1
|
Jarne P. The Anthropocene and the biodiversity crisis: an eco-evolutionary perspective. C R Biol 2025; 348:1-20. [PMID: 39780736 DOI: 10.5802/crbiol.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/22/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
|
2
|
Lammer H, Scherf M, Sproß L. Eta-Earth Revisited I: A Formula for Estimating the Maximum Number of Earth-Like Habitats. ASTROBIOLOGY 2024; 24:897-915. [PMID: 39481024 DOI: 10.1089/ast.2023.0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
In this hypothesis article, we discuss the basic requirements of planetary environments where aerobe organisms can grow and survive, including atmospheric limitations of millimeter-to-meter-sized biological animal life based on physical limits and O2, N2, and CO2 toxicity levels. By assuming that animal-like extraterrestrial organisms adhere to similar limits, we define Earth-like habitats (EH) as rocky exoplanets in the habitable zone for complex life that host N2-O2-dominated atmospheres with minor amounts of CO2, at which advanced animal-like life or potentially even extraterrestrial intelligent life can in principle evolve and exist. We then derive a new formula that can be used to estimate the maximum occurrence rate of such Earth-like habitats in the Galaxy. This contains realistic probabilistic arguments that can be fine-tuned and constrained by atmospheric characterization with future space and ground-based telescopes. As an example, we briefly discuss two specific requirements feeding into our new formula that, although not quantifiable at present, will become scientifically quantifiable in the upcoming decades due to future observations of exoplanets and their atmospheres. Key Words: Eta-Earth-Earth-like habitats-oxygenation time-nitrogen atmospheres-carbon dioxide-animal-like life. Astrobiology 24, 897-915.
Collapse
Affiliation(s)
- Helmut Lammer
- Austrian Academy of Sciences, Space Research Institute, Graz, Austria
| | - Manuel Scherf
- Austrian Academy of Sciences, Space Research Institute, Graz, Austria
- Institute of Physics, University of Graz, Graz, Austria
| | - Laurenz Sproß
- Austrian Academy of Sciences, Space Research Institute, Graz, Austria
- Institute of Physics, University of Graz, Graz, Austria
| |
Collapse
|
3
|
Long X, Liu M, Nan Y, Chen Q, Xiao Z, Xiang Y, Ying X, Sun J, Huang Q, Ai K. Revitalizing Ancient Mitochondria with Nano-Strategies: Mitochondria-Remedying Nanodrugs Concentrate on Disease Control. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308239. [PMID: 38224339 DOI: 10.1002/adma.202308239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Mitochondria, widely known as the energy factories of eukaryotic cells, have a myriad of vital functions across diverse cellular processes. Dysfunctions within mitochondria serve as catalysts for various diseases, prompting widespread cellular demise. Mounting research on remedying damaged mitochondria indicates that mitochondria constitute a valuable target for therapeutic intervention against diseases. But the less clinical practice and lower recovery rate imply the limitation of traditional drugs, which need a further breakthrough. Nanotechnology has approached favorable regiospecific biodistribution and high efficacy by capitalizing on excellent nanomaterials and targeting drug delivery. Mitochondria-remedying nanodrugs have achieved ideal therapeutic effects. This review elucidates the significance of mitochondria in various cells and organs, while also compiling mortality data for related diseases. Correspondingly, nanodrug-mediate therapeutic strategies and applicable mitochondria-remedying nanodrugs in disease are detailed, with a full understanding of the roles of mitochondria dysfunction and the advantages of nanodrugs. In addition, the future challenges and directions are widely discussed. In conclusion, this review provides comprehensive insights into the design and development of mitochondria-remedying nanodrugs, aiming to help scientists who desire to extend their research fields and engage in this interdisciplinary subject.
Collapse
Affiliation(s)
- Xingyu Long
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
| | - Min Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Yayun Nan
- Geriatric Medical Center, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, 750002, P. R. China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
| | - Zuoxiu Xiao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
| | - Yuting Xiang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
| | - Xiaohong Ying
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
| | - Jian Sun
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, P. R. China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China
| |
Collapse
|
4
|
Weinberger VP, Zalaquett N, Abades S. How greedy is too greedy? A network toy model for evaluating the sustainability of biased evolutionary dynamics. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220260. [PMID: 37952630 PMCID: PMC10645075 DOI: 10.1098/rstb.2022.0260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 09/12/2023] [Indexed: 11/14/2023] Open
Abstract
Modern humanity has changed the biosphere at a global scale, threatening its own sustainability. It is claimed that through technology humans maximize the extraction of energy from the natural system towards their own benefit, with rates of appropriation that surpass the time-scales for systemic adaptation. This time-decoupled coevolutionary dynamic is at the core of human societal unsustainability. Here, we developed in silico experiments of an open energy-based flowing network toy model of natural systems and study the effects that greedy evolutionary strategies, resembling human societal demands, have upon the performance and scarcity tolerance of the system. We aim to determine the flexibility that those biased evolutionary dynamics have for matching or surpassing natural evolution outcomes. We studied four different indexes of system's growth and development (total system throughflow (TST), average mutual information, ascendency and entropy difference) and compare their scarcity tolerance and performance outcomes with respect to four different greedy scenarios. The results showed that greedy strategies rarely surpassed the tolerance and performance achieved by natural systemic evolution. The nature of the greedy scenarios developed were closely related to increases in TST and therefore, we emphasized this comparison. Here, the maximum percentage of greedy networks capable of surpassing natural dynamics was around one-third (approx. [Formula: see text]). However, results suggest the existence of a space parameter where local increases of energy flow can outperform the outcomes of natural systemic evolution, but no evident network property seems to characterize those greedy networks. A mild inverse relationship was found between the number of links that greedy nodes have towards the output and their capacity to outpass the control evolution. As many of the human societal effect upon biospheric processes have dissipative byproducts, knowing that such dynamics might diminish the systems tolerance and performance suggest care in their (ab)use. This article is part of the theme issue 'Evolution and sustainability: gathering the strands for an Anthropocene synthesis'.
Collapse
Affiliation(s)
- V. P. Weinberger
- Center for Resilience, Adaptation and Mitigation (CReAM), Universidad Mayor, Temuco, 4801043, Chile
| | - N. Zalaquett
- PLR Physics Ludique Research, Santiago, 9761013, Chile
| | - S. Abades
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Santiago, 8580745, Chile
| |
Collapse
|
5
|
Wong ML, Cleland CE, Arend D, Bartlett S, Cleaves HJ, Demarest H, Prabhu A, Lunine JI, Hazen RM. On the roles of function and selection in evolving systems. Proc Natl Acad Sci U S A 2023; 120:e2310223120. [PMID: 37844243 PMCID: PMC10614609 DOI: 10.1073/pnas.2310223120] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/10/2023] [Indexed: 10/18/2023] Open
Abstract
Physical laws-such as the laws of motion, gravity, electromagnetism, and thermodynamics-codify the general behavior of varied macroscopic natural systems across space and time. We propose that an additional, hitherto-unarticulated law is required to characterize familiar macroscopic phenomena of our complex, evolving universe. An important feature of the classical laws of physics is the conceptual equivalence of specific characteristics shared by an extensive, seemingly diverse body of natural phenomena. Identifying potential equivalencies among disparate phenomena-for example, falling apples and orbiting moons or hot objects and compressed springs-has been instrumental in advancing the scientific understanding of our world through the articulation of laws of nature. A pervasive wonder of the natural world is the evolution of varied systems, including stars, minerals, atmospheres, and life. These evolving systems appear to be conceptually equivalent in that they display three notable attributes: 1) They form from numerous components that have the potential to adopt combinatorially vast numbers of different configurations; 2) processes exist that generate numerous different configurations; and 3) configurations are preferentially selected based on function. We identify universal concepts of selection-static persistence, dynamic persistence, and novelty generation-that underpin function and drive systems to evolve through the exchange of information between the environment and the system. Accordingly, we propose a "law of increasing functional information": The functional information of a system will increase (i.e., the system will evolve) if many different configurations of the system undergo selection for one or more functions.
