1
|
Garcia-Erill G, Wang X, Rasmussen MS, Quinn L, Khan A, Bertola LD, Santander CG, Balboa RF, Ogutu JO, Pečnerová P, Hanghøj K, Kuja J, Nursyifa C, Masembe C, Muwanika V, Bibi F, Moltke I, Siegismund HR, Albrechtsen A, Heller R. Extensive Population Structure Highlights an Apparent Paradox of Stasis in the Impala (Aepyceros melampus). Mol Ecol 2024; 33:e17539. [PMID: 39373069 DOI: 10.1111/mec.17539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/30/2024] [Accepted: 09/18/2024] [Indexed: 10/08/2024]
Abstract
Impalas are unusual among bovids because they have remained morphologically similar over millions of years-a phenomenon referred to as evolutionary stasis. Here, we sequenced 119 whole genomes from the two extant subspecies of impala, the common (Aepyceros melampus melampus) and black-faced (A. m. petersi) impala. We investigated the evolutionary forces working within the species to explore how they might be associated with its evolutionary stasis as a taxon. Despite being one of the most abundant bovid species, we found low genetic diversity overall, and a phylogeographic signal of spatial expansion from southern to eastern Africa. Contrary to expectations under a scenario of evolutionary stasis, we found pronounced genetic structure between and within the two subspecies with indications of ancient, but not recent, gene flow. Black-faced impala and eastern African common impala populations had more runs of homozygosity than common impala in southern Africa, and, using a proxy for genetic load, we found that natural selection is working less efficiently in these populations compared to the southern African populations. Together with the fossil record, our results are consistent with a fixed-optimum model of evolutionary stasis, in which impalas in the southern African core of the range are able to stay near their evolutionary fitness optimum as a generalist ecotone species, whereas eastern African impalas may struggle to do so due to the effects of genetic drift and reduced adaptation to the local habitat, leading to recurrent local extinction in eastern Africa and re-colonisation from the South.
Collapse
Affiliation(s)
- Genís Garcia-Erill
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Department of Molecular Biology and Genetics, Bioinformatics Research Center, Aarhus University, Aarhus, Denmark
| | - Xi Wang
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Liam Quinn
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Anubhab Khan
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Laura D Bertola
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Cindy G Santander
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Renzo F Balboa
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Joseph O Ogutu
- Biostatistics Unit, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | | | - Kristian Hanghøj
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Josiah Kuja
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Casia Nursyifa
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Charles Masembe
- College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Vincent Muwanika
- College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| | - Faysal Bibi
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Ida Moltke
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Hans R Siegismund
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Rasmus Heller
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Talenti A, Wilkinson T, Cook EA, Hemmink JD, Paxton E, Mutinda M, Ngulu SD, Jayaraman S, Bishop RP, Obara I, Hourlier T, Garcia Giron C, Martin FJ, Labuschagne M, Atimnedi P, Nanteza A, Keyyu JD, Mramba F, Caron A, Cornelis D, Chardonnet P, Fyumagwa R, Lembo T, Auty HK, Michaux J, Smitz N, Toye P, Robert C, Prendergast JGD, Morrison LJ. Continent-wide genomic analysis of the African buffalo (Syncerus caffer). Commun Biol 2024; 7:792. [PMID: 38951693 PMCID: PMC11217449 DOI: 10.1038/s42003-024-06481-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/21/2024] [Indexed: 07/03/2024] Open
Abstract
The African buffalo (Syncerus caffer) is a wild bovid with a historical distribution across much of sub-Saharan Africa. Genomic analysis can provide insights into the evolutionary history of the species, and the key selective pressures shaping populations, including assessment of population level differentiation, population fragmentation, and population genetic structure. In this study we generated the highest quality de novo genome assembly (2.65 Gb, scaffold N50 69.17 Mb) of African buffalo to date, and sequenced a further 195 genomes from across the species distribution. Principal component and admixture analyses provided little support for the currently described four subspecies. Estimating Effective Migration Surfaces analysis suggested that geographical barriers have played a significant role in shaping gene flow and the population structure. Estimated effective population sizes indicated a substantial drop occurring in all populations 5-10,000 years ago, coinciding with the increase in human populations. Finally, signatures of selection were enriched for key genes associated with the immune response, suggesting infectious disease exert a substantial selective pressure upon the African buffalo. These findings have important implications for understanding bovid evolution, buffalo conservation and population management.
Collapse
Affiliation(s)
- Andrea Talenti
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, EH25 9RG, United Kingdom
| | - Toby Wilkinson
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, EH25 9RG, United Kingdom
| | - Elizabeth A Cook
- International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100, Kenya
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, P.O. Box 30709, Nairobi, 00100, Kenya
| | - Johanneke D Hemmink
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, EH25 9RG, United Kingdom
- International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100, Kenya
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, P.O. Box 30709, Nairobi, 00100, Kenya
| | - Edith Paxton
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
| | - Matthew Mutinda
- Kenya Wildlife Service, P.O. Box 40241, Nairobi, 00100, Kenya
| | | | - Siddharth Jayaraman
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
| | - Richard P Bishop
- International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100, Kenya
| | - Isaiah Obara
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany
| | - Thibaut Hourlier
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, United Kingdom
| | - Carlos Garcia Giron
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, United Kingdom
| | - Fergal J Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, United Kingdom
| | | | | | - Anne Nanteza
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Julius D Keyyu
- Tanzania Wildlife Research Institute, Box 661, Arusha, Tanzania
| | - Furaha Mramba
- Vector and Vector-Borne Diseases Institute, Tanga, Tanzania
| | - Alexandre Caron
- ASTRE, University of Montpellier (UMR), CIRAD, 34090, Montpellier, France
- CIRAD, UMR ASTRE, RP-PCP, Maputo, 01009, Mozambique
- Faculdade Veterinaria, Universidade Eduardo Mondlan, Maputo, Mozambique
| | - Daniel Cornelis
- CIRAD, Forêts et Sociétés, 34398, Montpellier, France
- Forêts et Sociétés, University of Montpellier, CIRAD, 34090, Montpellier, France
| | | | - Robert Fyumagwa
- Tanzania Wildlife Research Institute, Box 661, Arusha, Tanzania
| | - Tiziana Lembo
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Harriet K Auty
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Johan Michaux
- Laboratoire de Génétique de la Conservation, Institut de Botanique (Bat. 22), Université de Liège (Sart Tilman), Chemin de la Vallée 4, B4000, Liège, Belgium
| | - Nathalie Smitz
- Royal Museum for Central Africa (BopCo), Leuvensesteenweg 13, 3080, Tervuren, Belgium
| | - Philip Toye
- International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100, Kenya
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, P.O. Box 30709, Nairobi, 00100, Kenya
| | - Christelle Robert
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, EH25 9RG, United Kingdom
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, United Kingdom
| | - James G D Prendergast
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, EH25 9RG, United Kingdom
| | - Liam J Morrison
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom.
