1
|
Lu Y, Huang YF. Spectroscopically Elucidating the Local Proton-Coupled Electron Transfer Loop from Amino to Nitro Groups via the Au Surface in a N 2 Atmosphere. Anal Chem 2024; 96:18859-18864. [PMID: 39530224 DOI: 10.1021/acs.analchem.4c04579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Proton-coupled electron transfer (PCET) has been significant in understanding the reactions in solution. In a solid-gas interface, it remains a challenge to identify electron transfer or proton transfer intermediates. Here, in a Au/N2 interface, we regulated and characterized the PCET from p-aminothiophenol (PATP) to p-nitrothiophenol (PNTP) in the plasmon-mediated conversion to p,p'-dimercaptoazobenzene by variable-temperature surface-enhanced Raman spectroscopy. The Raman bands of PATP and PNTP characteristically blue shifted and red shifted as the laser wavelength- and power density-regulated PCET from PATP to PNTP, respectively. These characteristic Raman band shifts were well reproduced by the density functional theoretical simulations of positively charged PATP and negatively charged PNTP, which explicitly evidenced the electron transfer intermediates of PATP or PNTP on the Au surface. PCET did not occur in the temperature cycle between 100 and 370 K without laser illumination. These results demonstrated a characteristic local PCET loop composed of electron transfer between PATP/PNTP and Au followed by intermolecular proton transfer between PATP and PNTP and the significance of conducting electron transfer on Au.
Collapse
Affiliation(s)
- Yang Lu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Yi-Fan Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| |
Collapse
|
2
|
Huang KY, Chen YY, Wang WL, Sun WM, Lin Z, Yao Q, Chen W, Xie J, Deng HH. The Hidden Mechanism: Excited-State Proton-Electron Pair Transfer in Metal Nanocluster Emission. Angew Chem Int Ed Engl 2024:e202418560. [PMID: 39479989 DOI: 10.1002/anie.202418560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024]
Abstract
Comprehending the underlying factors that govern photoluminescence (PL) in metal nanoclusters (NCs) under physiological conditions remains a highly intriguing and unresolved challenge, particularly for their biomedical applications. In this study, we evaluate the critical role of excited-state proton-coupled electron transfer in the emission of metal NCs. Our findings demonstrate that hydronium ion (H3O+) binding can trigger a nonlinear, pH-dependent excited-state concerted electron proton transfer (CEPT) reaction. This involves simultaneous electron transfer from the Au(0) core to the Au(I)-ATT (ATT denotes 6-aza-2-thiothymidine) surface and proton transfer from H3O+ to the ATT ligand in a single step, greatly promoting vibrations and rotations of the Au(I)-ATT surface, resulting in substantial PL quenching of Au10(ATT)6 NCs. Further analyses show that the unique CEPT dynamics are strongly influenced by the opposing effects of increased reorganization energy and a larger pre-exponential factor on the electron transfer rate. Moreover, the proposed excited-state CEPT process is found to be prevalent in core-shell relaxation metal NCs, such as Au25(SR)18 (SR denotes thiolate) NCs, and serves as an important factor in limiting their PL emission. By simply controlling the pKa of the ligands, the emission performance of Au25(SR)18 can be easily regulated in physiological environments.
Collapse
Affiliation(s)
- Kai-Yuan Huang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China
| | - Yan-Yan Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China
| | - Wen-Lu Wang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China
| | - Wei-Ming Sun
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China
| | - Zhen Lin
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China
| | - Qiaofeng Yao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Key Laboratory of Organic Integrated Circuits, Ministry of Education, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Wei Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, Natinal University of Singapore, Singapore, 117585, Singapore
| | - Hao-Hua Deng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China
| |
Collapse
|
3
|
Sarabia F, Gomez Rodellar C, Roldan Cuenya B, Oener SZ. Exploring dynamic solvation kinetics at electrocatalyst surfaces. Nat Commun 2024; 15:8204. [PMID: 39294140 PMCID: PMC11411097 DOI: 10.1038/s41467-024-52499-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024] Open
Abstract
The interface between electrocatalyst and electrolyte is highly dynamic. Even in absence of major structural changes, the intermediate coverage and interfacial solvent are bias and time dependent. This is not accounted for in current kinetic models. Here, we study the kinetics of the hydrogen evolution, ammonia oxidation and oxygen reduction reactions on polycrystalline Pt with distinct intrinsic rates and intermediates (e.g. *H, *OH, *NH2, *N). Despite these differences, we discover shared relationships between the pre-exponential factor and the activation energy that we link to solvation kinetics in the presence of electronic excess charge and charged intermediates. Further, we study dynamic changes of these kinetic parameters with a millisecond time resolution during electrosorption and double layer charging and dynamic *N and *NO poisoning. Finally, we discover a pH-dependent activation entropy that explains non-Nernstian overpotential shifts with pH. In sum, our results demonstrate the importance of accounting for a bias and time-dependent interfacial solvent and catalyst surface.
Collapse
Affiliation(s)
- Francisco Sarabia
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Berlin, Germany
| | - Carlos Gomez Rodellar
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Berlin, Germany
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Berlin, Germany
| | - Sebastian Z Oener
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Berlin, Germany.
| |
Collapse
|
4
|
Xie SL, Nichols EM. Molecularly defined electrodes host a concert of protons and electrons. Nat Chem 2024; 16:301-303. [PMID: 38424173 DOI: 10.1038/s41557-024-01471-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Affiliation(s)
- Siyuan L Xie
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Eva M Nichols
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|