Collapse
Affiliation(s)
- Michael L. Wong
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC20015
- Sagan Fellow, NASA Hubble Fellowship Program, Space Telescope Science Institute, Baltimore, MD21218
| | - Carol E. Cleland
- Department of Philosophy, University of Colorado, Boulder, CO80309
| | - Daniel Arend
- Department of Philosophy, University of Colorado, Boulder, CO80309
| | - Stuart Bartlett
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
| | - H. James Cleaves
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC20015
- Earth Life Science Institute, Tokyo Institute of Technology, Tokyo152-8550, Japan
- Blue Marble Space Institute for Science, Seattle, WA98104
| | - Heather Demarest
- Department of Philosophy, University of Colorado, Boulder, CO80309
| | - Anirudh Prabhu
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC20015
| | | | - Robert M. Hazen
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC20015
| |
Collapse
|
6
|
Wutkowska M, Vader A, Logares R, Pelletier E, Gabrielsen TM. Linking extreme seasonality and gene expression in Arctic marine protists. Sci Rep 2023; 13:14627. [PMID: 37669980 PMCID: PMC10480425 DOI: 10.1038/s41598-023-41204-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/23/2023] [Indexed: 09/07/2023] Open
Abstract
At high latitudes, strong seasonal differences in light availability affect marine organisms and regulate the timing of ecosystem processes. Marine protists are key players in Arctic aquatic ecosystems, yet little is known about their ecological roles over yearly cycles. This is especially true for the dark polar night period, which up until recently was assumed to be devoid of biological activity. A 12 million transcripts catalogue was built from 0.45 to 10 μm protist assemblages sampled over 13 months in a time series station in an Arctic fjord in Svalbard. Community gene expression was correlated with seasonality, with light as the main driving factor. Transcript diversity and evenness were higher during polar night compared to polar day. Light-dependent functions had higher relative expression during polar day, except phototransduction. 64% of the most expressed genes could not be functionally annotated, yet up to 78% were identified in Arctic samples from Tara Oceans, suggesting that Arctic marine assemblages are distinct from those from other oceans. Our study increases understanding of the links between extreme seasonality and biological processes in pico- and nanoplanktonic protists. Our results set the ground for future monitoring studies investigating the seasonal impact of climate change on the communities of microbial eukaryotes in the High Arctic.
Collapse
Affiliation(s)
- Magdalena Wutkowska
- Department of Arctic Biology, The University Centre in Svalbard, Longyearbyen, Norway.
- Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø, Norway.
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, České Budějovice, Czechia.
| | - Anna Vader
- Department of Arctic Biology, The University Centre in Svalbard, Longyearbyen, Norway
| | - Ramiro Logares
- Institute of Marine Sciences (ICM), CSIC, Barcelona, Catalonia, Spain
| | - Eric Pelletier
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- CNRS Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Tove M Gabrielsen
- Department of Arctic Biology, The University Centre in Svalbard, Longyearbyen, Norway
- Department of Natural Sciences, University of Agder, Kristiansand, Norway
| |
Collapse
|
7
|
Fronhofer EA, Corenblit D, Deshpande JN, Govaert L, Huneman P, Viard F, Jarne P, Puijalon S. Eco-evolution from deep time to contemporary dynamics: The role of timescales and rate modulators. Ecol Lett 2023; 26 Suppl 1:S91-S108. [PMID: 37840024 DOI: 10.1111/ele.14222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 10/17/2023]
Abstract
Eco-evolutionary dynamics, or eco-evolution for short, are often thought to involve rapid demography (ecology) and equally rapid heritable phenotypic changes (evolution) leading to novel, emergent system behaviours. We argue that this focus on contemporary dynamics is too narrow: Eco-evolution should be extended, first, beyond pure demography to include all environmental dimensions and, second, to include slow eco-evolution which unfolds over thousands or millions of years. This extension allows us to conceptualise biological systems as occupying a two-dimensional time space along axes that capture the speed of ecology and evolution. Using Hutchinson's analogy: Time is the 'theatre' in which ecology and evolution are two interacting 'players'. Eco-evolutionary systems are therefore dynamic: We identify modulators of ecological and evolutionary rates, like temperature or sensitivity to mutation, which can change the speed of ecology and evolution, and hence impact eco-evolution. Environmental change may synchronise the speed of ecology and evolution via these rate modulators, increasing the occurrence of eco-evolution and emergent system behaviours. This represents substantial challenges for prediction, especially in the context of global change. Our perspective attempts to integrate ecology and evolution across disciplines, from gene-regulatory networks to geomorphology and across timescales, from today to deep time.
Collapse
Affiliation(s)
| | - Dov Corenblit
- GEOLAB, Université Clermont Auvergne, CNRS, Clermont-Ferrand, France
- Laboratoire écologie fonctionnelle et environnement, Université Paul Sabatier, CNRS, INPT, UPS, Toulouse, France
| | | | - Lynn Govaert
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Philippe Huneman
- Institut d'Histoire et de Philosophie des Sciences et des Techniques (CNRS/Université Paris I Sorbonne), Paris, France
| | - Frédérique Viard
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Philippe Jarne
- CEFE, UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - IRD - EPHE, Montpellier Cedex 5, France
| | - Sara Puijalon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
| |
Collapse
|
8
|
Little JC, Kaaronen RO, Hukkinen JI, Xiao S, Sharpee T, Farid AM, Nilchiani R, Barton CM. Earth Systems to Anthropocene Systems: An Evolutionary, System-of-Systems, Convergence Paradigm for Interdependent Societal Challenges. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5504-5520. [PMID: 37000909 DOI: 10.1021/acs.est.2c06203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Humans have made profound changes to the Earth. The resulting societal challenges of the Anthropocene (e.g., climate change and impacts, renewable energy, adaptive infrastructure, disasters, pandemics, food insecurity, and biodiversity loss) are complex and systemic, with causes, interactions, and consequences that cascade across a globally connected system of systems. In this Critical Review, we turn to our "origin story" for insight, briefly tracing the formation of the Universe and the Earth, the emergence of life, the evolution of multicellular organisms, mammals, primates, and humans, as well as the more recent societal transitions involving agriculture, urbanization, industrialization, and computerization. Focusing on the evolution of the Earth, genetic evolution, the evolution of the brain, and cultural evolution, which includes technological evolution, we identify a nested evolutionary sequence of geophysical, biophysical, sociocultural, and sociotechnical systems, emphasizing the causal mechanisms that first formed, and then transformed, Earth systems into Anthropocene systems. Describing how the Anthropocene systems coevolved, and briefly illustrating how the ensuing societal challenges became tightly integrated across multiple spatial, temporal, and organizational scales, we conclude by proposing an evolutionary, system-of-systems, convergence paradigm for the entire family of interdependent societal challenges of the Anthropocene.