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, EH25 9RG, United Kingdom.
| |
Collapse
|
3
|
Liu X, Lin L, Sinding MHS, Bertola LD, Hanghøj K, Quinn L, Garcia-Erill G, Rasmussen MS, Schubert M, Pečnerová P, Balboa RF, Li Z, Heaton MP, Smith TPL, Pinto RR, Wang X, Kuja J, Brüniche-Olsen A, Meisner J, Santander CG, Ogutu JO, Masembe C, da Fonseca RR, Muwanika V, Siegismund HR, Albrechtsen A, Moltke I, Heller R. Introgression and disruption of migration routes have shaped the genetic integrity of wildebeest populations. Nat Commun 2024; 15:2921. [PMID: 38609362 PMCID: PMC11014984 DOI: 10.1038/s41467-024-47015-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/11/2024] [Indexed: 04/14/2024] Open
Abstract
The blue wildebeest (Connochaetes taurinus) is a keystone species in savanna ecosystems from southern to eastern Africa, and is well known for its spectacular migrations and locally extreme abundance. In contrast, the black wildebeest (C. gnou) is endemic to southern Africa, barely escaped extinction in the 1900s and is feared to be in danger of genetic swamping from the blue wildebeest. Despite the ecological importance of the wildebeest, there is a lack of understanding of how its unique migratory ecology has affected its gene flow, genetic structure and phylogeography. Here, we analyze whole genomes from 121 blue and 22 black wildebeest across the genus' range. We find discrete genetic structure consistent with the morphologically defined subspecies. Unexpectedly, our analyses reveal no signs of recent interspecific admixture, but rather a late Pleistocene introgression of black wildebeest into the southern blue wildebeest populations. Finally, we find that migratory blue wildebeest populations exhibit a combination of long-range panmixia, higher genetic diversity and lower inbreeding levels compared to neighboring populations whose migration has recently been disrupted. These findings provide crucial insights into the evolutionary history of the wildebeest, and tangible genetic evidence for the negative effects of anthropogenic activities on highly migratory ungulates.
Collapse
Affiliation(s)
- Xiaodong Liu
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Long Lin
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Laura D Bertola
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Hanghøj
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Liam Quinn
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Mikkel Schubert
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Renzo F Balboa
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Zilong Li
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Michael P Heaton
- USDA, ARS, U.S. Meat Animal Research Center (USMARC), Clay Center, NE, USA
| | - Timothy P L Smith
- USDA, ARS, U.S. Meat Animal Research Center (USMARC), Clay Center, NE, USA
| | - Rui Resende Pinto
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research-University of Porto, Porto, Portugal
- Section for Biodiversity, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Xi Wang
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Josiah Kuja
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Jonas Meisner
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Research Centre for Mental Health, Copenhagen University Hospital, Copenhagen, Denmark
| | - Cindy G Santander
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Joseph O Ogutu
- Biostatistics Unit, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - Charles Masembe
- Department of Zoology, Entomology and Fisheries Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Rute R da Fonseca
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research-University of Porto, Porto, Portugal
- Section for Biodiversity, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Vincent Muwanika
- Department of Environmental Management, Makerere University, PO Box 7062, Kampala, Uganda
| | - Hans R Siegismund
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Ida Moltke
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Rasmus Heller
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Friis G, Smith EG, Lovelock CE, Ortega A, Marshell A, Duarte CM, Burt JA. Rapid diversification of grey mangroves (Avicennia marina) driven by geographic isolation and extreme environmental conditions in the Arabian Peninsula. Mol Ecol 2024; 33:e17260. [PMID: 38197286 DOI: 10.1111/mec.17260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 11/13/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024]
Abstract
Biological systems occurring in ecologically heterogeneous and spatially discontinuous habitats provide an ideal opportunity to investigate the relative roles of neutral and selective factors in driving lineage diversification. The grey mangroves (Avicennia marina) of Arabia occur at the northern edge of the species' range and are subject to variable, often extreme, environmental conditions, as well as historic large fluctuations in habitat availability and connectivity resulting from Quaternary glacial cycles. Here, we analyse fully sequenced genomes sampled from 19 locations across the Red Sea, the Arabian Sea and the Persian/Arabian Gulf (PAG) to reconstruct the evolutionary history of the species in the region and to identify adaptive mechanisms of lineage diversification. Population structure and phylogenetic analyses revealed marked genetic structure correlating with geographic distance and highly supported clades among and within the seas surrounding the Arabian Peninsula. Demographic modelling showed times of divergence consistent with recent periods of geographic isolation and low marine connectivity during glaciations, suggesting the presence of (cryptic) glacial refugia in the Red Sea and the PAG. Significant migration was detected within the Red Sea and the PAG, and across the Strait of Hormuz to the Arabian Sea, suggesting gene flow upon secondary contact among populations. Genetic-environment association analyses revealed high levels of adaptive divergence and detected signs of multi-loci local adaptation driven by temperature extremes and hypersalinity. These results support a process of rapid diversification resulting from the combined effects of historical factors and ecological selection and reveal mangrove peripheral environments as relevant drivers of lineage diversity.
Collapse
Affiliation(s)
- Guillermo Friis
- Center for Genomics and Systems Biology (CGSB) and Mubadala ACCESS Center, New York University - Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Edward G Smith
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Catherine E Lovelock
- School of Environment, The University of Queensland, St Lucia, Queensland, Australia
| | - Alejandra Ortega
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Alyssa Marshell
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Carlos M Duarte
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - John A Burt
- Center for Genomics and Systems Biology (CGSB) and Mubadala ACCESS Center, New York University - Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
5
|
Salmona J, Dresen A, Ranaivoson AE, Manzi S, Le Pors B, Hong-Wa C, Razanatsoa J, Andriaholinirina NV, Rasoloharijaona S, Vavitsara ME, Besnard G. How ancient forest fragmentation and riparian connectivity generate high levels of genetic diversity in a microendemic Malagasy tree. Mol Ecol 2023; 32:299-315. [PMID: 36320175 PMCID: PMC10100191 DOI: 10.1111/mec.16759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022]
Abstract
Understanding landscape changes is central to predicting evolutionary trajectories and defining conservation practices. While human-driven deforestation is intense throughout Madagascar, exceptions in areas such as the Loky-Manambato region (north) raise questions regarding the causes and age of forest fragmentation. The Loky-Manambato region also harbours a rich and endemic flora, whose evolutionary origin remains poorly understood. We assessed the genetic diversity of an endangered microendemic Malagasy olive species (Noronhia spinifolia Hong-Wa) to better understand the vegetation dynamics in the Loky-Manambato region and its influence on past evolutionary processes. We characterized 72 individuals sampled across eight forests through nuclear and mitochondrial restriction-associated DNA sequencing data and chloroplast microsatellites. Combined population and landscape genetics analyses indicate that N. spinifolia diversity is largely explained by the current forest cover, highlighting a long-standing habitat mosaic in the region. This sustains a major and long-term role of riparian corridors in maintaining connectivity across these antique mosaic habitats, calling for the study of organismal interactions that promote gene flow.
