the current arene-rich drug space to escape from flatland.
Collapse
Affiliation(s)
- De-Hai Liu
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Kyogo Nagashima
- Department of Chemistry and Biochemistry, Oberlin College, 119 Woodland St., Oberlin, Ohio 44074, USA
| | - Hui Liang
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xue-Lin Yue
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yun-Peng Chu
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shuming Chen
- Department of Chemistry and Biochemistry, Oberlin College, 119 Woodland St., Oberlin, Ohio 44074, USA
| | - Jiajia Ma
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
21
|
Cao S, Kim D, Lee W, Hong S. Photocatalytic Enantioselective Hydrosulfonylation of α,β-Unsaturated Carbonyls with Sulfonyl Chlorides. Angew Chem Int Ed Engl 2023; 62:e202312780. [PMID: 37782249 DOI: 10.1002/anie.202312780] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/03/2023]
Abstract
This research explores the enantioselective hydrosulfonylation of various α,β-unsaturated carbonyl compounds via the use of visible light and redox-active chiral Ni-catalysis, facilitating the synthesis of enantioenriched α-chiral sulfones with remarkable enantioselectivity (exceeding 99 % ee). A significant challenge entails enhancing the reactivity between chiral metal-coordinated carbonyl compounds and moderate electrophilic sulfonyl radicals, aiming to minimize the background reactions. The success of our approach stems from two distinctive attributes: 1) the Cl-atom abstraction employed for sulfonyl radical generation from sulfonyl chlorides, and 2) the single-electron reduction to produce a key enolate radical Ni-complex. The latter process appears to enhance the feasibility of the sulfonyl radical's addition to the electron-rich enolate radical. An in-depth investigation into the reaction mechanism, supported by both experimental observations and theoretical analysis, offers insight into the intricate reaction process. Moreover, the versatility of our methodology is highlighted through its successful application in the late-stage functionalization of complex bioactive molecules, demonstrating its practicality as a strategy for producing α-chiral sulfones.
Collapse
Affiliation(s)
- Shi Cao
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Doyoung Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Wooseok Lee
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
22
|
Zhang W, Liu T, Ang HT, Luo P, Lei Z, Luo X, Koh MJ, Wu J. Modular and Practical 1,2-Aryl(Alkenyl) Heteroatom Functionalization of Alkenes through Iron/Photoredox Dual Catalysis. Angew Chem Int Ed Engl 2023; 62:e202310978. [PMID: 37699857 DOI: 10.1002/anie.202310978] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/14/2023]
Abstract
Efficient methods for synthesizing 1,2-aryl(alkenyl) heteroatomic cores, encompassing heteroatoms such as nitrogen, oxygen, sulfur, and halogens, are of significant importance in medicinal chemistry and pharmaceutical research. In this study, we present a mild, versatile and practical photoredox/iron dual catalytic system that enables access to highly privileged 1,2-aryl(alkenyl) heteroatomic pharmacophores with exceptional efficiency and site selectivity. Our approach exhibits an extensive scope, allowing for the direct utilization of a wide range of commodity or commercially available (hetero)arenes as well as activated and unactivated alkenes with diverse functional groups, drug scaffolds, and natural product motifs as substrates. By merging iron catalysis with the photoredox cycle, a vast array of alkene 1,2-aryl(alkenyl) functionalization products that incorporate a neighboring azido, amino, halo, thiocyano and nitrooxy group were secured. The scalability and ability to rapid synthesize numerous bioactive small molecules from readily available starting materials highlight the utility of this protocol.
Collapse
Affiliation(s)
- Weigang Zhang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Tao Liu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Hwee Ting Ang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Penghao Luo
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Zhexuan Lei
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Xiaohua Luo
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Ming Joo Koh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Jie Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
23
|
Affiliation(s)
- Peng-Zi Wang
- Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei, China
- Wuhan Institute of Photochemistry and Technology, Wuhan, Hubei, China
| | - Jia-Rong Chen
- Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei, China.
- Wuhan Institute of Photochemistry and Technology, Wuhan, Hubei, China.
| |
Collapse
|