Collapse
Affiliation(s)
- John C Little
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Roope O Kaaronen
- Sustainability Research Unit, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00014, Finland
| | - Janne I Hukkinen
- Environmental Policy Research Group, Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki 00014, Finland
| | - Shuhai Xiao
- Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Tatyana Sharpee
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, United States
| | - Amro M Farid
- School of Systems and Enterprises, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Roshanak Nilchiani
- School of Systems and Enterprises, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - C Michael Barton
- School of Human Evolution and Social Change, and School of Complex Adaptive Systems, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
9
|
Patel SN, Sonani RR, Roy D, Singh NK, Subudhi S, Pabbi S, Madamwar D. Exploring the structural aspects and therapeutic perspectives of cyanobacterial phycobiliproteins. 3 Biotech 2022; 12:224. [PMID: 35975025 PMCID: PMC9375810 DOI: 10.1007/s13205-022-03284-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/28/2022] [Indexed: 11/01/2022] Open
Abstract
Phycobiliproteins (PBPs) of cyanobacteria and algae possess unique light harvesting capacity which expand the photosynthetically active region (PAR) and allow them to thrive in extreme niches where higher plants cannot. PBPs of cyanobacteria/algae vary in abundance, types, amino acid composition and in structure as a function of species and the habitat that they grow in. In the present review, the key aspects of structure, stability, and spectral properties of PBPs, and their correlation with ecological niche of cyanobacteria are discussed. Besides their role in light-harvesting, PBPs possess antioxidant, anti-aging, neuroprotective, hepatoprotective and anti-inflammatory properties, which can be used in therapeutics. Recent developments in therapeutic applications of PBPs are reviewed with special focus on 'route of PBPs administration' and 'therapeutic potential of PBP-derived peptide and chromophores'.
Collapse
Affiliation(s)
- Stuti N. Patel
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Anand, Gujarat 388421 India
- Post-Graduate Department of Biosciences, UGC-Centre of Advanced Study, Sardar Patel University, Satellite Campus, Vadtal Road, Bakrol, Anand, Gujarat 388315 India
- Present Address: Małopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Ravi R. Sonani
- Present Address: Małopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908 USA
| | - Diya Roy
- Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), Division of Microbiology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Niraj Kumar Singh
- Department of Biotechnology, Shree A. N. Patel PG Institute of Science and Research, Sardar Patel University, Anand, Gujarat 388001 India
- Present Address: Gujarat Biotechnology Research Centre (GBRC), Deaprtment of Science and Technology (DST), Government of Gujarat, Gandhinagar, Gujarat 382011 India
| | - Sanjukta Subudhi
- The Energy and Resources Institute Darbari Seth Block, India Habitat Centre, Lodi Road, New Delhi, 110003 India
| | - Sunil Pabbi
- Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), Division of Microbiology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Datta Madamwar
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Anand, Gujarat 388421 India
| |
Collapse
|
10
|
Schreiber M, Rensing SA, Gould SB. The greening ashore. TRENDS IN PLANT SCIENCE 2022; 27:847-857. [PMID: 35739050 DOI: 10.1016/j.tplants.2022.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/30/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
More than half a billion years ago a streptophyte algal lineage began terraforming the terrestrial habitat and the Earth's atmosphere. This pioneering step enabled the subsequent evolution of all complex life on land, and the past decade has uncovered that many traits, both morphological and genetic, once thought to be unique to land plants, are conserved across some streptophyte algae. They provided the common ancestor of land plants with a repertoire of genes, of which many were adapted to overcome the new biotic and abiotic challenges. Exploring these molecular adaptations in non-tracheophyte species may help us to better prepare all green life, including our crops, for the challenges precipitated by the climate change of the Anthropocene because the challenges mostly differ by the speed with which they are now being met.
Collapse
Affiliation(s)
- Mona Schreiber
- Plant Cell Biology, University of Marburg, 35043 Marburg, Germany.
| | - Stefan A Rensing
- Plant Cell Biology, University of Marburg, 35043 Marburg, Germany; Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany.
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich Heine University (HHU) Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
11
|
Evolution, physics, and education. Biosystems 2022; 215-216:104663. [DOI: 10.1016/j.biosystems.2022.104663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 11/20/2022]
|
12
|
Wong ML, Bartlett S. Asymptotic burnout and homeostatic awakening: a possible solution to the Fermi paradox? J R Soc Interface 2022; 19:20220029. [PMID: 35506212 PMCID: PMC9065981 DOI: 10.1098/rsif.2022.0029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Previous studies show that city metrics having to do with growth, productivity and overall energy consumption scale superlinearly, attributing this to the social nature of cities. Superlinear scaling results in crises called ‘singularities’, where population and energy demand tend to infinity in a finite amount of time, which must be avoided by ever more frequent ‘resets’ or innovations that postpone the system's collapse. Here, we place the emergence of cities and planetary civilizations in the context of major evolutionary transitions. With this perspective, we hypothesize that once a planetary civilization transitions into a state that can be described as one virtually connected global city, it will face an ‘asymptotic burnout’, an ultimate crisis where the singularity-interval time scale becomes smaller than the time scale of innovation. If a civilization develops the capability to understand its own trajectory, it will have a window of time to affect a fundamental change to prioritize long-term homeostasis and well-being over unyielding growth—a consciously induced trajectory change or ‘homeostatic awakening’. We propose a new resolution to the Fermi paradox: civilizations either collapse from burnout or redirect themselves to prioritizing homeostasis, a state where cosmic expansion is no longer a goal, making them difficult to detect remotely.
Collapse
Affiliation(s)
- Michael L Wong
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA
| | - Stuart Bartlett
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
13
|
Pausas JG, Bond WJ. Feedbacks in ecology and evolution. Trends Ecol Evol 2022; 37:637-644. [PMID: 35466019 DOI: 10.1016/j.tree.2022.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 10/18/2022]
Abstract
Ecology and evolutionary biology have focused on how organisms fit the environment. Less attention has been given to the idea that organisms can also modify their environment, and that these modifications can feed back to the organism, thus providing a key factor for their persistence and evolution. There are at least three independent lines of evidence emphasizing these biological feedback processes at different scales: niche construction (population scale); alternative biome states (community scale); and the Gaia hypothesis (planetary scale). These feedback processes make us rethink traditional concepts like niche and adaptation. We argue that organism-environment feedbacks must become a regular part of ecological thinking, especially now that the Earth is quickly changing.
Collapse
Affiliation(s)
- Juli G Pausas
- Centro de Investigaciones sobre Desertificación (CIDE-CSIC), Valencia, Spain.
| | - William J Bond
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa; South African Environmental Observation Network, National Research Foundation, Claremont, South Africa
| |
Collapse
|
14
|
Oliveira MR, Ferreira BHS, Souza EB, Lopes AA, Bolzan FP, Roque FO, Pott A, Pereira AMM, Garcia LC, Damasceno‐Jr GA, Costa A, Rocha M, Xavier S, Ferraz RA, Ribeiro DB. Indigenous brigades changes the spatial patterns of wildfires and the influence of climate on fire regimes. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Maxwell R. Oliveira
- Universidade Federal de Mato Grosso do Sul, Instituto de Biociências, UFMS Brazil
| | - Bruno H. S. Ferreira
- Universidade Federal de Mato Grosso do Sul, Instituto de Biociências, UFMS Brazil
| | - Evaldo B. Souza
- Universidade Federal de Mato Grosso do Sul, Instituto de Biociências, UFMS Brazil
| | | | - Fábio P. Bolzan
- Universidade Federal de Mato Grosso do Sul, Instituto de Biociências, UFMS Brazil
| | - Fábio O. Roque
- Universidade Federal de Mato Grosso do Sul, Instituto de Biociências, UFMS Brazil
| | - Arnildo Pott
- Universidade Federal de Mato Grosso do Sul, Instituto de Biociências, UFMS Brazil
| | - Alexandre M. M. Pereira
- Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis, Campo Grande Mato Grosso do Sul Brazil
| | - Letícia C. Garcia
- Universidade Federal de Mato Grosso do Sul, Instituto de Biociências, UFMS Brazil
| | | | | | - Mesaque Rocha
- Associação dos Brigadistas Indígenas da Nação Kadwéu
| | - Silvio Xavier
- Associação dos Brigadistas Indígenas da Nação Kadwéu
| | | | - Danilo B. Ribeiro
- Universidade Federal de Mato Grosso do Sul, Instituto de Biociências, UFMS Brazil
| |
Collapse
|
15
|
Furze JN, Mayad EH. Harmonics, evolutionary generators, DANCE, and HEAR-functional dimensions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:64181-64190. [PMID: 33846914 DOI: 10.1007/s11356-021-13159-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Evolution of the major kingdoms of life has spanned over the last 4 billion years on Earth. Studies of the process comprise different fields of study with alternative perspectives. This paper focuses on mathematic unification of the subject area; enriching an engineering based structure to advance our understanding of pathways which lead to distinct constructs in life, furthering geographic bordering processes with biological context. Application of logistic regression requires partitioning of variance within cellular and molecular systems; use of higher mathematic technique (multi-objective genetic algorithm) generates variance within the different scales of evolution, the result of which is analogous with the Fisher equation model of gene distribution within populations. Laboratory and field studies were integrated to illustrate emergence in evolutionary processes in the terrestrial/soil environment. Nematological field and laboratory trials validate the existence of triangular relationships within biological communities; further harmonic constants between interacting species may be found with emergent consequence. We distinguish different strategical groupings in the soil community, with the core groupings recognized with Meloidogyne spp. illustrating positive (emergent) growth; Radopholus similis (neutral growth), and Helicotylenchus pseudorobustus (negative growth). The patterns of emergent systems are shown in the extremes of Morocco's dynamic soil environment. Fuzzy classification methods: Mamdani, Takugi-Sugeno-Kang; additional novel DANCE (Differential Algorithmic Network Centered Emergence) and functional expressions HEAR (Harmonic Evolutionary Algorithmic Resilience), are recommended to give a basis for development of constructs covering different categories of life.