Collapse
Affiliation(s)
- Jordi Salmona
- CNRS-UPS-IRD, UMR5174, Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier, Toulouse, France
| | - Axel Dresen
- CNRS-UPS-IRD, UMR5174, Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier, Toulouse, France
| | - Anicet E Ranaivoson
- CNRS-UPS-IRD, UMR5174, Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier, Toulouse, France.,Faculté des Sciences, Université de Mahajanga, Mahajanga, Madagascar
| | - Sophie Manzi
- CNRS-UPS-IRD, UMR5174, Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier, Toulouse, France
| | | | - Cynthia Hong-Wa
- Claude E. Phillips Herbarium, Delaware State University, Dover, Delaware, USA
| | - Jacqueline Razanatsoa
- Herbier, Département Flore, Parc Botanique et Zoologique de Tsimbazaza, Antananarivo, Madagascar
| | | | | | | | - Guillaume Besnard
- CNRS-UPS-IRD, UMR5174, Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
6
|
Evolution of the Family Equidae, Subfamily Equinae, in North, Central and South America, Eurasia and Africa during the Plio-Pleistocene. BIOLOGY 2022; 11:biology11091258. [PMID: 36138737 PMCID: PMC9495906 DOI: 10.3390/biology11091258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022]
Abstract
Studies of horse evolution arose during the middle of the 19th century, and several hypotheses have been proposed for their taxonomy, paleobiogeography, paleoecology and evolution. The present contribution represents a collaboration of 19 multinational experts with the goal of providing an updated summary of Pliocene and Pleistocene North, Central and South American, Eurasian and African horses. At the present time, we recognize 114 valid species across these continents, plus 4 North African species in need of further investigation. Our biochronology and biogeography sections integrate Equinae taxonomic records with their chronologic and geographic ranges recognizing regional biochronologic frameworks. The paleoecology section provides insights into paleobotany and diet utilizing both the mesowear and light microscopic methods, along with calculation of body masses. We provide a temporal sequence of maps that render paleoclimatic conditions across these continents integrated with Equinae occurrences. These records reveal a succession of extinctions of primitive lineages and the rise and diversification of more modern taxa. Two recent morphological-based cladistic analyses are presented here as competing hypotheses, with reference to molecular-based phylogenies. Our contribution represents a state-of-the art understanding of Plio-Pleistocene Equus evolution, their biochronologic and biogeographic background and paleoecological and paleoclimatic contexts.
Collapse
|
7
|
Garcia-Erill G, Jørgensen CHF, Muwanika VB, Wang X, Rasmussen MS, de Jong YA, Gaubert P, Olayemi A, Salmona J, Butynski TM, Bertola LD, Siegismund HR, Albrechtsen A, Heller R. Warthog Genomes Resolve an Evolutionary Conundrum and Reveal Introgression of Disease Resistance Genes. Mol Biol Evol 2022; 39:6627297. [PMID: 35779009 PMCID: PMC9250280 DOI: 10.1093/molbev/msac134] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
African wild pigs have a contentious evolutionary and biogeographic history. Until recently, desert warthog (Phacochoerus aethiopicus) and common warthog (P. africanus) were considered a single species. Molecular evidence surprisingly suggested they diverged at least 4.4 million years ago, and possibly outside of Africa. We sequenced the first whole-genomes of four desert warthogs and 35 common warthogs from throughout their range. We show that these two species diverged much later than previously estimated, 400,000–1,700,000 years ago depending on assumptions of gene flow. This brings it into agreement with the paleontological record. We found that the common warthog originated in western Africa and subsequently colonized eastern and southern Africa. During this range expansion, the common warthog interbred with the desert warthog, presumably in eastern Africa, underlining this region’s importance in African biogeography. We found that immune system–related genes may have adaptively introgressed into common warthogs, indicating that resistance to novel diseases was one of the most potent drivers of evolution as common warthogs expanded their range. Hence, we solve some of the key controversies surrounding warthog evolution and reveal a complex evolutionary history involving range expansion, introgression, and adaptation to new diseases.
Collapse
Affiliation(s)
- Genís Garcia-Erill
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Christian H F Jørgensen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Vincent B Muwanika
- Department of Environmental Management, Makerere University, PO Box 7062, Kampala, Uganda
| | - Xi Wang
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Malthe S Rasmussen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Yvonne A de Jong
- Eastern Africa Primate Diversity and Conservation Program & Lolldaiga Hills Research Programme, PO Box 149, Nanyuki 10400, Kenya
| | - Philippe Gaubert
- Laboratoire Évolution & Diversité Biologique, Université Toulouse III Paul Sabatier, 31062 Toulouse, France
| | - Ayodeji Olayemi
- Natural History Museum, Obafemi Awolowo University, HO 220005 Ile Ife, Nigeria
| | - Jordi Salmona
- Laboratoire Évolution & Diversité Biologique, Université Toulouse III Paul Sabatier, 31062 Toulouse, France
| | - Thomas M Butynski
- Eastern Africa Primate Diversity and Conservation Program & Lolldaiga Hills Research Programme, PO Box 149, Nanyuki 10400, Kenya
| | - Laura D Bertola
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Hans R Siegismund
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Anders Albrechtsen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Rasmus Heller
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
8
|
Hoffman JI, Chen RS, Vendrami DLJ, Paijmans AJ, Dasmahapatra KK, Forcada J. Demographic Reconstruction of Antarctic Fur Seals Supports the Krill Surplus Hypothesis. Genes (Basel) 2022; 13:541. [PMID: 35328094 PMCID: PMC8954904 DOI: 10.3390/genes13030541] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
Much debate surrounds the importance of top-down and bottom-up effects in the Southern Ocean, where the harvesting of over two million whales in the mid twentieth century is thought to have produced a massive surplus of Antarctic krill. This excess of krill may have allowed populations of other predators, such as seals and penguins, to increase, a top-down hypothesis known as the 'krill surplus hypothesis'. However, a lack of pre-whaling population baselines has made it challenging to investigate historical changes in the abundance of the major krill predators in relation to whaling. Therefore, we used reduced representation sequencing and a coalescent-based maximum composite likelihood approach to reconstruct the recent demographic history of the Antarctic fur seal, a pinniped that was hunted to the brink of extinction by 18th and 19th century sealers. In line with the known history of this species, we found support for a demographic model that included a substantial reduction in population size around the time period of sealing. Furthermore, maximum likelihood estimates from this model suggest that the recovered, post-sealing population at South Georgia may have been around two times larger than the pre-sealing population. Our findings lend support to the krill surplus hypothesis and illustrate the potential of genomic approaches to shed light on long-standing questions in population biology.
Collapse
Affiliation(s)
- Joseph I. Hoffman
- Department of Animal Behavior, University of Bielefeld, P.O. BOX 100131, 33615 Bielefeld, Germany; (R.S.C.); (D.L.J.V.); (A.J.P.)
- British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 OET, UK;
| | - Rebecca S. Chen
- Department of Animal Behavior, University of Bielefeld, P.O. BOX 100131, 33615 Bielefeld, Germany; (R.S.C.); (D.L.J.V.); (A.J.P.)
| | - David L. J. Vendrami
- Department of Animal Behavior, University of Bielefeld, P.O. BOX 100131, 33615 Bielefeld, Germany; (R.S.C.); (D.L.J.V.); (A.J.P.)
| | - Anna J. Paijmans
- Department of Animal Behavior, University of Bielefeld, P.O. BOX 100131, 33615 Bielefeld, Germany; (R.S.C.); (D.L.J.V.); (A.J.P.)
| | | | - Jaume Forcada
- British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 OET, UK;
| |
Collapse
|
9
|
Hansen CCR, Westfall KM, Pálsson S. Evaluation of four methods to identify the homozygotic sex chromosome in small populations. BMC Genomics 2022; 23:160. [PMID: 35209843 PMCID: PMC8867824 DOI: 10.1186/s12864-022-08393-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Whole genomes are commonly assembled into a collection of scaffolds and often lack annotations of autosomes, sex chromosomes, and organelle genomes (i.e., mitochondrial and chloroplast). As these chromosome types differ in effective population size and can have highly disparate evolutionary histories, it is imperative to take this information into account when analysing genomic variation. Here we assessed the accuracy of four methods for identifying the homogametic sex chromosome in a small population using two whole genome sequences (WGS) and 133 RAD sequences of white-tailed eagles (Haliaeetus albicilla): i) difference in read depth per scaffold in a male and a female, ii) heterozygosity per scaffold in a male and a female, iii) mapping to the reference genome of a related species (chicken) with annotated sex chromosomes, and iv) analysis of SNP-loadings from a principal components analysis (PCA), based on the low-depth RADseq data. RESULTS The best performing approach was the reference mapping (method iii), which identified 98.12% of the expected homogametic sex chromosome (Z). Read depth per scaffold (method i) identified 86.41% of the homogametic sex chromosome with few false positives. SNP-loading scores (method iv) identified 78.6% of the Z-chromosome and had a false positive discovery rate of more than 10%. Heterozygosity per scaffold (method ii) did not provide clear results due to a lack of diversity in both the Z and autosomal chromosomes, and potential interference from the heterogametic sex chromosome (W). The evaluation of these methods also revealed 10 Mb of putative PAR and gametologous regions. CONCLUSION Identification of the homogametic sex chromosome in a small population is best accomplished by reference mapping or examining differences in read depth between sexes.
Collapse
Affiliation(s)
| | - Kristen M Westfall
- Department of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland.,Current: Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, BC, Canada
| | - Snæbjörn Pálsson
- Department of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
10
|
Kitchener AC, Hoffmann M, Yamaguchi N, Breitenmoser-Würsten C, Wilting A. A system for designating taxonomic certainty in mammals and other taxa. Mamm Biol 2022. [DOI: 10.1007/s42991-021-00205-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
11
|
Neves JMM, Nolen ZJ, Fabré NN, Mott T, Pereira RJ. Genomic methods reveal independent demographic histories despite strong morphological conservatism in fish species. Heredity (Edinb) 2021; 127:323-333. [PMID: 34226671 PMCID: PMC8405619 DOI: 10.1038/s41437-021-00455-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Human overexploitation of natural resources has placed conservation and management as one of the most pressing challenges in modern societies, especially in regards to highly vulnerable marine ecosystems. In this context, cryptic species are particularly challenging to conserve because they are hard to distinguish based on morphology alone, and thus it is often unclear how many species coexist in sympatry, what are their phylogenetic relationships and their demographic history. We answer these questions using morphologically similar species of the genus Mugil that are sympatric in the largest coastal Marine Protected Area in the Tropical Southwestern Atlantic marine province. Using a sub-representation of the genome, we show that individuals are assigned to five highly differentiated genetic clusters that are coincident with five mitochondrial lineages, but discordant with morphological information, supporting the existence of five species with conserved morphology in this region. A lack of admixed individuals is consistent with strong genetic isolation between sympatric species, but the most likely species tree suggests that in one case speciation has occurred in the presence of interspecific gene flow. Patterns of genetic diversity within species suggest that effective population sizes differ up to two-fold, probably reflecting differences in the magnitude of population expansions since species formation. Together, our results show that strong morphologic conservatism in marine environments can lead to species that are difficult to distinguish morphologically but that are characterized by an independent evolutionary history, and thus that deserve species-specific management strategies.
Collapse
Affiliation(s)
- Jessika M M Neves
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil.
| | - Zachary J Nolen
- Division of Evolutionary Biology, Faculty of Biology II, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2, Planegg-Martinsried, Germany
- Department of Biology, Lund University, Lund, Sweden
| | - Nidia N Fabré
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
| | - Tamí Mott
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
| | - Ricardo J Pereira
- Division of Evolutionary Biology, Faculty of Biology II, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2, Planegg-Martinsried, Germany.
| |
Collapse
|
12
|
Cupello M, Ribeiro-Costa CS, Vaz-De-Mello FZ. The evolution of Bolbites onitoides (Coleoptera: Scarabaeidae: Phanaeini): its phylogenetic significance, geographical polychromatism and the subspecies problem. Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlab015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
The distribution of the iridescent dung beetle Bolbites onitoides can be divided, based on dorsal colouration, into a blue western-half and a red eastern-half. This has raised the question, in 1959, of whether the two colour variants could represent distinct subspecies. Having examined ~1200 specimens and evaluated the proposal under both an ontological and an operational subspecies concept, we conclude that B. onitoides should continue to be treated as a single monotypic species because: (1) two kinds of colour intermediates were found living among populations of the two main variants; (2) the distribution of the variants overlaps; (3) no other characters were seen to vary consistently in accordance with the colour variants; (4) the overall geographical pattern can be explained by phenomena other than (incipient) speciation, such as phenotypic plasticity and distinct selective regimes; and (5) colour has been extensively shown not to be a reliable indicator of speciation processes among dung beetles. By comparing our findings with other cases of polychromatism among scarabaeines, we discuss publications proposing subspecies taxa relying uniquely upon colour variants. We contend that, due to the often continuous, populational, polytopic and, several times, clinal nature of the intraspecific geographical variation, subspecies classification schemes should not be established simply to classify variation across a species range without a commitment to the reality as evolutionary entities of the taxa being proposed. The alternative stance championed by many contemporary authors to give trinomina to conspecific (meta)population lineages, in turn, may eventually prove to be adequate, but we express some of our concerns as to the feasibility of this practice. Whether these intraspecific taxa should be ranked in a Linnaean hierarchy – e.g. as subspecies – is equally an open question. We also elaborate on an evolutionary scenario where the role of the iridescence in sexual selection, as hypothesized in a previous work, may be an exaptation, not an adaptation, among the horned Phanaeina.
Collapse
Affiliation(s)
- Mario Cupello
- Universidade Federal do Paraná, Departamento de Zoologia, Laboratório de Sistemática e Bioecologia de Coleoptera. Centro Politécnico, Jardim das Américas, CEP 81.531-980, Curitiba, PR, Brazil
- Fellow of the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
| | - Cibele S Ribeiro-Costa
- Universidade Federal do Paraná, Departamento de Zoologia, Laboratório de Sistemática e Bioecologia de Coleoptera. Centro Politécnico, Jardim das Américas, CEP 81.531-980, Curitiba, PR, Brazil
- Fellow of the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
| | - Fernando Z Vaz-De-Mello
- Universidade Federal de Mato Grosso, Instituto de Biociências, Departamento de Biologia e Zoologia. Av. Fernando Correa da Costa, 2367, Boa Esperança, 78.060-900, Cuiabá, MT, Brazil
- Fellow of the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
| |
Collapse
|
13
|
Abstract
Ecotourism can fuel an important source of financial income for African countries and can therefore help biodiversity policies in the continent. Translocations can be a powerful tool to spread economic benefits among countries and communities; yet, to be positive for biodiversity conservation, they require a basic knowledge of conservation units through appropriate taxonomic research. This is not always the case, as taxonomy was considered an outdated discipline for almost a century, and some plurality in taxonomic approaches is incorrectly considered as a disadvantage for conservation work. As an example, diversity of the genus Giraffa and its recent taxonomic history illustrate the importance of such knowledge for a sound conservation policy that includes translocations. We argue that a fine-grained conservation perspective that prioritizes all remaining populations along the Nile Basin is needed. Translocations are important tools for giraffe diversity conservation, but more discussion is needed, especially for moving new giraffes to regions where the autochthonous taxa/populations are no longer existent. As the current discussion about the giraffe taxonomy is too focused on the number of giraffe species, we argue that the plurality of taxonomic and conservation approaches might be beneficial, i.e., for defining the number of units requiring separate management using a (majority) consensus across different concepts (e.g., MU—management unit, ESU—evolutionary significant unit, and ECU—elemental conservation unit). The taxonomically sensitive translocation policy/strategy would be important for the preservation of current diversity, while also supporting the ecological restoration of some regions within rewilding. A summary table of the main translocation operations of African mammals that have underlying problems is included. Therefore, we call for increased attention toward the taxonomy of African mammals not only as the basis for sound conservation but also as a further opportunity to enlarge the geographic scope of ecotourism in Africa.