Collapse
Affiliation(s)
- James Nicholas Furze
- Laboratory of Biotechnology and Valorization of Natural Resources, Faculty of Sciences of Agadir, Department of Biology, Ibn Zohr University, BP 8106, Agadir, 80000, Morocco.
- Control and Systems Engineering Department, University of Technology, Alsinaah Street, P.O. Box: 19006, Baghdad, 10066, Iraq.
- Royal Geographical Society with the Institute of British Geographers, 1 Kensington Gore, London, SW7 2AR, UK.
| | - El Hassan Mayad
- Control and Systems Engineering Department, University of Technology, Alsinaah Street, P.O. Box: 19006, Baghdad, 10066, Iraq
| |
Collapse
|
16
|
Büttner SH, Isemonger EW, Isaacs M, van Niekerk D, Sipler RE, Dorrington RA. Living phosphatic stromatolites in a low-phosphorus environment: Implications for the use of phosphorus as a proxy for phosphate levels in paleo-systems. GEOBIOLOGY 2021; 19:35-47. [PMID: 33067916 DOI: 10.1111/gbi.12415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 08/01/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
In the geological record, fossil phosphatic stromatolites date back to the Great Oxidation Event in the Paleoproterozoic, but living phosphatic stromatolites have not been described previously. Here, we report on cyanobacterial stromatolites in a supratidal freshwater environment at Cape Recife, South African southern coast, precipitating Ca carbonate alternating with episodes of Ca phosphate deposition. In their structure and composition, the living stromatolites from Cape Recife closely resemble their fossilized analogues, showing phosphatic zonation, microbial casts, tunnel structures and phosphatic crusts of biogenic origin. The microbial communities appear to be also similar to those proposed to have formed fossil phosphatic stromatolites. Phosphatic domains in the material from Cape Recife are spatially and texturally associated with carbonate precipitates, but form distinct entities separated by sharp boundaries. Electron Probe Micro-Analysis shows that Ca/P ratios and the overall chemical compositions of phosphatic precipitates are in the range of octacalcium phosphate, amorphous tricalcium phosphate and apatite. The coincidence in time of the emergence of phosphatic stromatolites in the fossil record with a major episode of atmospheric oxidation led to the assumption that at times of increased oxygen release the underlying increased biological production may have been linked to elevated phosphorus availability. The stromatolites at Cape Recife, however, form in an environment where ambient phosphorus concentrations do not exceed 0.28 μM, one to two orders of magnitude below the previously predicted minimum threshold of >5 μM for biogenic phosphate precipitation in paleo-systems. Accordingly, we contest the previously proposed suitability of phosphatic stromatolites as a proxy for high ambient phosphate concentrations in supratidal to shallow ocean settings in earth history.
Collapse
Affiliation(s)
- Steffen H Büttner
- Department of Geology, Rhodes University, Makhanda (Grahamstown), South Africa
| | - Eric W Isemonger
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda (Grahamstown), South Africa
| | - Michelle Isaacs
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda (Grahamstown), South Africa
| | - Deon van Niekerk
- Department of Geology, Rhodes University, Makhanda (Grahamstown), South Africa
| | - Rachel E Sipler
- Department of Ocean Sciences, Memorial University of Newfoundland, St John's, NL, Canada
| | - Rosemary A Dorrington
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda (Grahamstown), South Africa
| |
Collapse
|
17
|
Seto M, Iwasa Y. How Thermodynamics Illuminates Population Interactions in Microbial Communities. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.602809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In traditional population models of microbial ecology, there are two central players: producers and consumers (including decomposers that depend on organic carbon). Producers support surface ecosystems by generating adenosine triphosphate (ATP) from sunlight, part of which is used to build new biomass from carbon dioxide. In contrast, the productivity of subsurface ecosystems with a limited supply of sunlight must rely on bacteria and archaea that are able generate ATP solely from chemical or electric energy to fix inorganic carbon. These “light-independent producers” are frequently not included in traditional food webs, even though they are ubiquitous in nature and interact with one another through the utilization of the by-products of others. In this review, we introduce theoretical approaches based on population dynamics that incorporate thermodynamics to highlight characteristic interactions in the microbial community of subsurface ecosystems, which may link community structures and ecosystem expansion under conditions of a limited supply of sunlight. In comparison with light-dependent producers, which compete with one another for light, the use of Gibbs free energy (chemical energy) can lead cooperative interactions among light-independent producers through the effects of the relative quantities of products and reactants on the available chemical energy, which is termed abundant resource premium. The development of a population theory that incorporates thermodynamics offers fundamental ecological insights into subsurface microbial ecosystems, which may be applied to fields of study such as environmental science/engineering, astrobiology, or the microbial ecosystems of the early earth.
Collapse
|
18
|
Sanders E, Farmer SC. Aquatic Models: Water Quality and Stability and Other Environmental Factors. ILAR J 2020; 60:141-149. [PMID: 33094818 DOI: 10.1093/ilar/ilaa008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 01/09/2020] [Accepted: 02/04/2020] [Indexed: 11/12/2022] Open
Abstract
The use of aquatic animals in ecotoxicology, genetic, and biomedical research has grown immensely in recent years, especially due to the increased use of zebrafish in the laboratory setting. Because water is the primary environment of most aquatic species, the composition and management of this water is paramount to ensuring their health and welfare. In this publication, we will describe the important variables in water quality that can influence animal health and research results, using the zebrafish model for detailed specifics of optimal conditions. Wherever possible, recommendations are provided to reduce the potential impact of poor or highly variable water quality, and standards are given which can be used as institutional goals to maximize animal health and welfare and reduce research variability. It is increasingly important that authors of publications describing work done using aquatic models characterize water quality and other environmental conditions of the animal environment so that the work can be repeated and understood in context of these important factors. It is clear that there are a great many extrinsic factors which may influence research outcomes in the aquatics model laboratory setting, and consequently, an increased level of funding will be essential to support continued research exploring these and other important husbandry conditions. References from a large body of literature on this subject are provided.
Collapse
Affiliation(s)
| | - Susan C Farmer
- Animal Resources Program, and Zebrafish Research Facility, University of Alabama, Birmingham, Alabama
| |
Collapse
|
19
|
Corazza GE, Lubart T. The Big Bang of Originality and Effectiveness: A Dynamic Creativity Framework and Its Application to Scientific Missions. Front Psychol 2020; 11:575067. [PMID: 33071915 PMCID: PMC7530606 DOI: 10.3389/fpsyg.2020.575067] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/28/2020] [Indexed: 11/20/2022] Open
Abstract
This article introduces a theoretical framework to conceptualize the dynamics of the phenomenon of creativity, which is then applied to the specific case of scientific missions for the exploration of the universe. Static definitions of creativity are insufficient for this purpose, as they fail to describe states of creative inconclusiveness as well as the time and culture-dependent estimation of the value of the outcomes of a creative process; therefore, a dynamic definition of creativity is introduced, justified, and adopted to build a dynamic creativity framework. Within this framework, creativity episodes are shown to be mutually interconnected through several mechanisms (past and future concatenation, estimation, and exaptation), to form a dynamic universal creativity process (DUCP), the beginning of which can be traced back to the Big Bang of our universe. The DUCP entails several layers of complexity (material, biological, sociocultural, and artificial), showing that creativity is not only a psychological construct for humans but rather a unifying cosmological principle. Context embeddedness is discussed in-depth, introducing a taxonomy based on the concepts of tightness and looseness as applied to conceptual space and time. This theoretical framework is, then, applied to the discussion of the design, realization, and operations of scientific missions for the exploration of the universe, taking as a reference the terminology adopted by the European Space Agency.
Collapse
Affiliation(s)
- Giovanni Emanuele Corazza
- Department of Electrical, Electronic, and Information Engineering, Marconi Institute for Creativity, University of Bologna, Bologna, Italy.,Laboratoire de Psychologie et d'Ergonomie Appliquée, Université de Paris and Université Gustave Eiffel, Paris, France
| | - Todd Lubart
- Laboratoire de Psychologie et d'Ergonomie Appliquée, Université de Paris and Université Gustave Eiffel, Paris, France
| |
Collapse
|
20
|
Lucock M. The
Anthropocene
: Exploring its origins, biology, and future. Am J Hum Biol 2020; 33:e23476. [DOI: 10.1002/ajhb.23476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 01/10/2023] Open
Affiliation(s)
- Mark Lucock
- School of Environmental & Life Sciences University of Newcastle Ourimbah New South Wales Australia
| |
Collapse
|
21
|
The efficiency paradox: How wasteful competitors forge thrifty ecosystems. Proc Natl Acad Sci U S A 2019; 116:17619-17623. [PMID: 31420512 DOI: 10.1073/pnas.1901785116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Organic waste, an inevitable byproduct of metabolism, increases in amount as metabolic rates (per capita power) of animals and plants rise. Most of it is recycled within aerobic ecosystems, but some is lost to the system and is sequestered in the crust for millions of years. Here, I identify and resolve a previously overlooked paradox concerning the long-term loss of organic matter. In this efficiency paradox, high-powered species are inefficient in that they release copious waste, but the ecosystems they inhabit lose almost no organic matter. Systems occupied by more efficient low-powered species suffer greater losses because of less efficient recycling. Over Phanerozoic time, ecosystems have become more productive and increasingly efficient at retaining and redistributing organic matter even as opportunistic and highly competitive producers and consumers gained power and became less efficient. These patterns and trends are driven by natural selection at the level of individuals and coherent groups, which favors winners that are more powerful, active, and wasteful. The activities of these competitors collectively create conditions that are increasingly conducive to more efficient recycling and retention of organic matter in the ecosystem.
Collapse
|
22
|
Chan MA, Hinman NW, Potter-McIntyre SL, Schubert KE, Gillams RJ, Awramik SM, Boston PJ, Bower DM, Des Marais DJ, Farmer JD, Jia TZ, King PL, Hazen RM, Léveillé RJ, Papineau D, Rempfert KR, Sánchez-Román M, Spear JR, Southam G, Stern JC, Cleaves HJ. Deciphering Biosignatures in Planetary Contexts. ASTROBIOLOGY 2019; 19:1075-1102. [PMID: 31335163 PMCID: PMC6708275 DOI: 10.1089/ast.2018.1903] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 03/10/2019] [Indexed: 05/05/2023]
Abstract
Microbial life permeates Earth's critical zone and has likely inhabited nearly all our planet's surface and near subsurface since before the beginning of the sedimentary rock record. Given the vast time that Earth has been teeming with life, do astrobiologists truly understand what geological features untouched by biological processes would look like? In the search for extraterrestrial life in the Universe, it is critical to determine what constitutes a biosignature across multiple scales, and how this compares with "abiosignatures" formed by nonliving processes. Developing standards for abiotic and biotic characteristics would provide quantitative metrics for comparison across different data types and observational time frames. The evidence for life detection falls into three categories of biosignatures: (1) substances, such as elemental abundances, isotopes, molecules, allotropes, enantiomers, minerals, and their associated properties; (2) objects that are physical features such as mats, fossils including trace-fossils and microbialites (stromatolites), and concretions; and (3) patterns, such as physical three-dimensional or conceptual n-dimensional relationships of physical or chemical phenomena, including patterns of intermolecular abundances of organic homologues, and patterns of stable isotopic abundances between and within compounds. Five key challenges that warrant future exploration by the astrobiology community include the following: (1) examining phenomena at the "right" spatial scales because biosignatures may elude us if not examined with the appropriate instrumentation or modeling approach at that specific scale; (2) identifying the precise context across multiple spatial and temporal scales to understand how tangible biosignatures may or may not be preserved; (3) increasing capability to mine big data sets to reveal relationships, for example, how Earth's mineral diversity may have evolved in conjunction with life; (4) leveraging cyberinfrastructure for data management of biosignature types, characteristics, and classifications; and (5) using three-dimensional to n-D representations of biotic and abiotic models overlain on multiple overlapping spatial and temporal relationships to provide new insights.
Collapse
Affiliation(s)
- Marjorie A. Chan
- Department of Geology & Geophysics, University of Utah, Salt Lake City, Utah
| | - Nancy W. Hinman
- Department of Geosciences, University of Montana, Missoula, Montana
| | | | - Keith E. Schubert
- Department of Electrical and Computer Engineering, Baylor University, Waco, Texas
| | - Richard J. Gillams
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Electronics and Computer Science, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Stanley M. Awramik
- Department of Earth Science, University of California, Santa Barbara, Santa Barbara, California
| | - Penelope J. Boston
- NASA Astrobiology Institute, NASA Ames Research Center, Moffett Field, California
| | - Dina M. Bower
- Department of Astronomy, University of Maryland College Park (CRESST), College Park, Maryland
- NASA Goddard Space Flight Center, Greenbelt, Maryland
| | | | - Jack D. Farmer
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona
| | - Tony Z. Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Penelope L. King
- Research School of Earth Sciences, The Australian National University, Canberra, Australia
| | - Robert M. Hazen
- Geophysical Laboratory, Carnegie Institution for Science, Washington, District of Columbia
| | - Richard J. Léveillé
- Department of Earth and Planetary Sciences, McGill University, Montreal, Canada
- Geosciences Department, John Abbott College, Sainte-Anne-de-Bellevue, Canada
| | - Dominic Papineau
- London Centre for Nanotechnology, University College London, London, United Kingdom
- Department of Earth Sciences, University College London, London, United Kingdom
- Centre for Planetary Sciences, University College London, London, United Kingdom
- BioGeology and Environmental Geology State Key Laboratory, School of Earth Sciences, China University of Geosciences, Wuhan, China
| | - Kaitlin R. Rempfert
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado
| | - Mónica Sánchez-Román
- Earth Sciences Department, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - John R. Spear
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado
| | - Gordon Southam
- School of Earth and Environmental Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | | | - Henderson James Cleaves
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Program in Interdisciplinary Studies, Institute for Advanced Study, Princeton, New Jersey
| |
Collapse
|
23
|
Brunk CF, Martin WF. Archaeal Histone Contributions to the Origin of Eukaryotes. Trends Microbiol 2019; 27:703-714. [PMID: 31076245 DOI: 10.1016/j.tim.2019.04.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/01/2019] [Accepted: 04/11/2019] [Indexed: 12/14/2022]
Abstract
The eukaryotic lineage arose from bacterial and archaeal cells that underwent a symbiotic merger. At the origin of the eukaryote lineage, the bacterial partner contributed genes, metabolic energy, and the building blocks of the endomembrane system. What did the archaeal partner donate that made the eukaryotic experiment a success? The archaeal partner provided the potential for complex information processing. Archaeal histones were crucial in that regard by providing the basic functional unit with which eukaryotes organize DNA into nucleosomes, exert epigenetic control of gene expression, transcribe genes with CCAAT-box promoters, and a manifest cell cycle with condensed chromosomes. While mitochondrial energy lifted energetic constraints on eukaryotic protein production, histone-based chromatin organization paved the path to eukaryotic genome complexity, a critical hurdle en route to the evolution of complex cells.