Collapse
|
14
|
Giglio RM, Rocke TE, Osorio JE, Latch EK. Characterizing patterns of genomic variation in the threatened Utah prairie dog: Implications for conservation and management. Evol Appl 2021; 14:1036-1051. [PMID: 33897819 PMCID: PMC8061279 DOI: 10.1111/eva.13179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 11/30/2022] Open
Abstract
Utah prairie dogs (Cynomys parvidens) are federally threatened due to eradication campaigns, habitat destruction, and outbreaks of plague. Today, Utah prairie dogs exist in small, isolated populations, making them less demographically stable and more susceptible to erosion of genetic variation by genetic drift. We characterized patterns of genetic structure at neutral and putatively adaptive loci in order to evaluate the relative effects of genetic drift and local adaptation on population divergence. We sampled individuals across the Utah prairie dog species range and generated 2955 single nucleotide polymorphisms using double digest restriction site-associated DNA sequencing. Genetic diversity was lower in low-elevation sites compared to high-elevation sites. Population divergence was high among sites and followed an isolation-by-distance model. Our results indicate that genetic drift plays a substantial role in the population divergence of the Utah prairie dog, and colonies would likely benefit from translocation of individuals between recovery units, which are characterized by distinct elevations, despite the detection of environmental associations with outlier loci. By understanding the processes that shape genetic structure, better informed decisions can be made with respect to the management of threatened species to ensure that adaptation is not stymied.
Collapse
Affiliation(s)
- Rachael M. Giglio
- Department of Biological SciencesUniversity of Wisconsin‐MilwaukeeMilwaukeeWIUSA
| | | | - Jorge E. Osorio
- Department of Pathobiological SciencesSchool of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Emily K. Latch
- Department of Biological SciencesUniversity of Wisconsin‐MilwaukeeMilwaukeeWIUSA
| |
Collapse
|
15
|
Heller R, Nursyifa C, Garcia-Erill G, Salmona J, Chikhi L, Meisner J, Korneliussen TS, Albrechtsen A. A reference-free approach to analyse RADseq data using standard next generation sequencing toolkits. Mol Ecol Resour 2021; 21:1085-1097. [PMID: 33434329 DOI: 10.1111/1755-0998.13324] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 12/18/2020] [Accepted: 01/05/2021] [Indexed: 12/29/2022]
Abstract
Genotyping-by-sequencing methods such as RADseq are popular for generating genomic and population-scale data sets from a diverse range of organisms. These often lack a usable reference genome, restricting users to RADseq specific software for processing. However, these come with limitations compared to generic next generation sequencing (NGS) toolkits. Here, we describe and test a simple pipeline for reference-free RADseq data processing that blends de novo elements from STACKS with the full suite of state-of-the art NGS tools. Specifically, we use the de novo RADseq assembly employed by STACKS to create a catalogue of RAD loci that serves as a reference for read mapping, variant calling and site filters. Using RADseq data from 28 zebra sequenced to ~8x depth-of-coverage we evaluate our approach by comparing the site frequency spectra (SFS) to those from alternative pipelines. Most pipelines yielded similar SFS at 8x depth, but only a genotype likelihood based pipeline performed similarly at low sequencing depth (2-4x). We compared the RADseq SFS with medium-depth (~13x) shotgun sequencing of eight overlapping samples, revealing that the RADseq SFS was persistently slightly skewed towards rare and invariant alleles. Using simulations and human data we confirm that this is expected when there is allelic dropout (AD) in the RADseq data. AD in the RADseq data caused a heterozygosity deficit of ~16%, which dropped to ~5% after filtering AD. Hence, AD was the most important source of bias in our RADseq data.
Collapse
Affiliation(s)
- Rasmus Heller
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Casia Nursyifa
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Genís Garcia-Erill
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Jordi Salmona
- CNRS, Université Paul Sabatier, ENFA, UMR 5174 EDB (Laboratoire Évolution & Diversité Biologique), Toulouse, France
| | - Lounes Chikhi
- CNRS, Université Paul Sabatier, ENFA, UMR 5174 EDB (Laboratoire Évolution & Diversité Biologique), Toulouse, France.,Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Jonas Meisner
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | | | - Anders Albrechtsen
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
16
|
Garcia-Erill G, Kjaer MM, Albrechtsen A, Siegismund HR, Heller R. Vicariance followed by secondary gene flow in a young gazelle species complex. Mol Ecol 2020; 30:528-544. [PMID: 33226701 PMCID: PMC7898927 DOI: 10.1111/mec.15738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 11/03/2020] [Accepted: 11/11/2020] [Indexed: 01/03/2023]
Abstract
Grant's gazelles have recently been proposed to be a species complex comprising three highly divergent mtDNA lineages (Nanger granti, N. notata and N. petersii). The three lineages have nonoverlapping distributions in East Africa, but without any obvious geographical divisions, making them an interesting model for studying the early‐stage evolutionary dynamics of allopatric speciation in detail. Here, we use genomic data obtained by restriction site‐associated (RAD) sequencing of 106 gazelle individuals to shed light on the evolutionary processes underlying Grant's gazelle divergence, to characterize their genetic structure and to assess the presence of gene flow between the main lineages in the species complex. We date the species divergence to 134,000 years ago, which is recent in evolutionary terms. We find population subdivision within N. granti, which coincides with the previously suggested two subspecies, N. g. granti and N. g. robertsii. Moreover, these two lineages seem to have hybridized in Masai Mara. Perhaps more surprisingly given their extreme genetic differentiation, N. granti and N. petersii also show signs of prolonged admixture in Mkomazi, which we identified as a hybrid population most likely founded by allopatric lineages coming into secondary contact. Despite the admixed composition of this population, elevated X chromosomal differentiation suggests that selection may be shaping the outcome of hybridization in this population. Our results therefore provide detailed insights into the processes of allopatric speciation and secondary contact in a recently radiated species complex.
Collapse
Affiliation(s)
- Genís Garcia-Erill
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Michael Munkholm Kjaer
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Copenhagen N, Denmark.,Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Anders Albrechtsen
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Hans Redlef Siegismund
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Rasmus Heller
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
17
|
Larison B, Kaelin CB, Harrigan R, Henegar C, Rubenstein DI, Kamath P, Aschenborn O, Smith TB, Barsh GS. Population structure, inbreeding and stripe pattern abnormalities in plains zebras. Mol Ecol 2020; 30:379-390. [PMID: 33174253 DOI: 10.1111/mec.15728] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/23/2020] [Accepted: 10/30/2020] [Indexed: 01/14/2023]
Abstract
One of the most iconic wild equids, the plains zebra occupies a broad region of sub-Saharan Africa and exhibits a wide range of phenotypic diversity in stripe patterns that have been used to classify multiple subspecies. After decades of relative stability, albeit with a loss of at least one recognized subspecies, the total population of plains zebras has undergone an approximate 25% decline since 2002. Individuals with abnormal stripe patterns have been recognized in recent years but the extent to which their appearance is related to demography and/or genetics is unclear. Investigating population genetic health and genetic structure are essential for developing effective strategies for plains zebra conservation. We collected DNA from 140 plains zebra, including seven with abnormal stripe patterns, from nine locations across the range of plains zebra, and analyzed data from restriction site-associated and whole genome sequencing (RAD-seq, WGS) libraries to better understand the relationships between population structure, genetic diversity, inbreeding, and abnormal phenotypes. We found that genetic structure did not coincide with described subspecific variation, but did distinguish geographic regions in which anthropogenic habitat fragmentation is associated with reduced gene flow and increased evidence of inbreeding, especially in certain parts of East Africa. Further, zebras with abnormal striping exhibited increased levels of inbreeding relative to normally striped individuals from the same populations. Our results point to a genetic cause of stripe pattern abnormalities, and dramatic evidence of the consequences of habitat fragmentation.
Collapse
Affiliation(s)
- Brenda Larison
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, USA.,Center for Tropical Research, Institute of the Environment and Sustainability, UCLA, Los Angeles, CA, USA
| | - Christopher B Kaelin
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.,Department of Genetics, Stanford University, Stanford, CA, USA
| | - Ryan Harrigan
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, USA.,Center for Tropical Research, Institute of the Environment and Sustainability, UCLA, Los Angeles, CA, USA
| | | | - Daniel I Rubenstein
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Pauline Kamath
- School of Food and Agriculture, University of Maine, Orono, ME, USA
| | - Ortwin Aschenborn
- School of Veterinary Medicine, University of Namibia, Neudamm Windhoek, Namibia
| | - Thomas B Smith
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, USA.,Center for Tropical Research, Institute of the Environment and Sustainability, UCLA, Los Angeles, CA, USA
| | - Gregory S Barsh
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.,Department of Genetics, Stanford University, Stanford, CA, USA
| |
Collapse
|
18
|
Abstract
The equid family contains only one single extant genus, Equus, including seven living species grouped into horses on the one hand and zebras and asses on the other. In contrast, the equine fossil record shows that an extraordinarily richer diversity existed in the past and provides multiple examples of a highly dynamic evolution punctuated by several waves of explosive radiations and extinctions, cross-continental migrations, and local adaptations. In recent years, genomic technologies have provided new analytical solutions that have enhanced our understanding of equine evolution, including the species radiation within Equus; the extinction dynamics of several lineages; and the domestication history of two individual species, the horse and the donkey. Here, we provide an overview of these recent developments and suggest areas for further research.
Collapse
Affiliation(s)
- Pablo Librado
- Laboratoire d'Anthropobiologie Moléculaire et d'Imagerie de Synthèse, CNRS UMR 5288, Université Paul Sabatier, Toulouse 31000, France;
| | - Ludovic Orlando
- Laboratoire d'Anthropobiologie Moléculaire et d'Imagerie de Synthèse, CNRS UMR 5288, Université Paul Sabatier, Toulouse 31000, France;
| |
Collapse
|
19
|
Ye Z, Chen D, Yuan J, Zheng C, Yang X, Wang W, Zhang Y, Wang S, Jiang K, Bu W. Are population isolations and declines a threat to island endemic water striders? A lesson from demographic and niche modelling of Metrocoris esakii (Hemiptera: Gerridae). Mol Ecol 2020; 29:4573-4587. [PMID: 33006793 DOI: 10.1111/mec.15669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022]
Abstract
Genetic stochasticity and bottlenecking in the course of Pleistocene glaciations have been identified as threatening the survival of local endemics. However, the mechanisms by which local endemic species balance the influences of these two events remain poorly understood. Here, we generated a double-digest restriction site-associated DNA sequencing (ddRAD-seq) data set, mined mitochondrial sequences and constructed ecological niche models for the island endemic water strider Metrocoris esakii (Hemiptera: Gerridae). We found that M. esakii comprised three divergent lineages (i.e., north, central and south) isolated by geographical barriers and generally experienced population declines with the constriction of suitable areas during the Last Glacial Maximum (LGM). Further demographic model testing and stairway plots revealed a history of recent gene flow among the neighbouring lineages and rapid recovery at the end of the LGM, indicating that M. esakii at least had the potential for an adaptive response to population fragmentation and bottlenecking. The northern lineage did not show genetic bottlenecking during the LGM, which was probably due to its large effective population size (Ne ) from migration, which improved its adaptive potential. Relative to the ddRAD-seq data set, the demographic results based on mitochondrial sequences were less conclusive, showing weak differentiation and oversimplified demographic trajectories for the three genetic lineages. Overall, this study provides some degree of optimism for the survival of island endemic water striders from a demographic perspective, but further evaluation of their extinction risk under the impacts of human activities is required.
Collapse
Affiliation(s)
- Zhen Ye
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Danyang Chen
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Juanjuan Yuan
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Chenguang Zheng
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xin Yang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Wenwu Wang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yaoyao Zhang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Siqi Wang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Kun Jiang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Wenjun Bu
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
20
|
Poelstra JW, Salmona J, Tiley GP, Schüßler D, Blanco MB, Andriambeloson JB, Bouchez O, Campbell CR, Etter PD, Hohenlohe PA, Hunnicutt KE, Iribar A, Johnson EA, Kappeler PM, Larsen PA, Manzi S, Ralison JM, Randrianambinina B, Rasoloarison RM, Rasolofoson DW, Stahlke AR, Weisrock DW, Williams RC, Chikhi L, Louis EE, Radespiel U, Yoder AD. Cryptic Patterns of Speciation in Cryptic Primates: Microendemic Mouse Lemurs and the Multispecies Coalescent. Syst Biol 2020; 70:203-218. [PMID: 32642760 DOI: 10.1093/sysbio/syaa053] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 06/13/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022] Open
Abstract
Mouse lemurs (Microcebus) are a radiation of morphologically cryptic primates distributed throughout Madagascar for which the number of recognized species has exploded in the past two decades. This taxonomic revision has prompted understandable concern that there has been substantial oversplitting in the mouse lemur clade. Here, we investigate mouse lemur diversity in a region in northeastern Madagascar with high levels of microendemism and predicted habitat loss. We analyzed RADseq data with multispecies coalescent (MSC) species delimitation methods for two pairs of sister lineages that include three named species and an undescribed lineage previously identified to have divergent mtDNA. Marked differences in effective population sizes, levels of gene flow, patterns of isolation-by-distance, and species delimitation results were found among the two pairs of lineages. Whereas all tests support the recognition of the presently undescribed lineage as a separate species, the species-level distinction of two previously described species, M. mittermeieri and M. lehilahytsara is not supported-a result that is particularly striking when using the genealogical discordance index (gdi). Nonsister lineages occur sympatrically in two of the localities sampled for this study, despite an estimated divergence time of less than 1 Ma. This suggests rapid evolution of reproductive isolation in the focal lineages and in the mouse lemur clade generally. The divergence time estimates reported here are based on the MSC calibrated with pedigree-based mutation rates and are considerably more recent than previously published fossil-calibrated relaxed-clock estimates. We discuss the possible explanations for this discrepancy, noting that there are theoretical justifications for preferring the MSC estimates in this case. [Cryptic species; effective population size; microendemism; multispecies coalescent; speciation; species delimitation.].