Collapse
Affiliation(s)
- Clifford F Brunk
- Department of Ecology and Evolutionary Biology and Molecular Biology Institute University of California Los Angeles, Los Angeles, USA
| | - William F Martin
- Institute of Molecular Evolution Heinrich-Heine-Universitaet Duesseldorf, Dusseldorf, Germany.
| |
Collapse
|
24
|
Degli Esposti M, Mentel M, Martin W, Sousa FL. Oxygen Reductases in Alphaproteobacterial Genomes: Physiological Evolution From Low to High Oxygen Environments. Front Microbiol 2019; 10:499. [PMID: 30936856 PMCID: PMC6431628 DOI: 10.3389/fmicb.2019.00499] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/27/2019] [Indexed: 01/24/2023] Open
Abstract
Oxygen reducing terminal oxidases differ with respect to their subunit composition, heme groups, operon structure, and affinity for O2. Six families of terminal oxidases are currently recognized, all of which occur in alphaproteobacterial genomes, two of which are also present in mitochondria. Many alphaproteobacteria encode several different terminal oxidases, likely reflecting ecological versatility with respect to oxygen levels. Terminal oxidase evolution likely started with the advent of O2 roughly 2.4 billion years ago and terminal oxidases diversified in the Proterozoic, during which oxygen levels remained low, around the Pasteur point (ca. 2 μM O2). Among the alphaproteobacterial genomes surveyed, those from members of the Rhodospirillaceae reveal the greatest diversity in oxygen reductases. Some harbor all six terminal oxidase types, in addition to many soluble enzymes typical of anaerobic fermentations in mitochondria and hydrogenosomes of eukaryotes. Recent data have it that O2 levels increased to current values (21% v/v or ca. 250 μM) only about 430 million years ago. Ecological adaptation brought forth different lineages of alphaproteobacteria and different lineages of eukaryotes that have undergone evolutionary specialization to high oxygen, low oxygen, and anaerobic habitats. Some have remained facultative anaerobes that are able to generate ATP with or without the help of oxygen and represent physiological links to the ancient proteobacterial lineage at the origin of mitochondria and eukaryotes. Our analysis reveals that the genomes of alphaproteobacteria appear to retain signatures of ancient transitions in aerobic metabolism, findings that are relevant to mitochondrial evolution in eukaryotes as well.
Collapse
Affiliation(s)
| | - Marek Mentel
- Faculty of Natural Sciences, Department of Biochemistry, Comenius University in Bratislava, Bratislava, Slovakia
| | - William Martin
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| | - Filipa L Sousa
- Division of Archaea Biology and Ecogenomics, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
25
|
|
26
|
“Alternative” fuels contributing to mitochondrial electron transport: Importance of non-classical pathways in the diversity of animal metabolism. Comp Biochem Physiol B Biochem Mol Biol 2018; 224:185-194. [DOI: 10.1016/j.cbpb.2017.11.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/08/2017] [Accepted: 11/10/2017] [Indexed: 12/19/2022]
|
27
|
Abstract
All known life forms trace back to a last universal common ancestor (LUCA) that witnessed the onset of Darwinian evolution. One can ask questions about LUCA in various ways, the most common way being to look for traits that are common to all cells, like ribosomes or the genetic code. With the availability of genomes, we can, however, also ask what genes are ancient by virtue of their phylogeny rather than by virtue of being universal. That approach, undertaken recently, leads to a different view of LUCA than we have had in the past, one that fits well with the harsh geochemical setting of early Earth and resembles the biology of prokaryotes that today inhabit the Earth's crust.
Collapse
|
28
|
Farnsworth KD. How Organisms Gained Causal Independence and How It Might Be Quantified. BIOLOGY 2018; 7:E38. [PMID: 29966241 PMCID: PMC6163937 DOI: 10.3390/biology7030038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/30/2018] [Accepted: 06/23/2018] [Indexed: 12/20/2022]
Abstract
Two broad features are jointly necessary for autonomous agency: organisational closure and the embodiment of an objective-function providing a ‘goal’: so far only organisms demonstrate both. Organisational closure has been studied (mostly in abstract), especially as cell autopoiesis and the cybernetic principles of autonomy, but the role of an internalised ‘goal’ and how it is instantiated by cell signalling and the functioning of nervous systems has received less attention. Here I add some biological ‘flesh’ to the cybernetic theory and trace the evolutionary development of step-changes in autonomy: (1) homeostasis of organisationally closed systems; (2) perception-action systems; (3) action selection systems; (4) cognitive systems; (5) memory supporting a self-model able to anticipate and evaluate actions and consequences. Each stage is characterised by the number of nested goal-directed control-loops embodied by the organism, summarised as will-nestedness N. Organism tegument, receptor/transducer system, mechanisms of cellular and whole-organism re-programming and organisational integration, all contribute to causal independence. CONCLUSION organisms are cybernetic phenomena whose identity is created by the information structure of the highest level of causal closure (maximum N), which has increased through evolution, leading to increased causal independence, which might be quantifiable by ‘Integrated Information Theory’ measures.
Collapse
|
29
|
Gonzalez TJ, Lu Y, Boswell M, Boswell W, Medrano G, Walter S, Ellis S, Savage M, Varga ZM, Lawrence C, Sanders G, Walter RB. Fluorescent light exposure incites acute and prolonged immune responses in zebrafish (Danio rerio) skin. Comp Biochem Physiol C Toxicol Pharmacol 2018; 208:87-95. [PMID: 28965927 PMCID: PMC5876079 DOI: 10.1016/j.cbpc.2017.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/19/2017] [Accepted: 09/22/2017] [Indexed: 01/13/2023]
Abstract
Artificial light produces an emission spectrum that is considerably different than the solar spectrum. Artificial light has been shown to affect various behavior and physiological processes in vertebrates. However, there exists a paucity of data regarding the molecular genetic effects of artificial light exposure. Previous studies showed that one of the commonly used fluorescent light source (FL; 4100K or "cool white") can affect signaling pathways related to maintenance of circadian rhythm, cell cycle progression, chromosome segregation, and DNA repair/recombination in the skin of male Xiphophorus maculatus. These observations raise questions concerning the kinetics of the FL induced gene expression response, and which biological functions become modulated at various times after light exposure. To address these questions, we exposed zebrafish to 4100K FL and utilized RNA-Seq to assess gene expression changes in skin at various times (1 to 12h) after FL exposure. We found 4100K FL incites a robust early (1-2h) transcriptional response, followed by a more protracted late response (i.e., 4-12h). The early transcriptional response involves genes associated with cell migration/infiltration and cell proliferation as part of an overall increase in immune function and inflammation. The protracted late transcriptional response occurs within gene sets predicted to maintain and perpetuate the inflammatory response, as well as suppression of lipid, xenobiotic, and melatonin metabolism.