Collapse
Affiliation(s)
| | - Jordi Salmona
- CNRS, Université Paul Sabatier, IRD; UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, 31062 Toulouse, France
| | - George P Tiley
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Dominik Schüßler
- Research Group Ecology and Environmental Education, Department of Biology, University of Hildesheim, Universitaetsplatz 1, 31141 Hildesheim, Germany
| | - Marina B Blanco
- Department of Biology, Duke University, Durham, NC 27708, USA.,Duke Lemur Center, Duke University, Durham, NC 27705, USA
| | - Jean B Andriambeloson
- Department of Zoology and Animal Biodiversity, University of Antananarivo, Antananarivo 101, Madagascar
| | - Olivier Bouchez
- INRA, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - C Ryan Campbell
- Department of Biology, Duke University, Durham, NC 27708, USA.,Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| | - Paul D Etter
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA
| | - Paul A Hohenlohe
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID 83844, USA
| | - Kelsie E Hunnicutt
- Department of Biology, Duke University, Durham, NC 27708, USA.,Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Amaia Iribar
- CNRS, Université Paul Sabatier, IRD; UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, 31062 Toulouse, France
| | - Eric A Johnson
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA
| | - Peter M Kappeler
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Kellnerweg 6, 37077 Göttingen, Germany
| | - Peter A Larsen
- Department of Biology, Duke University, Durham, NC 27708, USA.,Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA
| | - Sophie Manzi
- CNRS, Université Paul Sabatier, IRD; UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, 31062 Toulouse, France
| | - JosÉ M Ralison
- Department of Zoology and Animal Biodiversity, University of Antananarivo, Antananarivo 101, Madagascar
| | - Blanchard Randrianambinina
- Groupe d'Etude et de Recherche sur les Primates de Madagascar (GERP), BP 779, Antananarivo 101, Madagascar.,Faculté des Sciences, University of Mahajanga, Mahajanga, Madagascar
| | - Rodin M Rasoloarison
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Kellnerweg 6, 37077 Göttingen, Germany
| | - David W Rasolofoson
- Groupe d'Etude et de Recherche sur les Primates de Madagascar (GERP), BP 779, Antananarivo 101, Madagascar
| | - Amanda R Stahlke
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID 83844, USA
| | - David W Weisrock
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
| | - Rachel C Williams
- Department of Biology, Duke University, Durham, NC 27708, USA.,Duke Lemur Center, Duke University, Durham, NC 27705, USA
| | - LounÈs Chikhi
- CNRS, Université Paul Sabatier, IRD; UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, 31062 Toulouse, France.,Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Edward E Louis
- Grewcock Center for Conservation and Research, Omaha's Henry Doorly Zoo and Aquarium, Omaha, NE, USA
| | - Ute Radespiel
- Institute of Zoology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany Jelmer Poelstra, Jordi Salmona, George P. Tiley are the joint first authors. Ute Radespiel and Anne D. Yoder are the joint senior authors
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
21
|
de Jong MJ, Li Z, Qin Y, Quéméré E, Baker K, Wang W, Hoelzel AR. Demography and adaptation promoting evolutionary transitions in a mammalian genus that diversified during the Pleistocene. Mol Ecol 2020; 29:2777-2792. [PMID: 32306438 DOI: 10.1111/mec.15450] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 02/25/2020] [Accepted: 04/03/2020] [Indexed: 01/13/2023]
Abstract
Species that evolved in temperate regions during the Pleistocene experienced periods of extreme climatic transitions. Consequent population fragmentation and dynamics had the potential to generate small, isolated populations where the influence of genetic drift would be expected to be strong. We use comparative genomics to assess the evolutionary influence of historical demographics and natural selection through a series of transitions associated with the formation of the genus Capreolus, speciation within this genus during the Quaternary and during divergence among European roe deer (C. capreolus) populations. Our analyses were facilitated by the generation of a new high-coverage reference genome for the Siberian roe deer (C. pygargus). We find progressive reductions in effective population size (Ne ), despite very large census sizes in modern C. capreolus populations and show that low Ne has impacted the C. capreolus genome, reducing diversity and increasing linkage disequilibrium. Even so, we find evidence for natural selection shared among C. capreolus populations, including a historically documented founder population that has been through a severe bottleneck. During each phylogenetic transition there is evidence for selection (from dN/dS and nucleotide diversity tests), including at loci associated with diapause (delayed embryonic development), a phenotype restricted to this genus among the even-toed ungulates. Together these data allow us to assess expectations for the origin and diversification of a mammalian genus during a period of extreme environmental change.
Collapse
Affiliation(s)
- Menno J de Jong
- Molecular Ecology Group, Department of Biosciences, Durham University, Durham, UK
| | - Zhipeng Li
- Department of Special Animal nutrition and Feed Science, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun City, China
| | - Yanli Qin
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Erwan Quéméré
- Comportement et Ecologie de la Faune Sauvage (CEFS), INRA, Université de Toulouse, Castanet-Tolosan, France.,Ecology and Ecosystems Health, Ouest, INRAE, Rennes, France
| | - Karis Baker
- Molecular Ecology Group, Department of Biosciences, Durham University, Durham, UK
| | - Wen Wang
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, China
| | - A Rus Hoelzel
- Molecular Ecology Group, Department of Biosciences, Durham University, Durham, UK
| |
Collapse
|
22
|
Heywood P. Sexual dimorphism of body size in taxidermy specimens of Equus quagga quagga Boddaert (Equidae). J NAT HIST 2020. [DOI: 10.1080/00222933.2020.1736678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Peter Heywood
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| |
Collapse
|
23
|
Chan EKF, Timmermann A, Baldi BF, Moore AE, Lyons RJ, Lee SS, Kalsbeek AMF, Petersen DC, Rautenbach H, Förtsch HEA, Bornman MSR, Hayes VM. Human origins in a southern African palaeo-wetland and first migrations. Nature 2019; 575:185-189. [PMID: 31659339 DOI: 10.1038/s41586-019-1714-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 09/24/2019] [Indexed: 01/17/2023]
Abstract
Anatomically modern humans originated in Africa around 200 thousand years ago (ka)1-4. Although some of the oldest skeletal remains suggest an eastern African origin2, southern Africa is home to contemporary populations that represent the earliest branch of human genetic phylogeny5,6. Here we generate, to our knowledge, the largest resource for the poorly represented and deepest-rooting maternal L0 mitochondrial DNA branch (198 new mitogenomes for a total of 1,217 mitogenomes) from contemporary southern Africans and show the geographical isolation of L0d1'2, L0k and L0g KhoeSan descendants south of the Zambezi river in Africa. By establishing mitogenomic timelines, frequencies and dispersals, we show that the L0 lineage emerged within the residual Makgadikgadi-Okavango palaeo-wetland of southern Africa7, approximately 200 ka (95% confidence interval, 240-165 ka). Genetic divergence points to a sustained 70,000-year-long existence of the L0 lineage before an out-of-homeland northeast-southwest dispersal between 130 and 110 ka. Palaeo-climate proxy and model data suggest that increased humidity opened green corridors, first to the northeast then to the southwest. Subsequent drying of the homeland corresponds to a sustained effective population size (L0k), whereas wet-dry cycles and probable adaptation to marine foraging allowed the southwestern migrants to achieve population growth (L0d1'2), as supported by extensive south-coastal archaeological evidence8-10. Taken together, we propose a southern African origin of anatomically modern humans with sustained homeland occupation before the first migrations of people that appear to have been driven by regional climate changes.