Collapse
Affiliation(s)
- Trevor J Gonzalez
- Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, 601 University Drive, San Marcos, TX 78666, USA.
| | - Yuan Lu
- Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, 601 University Drive, San Marcos, TX 78666, USA.
| | - Mikki Boswell
- Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, 601 University Drive, San Marcos, TX 78666, USA.
| | - William Boswell
- Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, 601 University Drive, San Marcos, TX 78666, USA.
| | - Geraldo Medrano
- Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, 601 University Drive, San Marcos, TX 78666, USA.
| | - Sean Walter
- Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, 601 University Drive, San Marcos, TX 78666, USA.
| | - Samuel Ellis
- Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, 601 University Drive, San Marcos, TX 78666, USA
| | - Markita Savage
- Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, 601 University Drive, San Marcos, TX 78666, USA.
| | - Zoltan M Varga
- Zebrafish International Resource Center (ZIRC), 5274 University of Oregon Eugene, OR 97403, USA.
| | - Christian Lawrence
- Children's Hospital Boston Karp Family Research Laboratories, 4th Floor One Blackfan Circle Boston, MA 02115, USA.
| | - George Sanders
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA 98195-7340, USA.
| | - Ronald B Walter
- Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, 601 University Drive, San Marcos, TX 78666, USA.
| |
Collapse
|
30
|
Martin WF, Bryant DA, Beatty JT. A physiological perspective on the origin and evolution of photosynthesis. FEMS Microbiol Rev 2018; 42:205-231. [PMID: 29177446 PMCID: PMC5972617 DOI: 10.1093/femsre/fux056] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/20/2017] [Indexed: 12/22/2022] Open
Abstract
The origin and early evolution of photosynthesis are reviewed from an ecophysiological perspective. Earth's first ecosystems were chemotrophic, fueled by geological H2 at hydrothermal vents and, required flavin-based electron bifurcation to reduce ferredoxin for CO2 fixation. Chlorophyll-based phototrophy (chlorophototrophy) allowed autotrophs to generate reduced ferredoxin without electron bifurcation, providing them access to reductants other than H2. Because high-intensity, short-wavelength electromagnetic radiation at Earth's surface would have been damaging for the first chlorophyll (Chl)-containing cells, photosynthesis probably arose at hydrothermal vents under low-intensity, long-wavelength geothermal light. The first photochemically active pigments were possibly Zn-tetrapyrroles. We suggest that (i) after the evolution of red-absorbing Chl-like pigments, the first light-driven electron transport chains reduced ferredoxin via a type-1 reaction center (RC) progenitor with electrons from H2S; (ii) photothioautotrophy, first with one RC and then with two, was the bridge between H2-dependent chemolithoautotrophy and water-splitting photosynthesis; (iii) photothiotrophy sustained primary production in the photic zone of Archean oceans; (iv) photosynthesis arose in an anoxygenic cyanobacterial progenitor; (v) Chl a is the ancestral Chl; and (vi), anoxygenic chlorophototrophic lineages characterized so far acquired, by horizontal gene transfer, RCs and Chl biosynthesis with or without autotrophy, from the architects of chlorophototrophy-the cyanobacterial lineage.
Collapse
Affiliation(s)
- William F Martin
- Institute for Molecular Evolution, University of Düsseldorf, D-40225 Düsseldorf, Germany
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - J Thomas Beatty
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
31
|
Sousa FL, Preiner M, Martin WF. Native metals, electron bifurcation, and CO 2 reduction in early biochemical evolution. Curr Opin Microbiol 2018; 43:77-83. [PMID: 29316496 DOI: 10.1016/j.mib.2017.12.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 12/22/2022]
Abstract
Molecular hydrogen is an ancient source of energy and electrons. Anaerobic autotrophs that harness the H2/CO2 redox couple harbour ancient biochemical traits that trace back to the universal common ancestor. Aspects of their physiology, including the abundance of transition metals, radical reaction mechanisms, and their main exergonic bioenergetic reactions, forge links between ancient microbes and geochemical reactions at hydrothermal vents. The midpoint potential of H2 however requires anaerobes that reduce CO2 with H2 to use flavin based electron bifurcation-a mechanism to conserve energy as low potential reduced ferredoxins via soluble proteins-for CO2 fixation. This presents a paradox. At the onset of biochemical evolution, before there were proteins, how was CO2 reduced using H2? FeS minerals alone are probably not the solution, because biological CO2 reduction is a two electron reaction. Physiology can provide clues. Some acetogens and some methanogens can grow using native iron (Fe0) instead of H2 as the electron donor. In the laboratory, Fe0 efficiently reduces CO2 to acetate and methanol. Hydrothermal vents harbour awaruite, Ni3Fe, a natural compound of native metals. Native metals might have been the precursors of electron bifurcation in biochemical evolution.
Collapse
Affiliation(s)
- Filipa L Sousa
- Division of Archaea Biology and Ecogenomics, Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14 UZA I, 1090 Vienna, Austria.
| | - Martina Preiner
- Institute of Molecular Evolution, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - William F Martin
- Institute of Molecular Evolution, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany; Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| |
Collapse
|
32
|
Brown JH, Hall CAS, Sibly RM. Equal fitness paradigm explained by a trade-off between generation time and energy production rate. Nat Ecol Evol 2018; 2:262-268. [PMID: 29311701 DOI: 10.1038/s41559-017-0430-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 11/27/2017] [Indexed: 11/09/2022]
Abstract
Most plant, animal and microbial species of widely varying body size and lifestyle are nearly equally fit as evidenced by their coexistence and persistence through millions of years. All organisms compete for a limited supply of organic chemical energy, derived mostly from photosynthesis, to invest in the two components of fitness: survival and production. All organisms are mortal because molecular and cellular damage accumulates over the lifetime; life persists only because parents produce offspring. We call this the equal fitness paradigm. The equal fitness paradigm occurs because: (1) there is a trade-off between generation time and productive power, which have equal-but-opposite scalings with body size and temperature; smaller and warmer organisms have shorter lifespans but produce biomass at higher rates than larger and colder organisms; (2) the energy content of biomass is essentially constant, ~22.4 kJ g-1 dry body weight; and (3) the fraction of biomass production incorporated into surviving offspring is also roughly constant, ~10-50%. As organisms transmit approximately the same quantity of energy per gram to offspring in the next generation, no species has an inherent lasting advantage in the struggle for existence. The equal fitness paradigm emphasizes the central importance of energy, biological scaling relations and power-time trade-offs in life history, ecology and evolution.
Collapse
Affiliation(s)
- James H Brown
- Department of Biology, University of New Mexico, Albuquerque, NM, USA. .,636 Piney Way, Morro Bay, CA, USA.
| | - Charles A S Hall
- Department of Forest and Environmental Biology and Program in Environmental Science, State University of New York - College of Environmental Science and Forestry, Syracuse, NY, USA. .,26242 Montana Highway 35, Polson, MT, USA.
| | - Richard M Sibly
- School of Biological Sciences, University of Reading, Reading, UK
| |
Collapse
|
33
|
Patel SN, Sonani RR, Jakharia K, Bhastana B, Patel HM, Chaubey MG, Singh NK, Madamwar D. Antioxidant activity and associated structural attributes of Halomicronema phycoerythrin. Int J Biol Macromol 2018; 111:359-369. [PMID: 29307804 DOI: 10.1016/j.ijbiomac.2017.12.170] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/28/2017] [Accepted: 12/31/2017] [Indexed: 11/25/2022]
Abstract
In the present study, blue light absorbing pigment protein phycoerythrin (PE) is purified up to molecular grade purity from marine Halomicronema sp. R31DM. The purification method is based on the use of non-ionic detergent Triton-X 100 in ammonium sulphate precipitation. The purified PE is characterized for its antioxidant activity in vitro and in vivo. PE is noted to show substantial in vitro antioxidant activity probed by various biochemical assays. The PE moderated rise in the intracellular-ROS (reactive oxygen species) in wild type Caenorhabditis elegans upon heat and oxidative stress. Further, the antioxidant asset of PE is noted an expedient in averting the ROS associated abnormalities, i.e. impaired physiological behaviour (health span) and aging in C. elegans. The structural attributes of PE contributing to its antioxidant virtue are analysed; the presence of ample residues having antioxidant activity and chromophore-PEB in PE are identified as a source of its antioxidant activity. Furthermore, the stability of PE is assessed under three physico-chemical stresses, temperature, pH and oxidative stress.
Collapse
Affiliation(s)
- Stuti N Patel
- Post-Graduate Department of Biosciences, UGC-Centre of Advanced Study, Satellite Campus, Vadtal Road, Sardar Patel University, Bakrol, Anand 388315, Gujarat, India
| | - Ravi R Sonani
- Post-Graduate Department of Biosciences, UGC-Centre of Advanced Study, Satellite Campus, Vadtal Road, Sardar Patel University, Bakrol, Anand 388315, Gujarat, India; School of Sciences, P. P. Savani University, Dhamdod, Kosamba 394125, Gujarat, India.
| | - Kinnari Jakharia
- Post-Graduate Department of Biosciences, UGC-Centre of Advanced Study, Satellite Campus, Vadtal Road, Sardar Patel University, Bakrol, Anand 388315, Gujarat, India
| | - Bela Bhastana
- Post-Graduate Department of Biosciences, UGC-Centre of Advanced Study, Satellite Campus, Vadtal Road, Sardar Patel University, Bakrol, Anand 388315, Gujarat, India
| | - Hiral M Patel
- Post-Graduate Department of Biosciences, UGC-Centre of Advanced Study, Satellite Campus, Vadtal Road, Sardar Patel University, Bakrol, Anand 388315, Gujarat, India
| | - Mukesh G Chaubey
- Department of Biotechnology, Shree A. N. Patel PG Institute, Anand 388001, Gujarat, India
| | - Niraj K Singh
- Department of Biotechnology, Shree A. N. Patel PG Institute, Anand 388001, Gujarat, India
| | - Datta Madamwar
- Post-Graduate Department of Biosciences, UGC-Centre of Advanced Study, Satellite Campus, Vadtal Road, Sardar Patel University, Bakrol, Anand 388315, Gujarat, India.
| |
Collapse
|
34
|
Krissansen-Totton J, Olson S, Catling DC. Disequilibrium biosignatures over Earth history and implications for detecting exoplanet life. SCIENCE ADVANCES 2018; 4:eaao5747. [PMID: 29387792 PMCID: PMC5787383 DOI: 10.1126/sciadv.aao5747] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/19/2017] [Indexed: 05/04/2023]
Abstract
Chemical disequilibrium in planetary atmospheres has been proposed as a generalized method for detecting life on exoplanets through remote spectroscopy. Among solar system planets with substantial atmospheres, the modern Earth has the largest thermodynamic chemical disequilibrium due to the presence of life. However, how this disequilibrium changed over time and, in particular, the biogenic disequilibria maintained in the anoxic Archean or less oxic Proterozoic eons are unknown. We calculate the atmosphere-ocean disequilibrium in the Precambrian using conservative proxy- and model-based estimates of early atmospheric and oceanic compositions. We omit crustal solids because subsurface composition is not detectable on exoplanets, unlike above-surface volatiles. We find that (i) disequilibrium increased through time in step with the rise of oxygen; (ii) both the Proterozoic and Phanerozoic may have had remotely detectable biogenic disequilibria due to the coexistence of O2, N2, and liquid water; and (iii) the Archean had a biogenic disequilibrium caused by the coexistence of N2, CH4, CO2, and liquid water, which, for an exoplanet twin, may be remotely detectable. On the basis of this disequilibrium, we argue that the simultaneous detection of abundant CH4 and CO2 in a habitable exoplanet's atmosphere is a potential biosignature. Specifically, we show that methane mixing ratios greater than 10-3 are potentially biogenic, whereas those exceeding 10-2 are likely biogenic due to the difficulty in maintaining large abiotic methane fluxes to support high methane levels in anoxic atmospheres. Biogenicity would be strengthened by the absence of abundant CO, which should not coexist in a biological scenario.
Collapse
Affiliation(s)
- Joshua Krissansen-Totton
- Department of Earth and Space Sciences/Astrobiology Program, University of Washington, Seattle, WA 98195, USA
- Virtual Planetary Laboratory, University of Washington, Seattle, WA 98195, USA
| | - Stephanie Olson
- Department of Earth Sciences and NASA Astrobiology Institute, University of California, Riverside, Riverside, CA 92521, USA
| | - David C. Catling
- Department of Earth and Space Sciences/Astrobiology Program, University of Washington, Seattle, WA 98195, USA
- Virtual Planetary Laboratory, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
35
|
Kempes CP, Wolpert D, Cohen Z, Pérez-Mercader J. The thermodynamic efficiency of computations made in cells across the range of life. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:20160343. [PMID: 29133443 PMCID: PMC5686401 DOI: 10.1098/rsta.2016.0343] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/31/2017] [Indexed: 06/01/2023]
Abstract
Biological organisms must perform computation as they grow, reproduce and evolve. Moreover, ever since Landauer's bound was proposed, it has been known that all computation has some thermodynamic cost-and that the same computation can be achieved with greater or smaller thermodynamic cost depending on how it is implemented. Accordingly an important issue concerning the evolution of life is assessing the thermodynamic efficiency of the computations performed by organisms. This issue is interesting both from the perspective of how close life has come to maximally efficient computation (presumably under the pressure of natural selection), and from the practical perspective of what efficiencies we might hope that engineered biological computers might achieve, especially in comparison with current computational systems. Here we show that the computational efficiency of translation, defined as free energy expended per amino acid operation, outperforms the best supercomputers by several orders of magnitude, and is only about an order of magnitude worse than the Landauer bound. However, this efficiency depends strongly on the size and architecture of the cell in question. In particular, we show that the useful efficiency of an amino acid operation, defined as the bulk energy per amino acid polymerization, decreases for increasing bacterial size and converges to the polymerization cost of the ribosome. This cost of the largest bacteria does not change in cells as we progress through the major evolutionary shifts to both single- and multicellular eukaryotes. However, the rates of total computation per unit mass are non-monotonic in bacteria with increasing cell size, and also change across different biological architectures, including the shift from unicellular to multicellular eukaryotes.This article is part of the themed issue 'Reconceptualizing the origins of life'.
Collapse
Affiliation(s)
| | - David Wolpert
- The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Beyond Center, Arizona State University, Tempe, AZ 85287, USA
| | - Zachary Cohen
- Department of Biology, University of Illinois, Urbana Champagne, Urbana, IL 61801, USA
| | - Juan Pérez-Mercader
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
36
|
|
37
|
How the Land Became the Locus of Major Evolutionary Innovations. Curr Biol 2017; 27:3178-3182.e1. [DOI: 10.1016/j.cub.2017.08.076] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 11/23/2022]
|