Collapse
Affiliation(s)
- Eva K F Chan
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Axel Timmermann
- Center for Climate Physics, Institute for Basic Science, Busan, South Korea. .,Pusan National University, Busan, South Korea.
| | - Benedetta F Baldi
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Andy E Moore
- Department of Geology, Rhodes University, Grahamstown, South Africa
| | - Ruth J Lyons
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Sun-Seon Lee
- Center for Climate Physics, Institute for Basic Science, Busan, South Korea.,Pusan National University, Busan, South Korea
| | - Anton M F Kalsbeek
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Desiree C Petersen
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,The Centre for Proteomic and Genomic Research, Cape Town, South Africa
| | - Hannes Rautenbach
- Climate Change and Variability, South African Weather Service, Pretoria, South Africa.,School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.,Akademia, Johannesburg, South Africa
| | | | - M S Riana Bornman
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Vanessa M Hayes
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia. .,St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia. .,School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa. .,Faculty of Health Sciences, University of Limpopo, Sovenga, South Africa. .,Central Clinical School, University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
24
|
Anderson BM, Thiele KR, Grierson PF, Krauss SL, Nevill PG, Small ID, Zhong X, Barrett MD. Recent range expansion in Australian hummock grasses ( Triodia) inferred using genotyping-by-sequencing. AOB PLANTS 2019; 11:plz017. [PMID: 31037212 PMCID: PMC6481909 DOI: 10.1093/aobpla/plz017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 03/20/2019] [Indexed: 05/30/2023]
Abstract
The Australian arid zone (AAZ) has undergone aridification and the formation of vast sandy deserts since the mid-Miocene. Studies on AAZ organisms, particularly animals, have shown patterns of mesic ancestry, persistence in rocky refugia and range expansions in arid lineages. There has been limited molecular investigation of plants in the AAZ, particularly of taxa that arrived in Australia after the onset of aridification. Here we investigate populations of the widespread AAZ grass Triodia basedowii to determine whether there is evidence for a recent range expansion, and if so, its source and direction. We also undertake a dating analysis for the species complex to which T. basedowii belongs, in order to place its diversification in relation to changes in AAZ climate and landscapes. We analyse a genomic single nucleotide polymorphism data set from 17 populations of T. basedowii in a recently developed approach for detecting the signal and likely origin of a range expansion. We also use alignments from existing and newly sequenced plastomes from across Poaceae for analysis in BEAST to construct fossil-calibrated phylogenies. Across a range of sampling parameters and outgroups, we detected a consistent signal of westward expansion for T. basedowii, originating in central or eastern Australia. Divergence time estimation indicates that Triodia began to diversify in the late Miocene (crown 7.0-8.8 million years (Ma)), and the T. basedowii complex began to radiate during the Pleistocene (crown 1.4-2.0 Ma). This evidence for range expansion in an arid-adapted plant is consistent with similar patterns in AAZ animals and likely reflects a general response to the opening of new habitat during aridification. Radiation of the T. basedowii complex through the Pleistocene has been associated with preferences for different substrates, providing an explanation why only one lineage is widespread across sandy deserts.
Collapse
Affiliation(s)
- Benjamin M Anderson
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- Kings Park and Botanic Garden, Botanic Gardens and Parks Authority, Kings Park, Western Australia, Australia
| | - Kevin R Thiele
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Pauline F Grierson
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Siegfried L Krauss
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- Kings Park and Botanic Garden, Botanic Gardens and Parks Authority, Kings Park, Western Australia, Australia
| | - Paul G Nevill
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- Australian Research Council Centre for Mine Site Restoration, Curtin University, Bentley, Western Australia, Australia
| | - Ian D Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Xiao Zhong
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Matthew D Barrett
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- Kings Park and Botanic Garden, Botanic Gardens and Parks Authority, Kings Park, Western Australia, Australia
| |
Collapse
|
25
|
Martinez FI, Capelli C, Ferreira da Silva MJ, Aldeias V, Alemseged Z, Archer W, Bamford M, Biro D, Bobe R, Braun DR, Habermann JM, Lüdecke T, Madiquida H, Mathe J, Negash E, Paulo LM, Pinto M, Stalmans M, Tátá F, Carvalho S. A missing piece of the Papio puzzle: Gorongosa baboon phenostructure and intrageneric relationships. J Hum Evol 2019; 130:1-20. [PMID: 31010537 DOI: 10.1016/j.jhevol.2019.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 12/21/2018] [Accepted: 01/17/2019] [Indexed: 12/13/2022]
Abstract
Most authors recognize six baboon species: hamadryas (Papio hamadryas), Guinea (Papio papio), olive (Papio anubis), yellow (Papio cynocephalus), chacma (Papio ursinus), and Kinda (Papio kindae). However, there is still debate regarding the taxonomic status, phylogenetic relationships, and the amount of gene flow occurring between species. Here, we present ongoing research on baboon morphological diversity in Gorongosa National Park (GNP), located in central Mozambique, south of the Zambezi River, at the southern end of the East African Rift System. The park exhibits outstanding ecological diversity and hosts more than 200 baboon troops. Gorongosa National Park baboons have previously been classified as chacma baboons (P. ursinus). In accordance with this, two mtDNA samples from the park have been placed in the same mtDNA clade as the northern chacma baboons. However, GNP baboons exhibit morphological features common in yellow baboons (e.g., yellow fur color), suggesting that parapatric gene flow between chacma and yellow baboons might have occurred in the past or could be ongoing. We investigated the phenostructure of the Gorongosa baboons using two approaches: 1) description of external phenotypic features, such as coloration and body size, and 2) 3D geometric morphometric analysis of 43 craniofacial landmarks on 11 specimens from Gorongosa compared to a pan-African sample of 352 baboons. The results show that Gorongosa baboons exhibit a mosaic of features shared with southern P. cynocephalus and P. ursinus griseipes. The GNP baboon phenotype fits within a geographic clinal pattern of replacing allotaxa. We put forward the hypothesis of either past and/or ongoing hybridization between the gray-footed chacma and southern yellow baboons in Gorongosa or an isolation-by-distance scenario in which the GNP baboons are geographically and morphologically intermediate. These two scenarios are not mutually exclusive. We highlight the potential of baboons as a useful model to understand speciation and hybridization in early human evolution.
Collapse
Affiliation(s)
- Felipe I Martinez
- Pontificia Universidad Católica de Chile, Facultad de Ciencias Sociales, Programa de Antropología, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile.
| | | | - Maria J Ferreira da Silva
- Organisms and Environment Division, School of Biosciences, Cardiff University, Biomedical Sciences Building, Room C/5.15, Museum Avenue, Cardiff CF10 3AX, Wales, UK; CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Portugal
| | - Vera Aldeias
- ICArEHB - Interdisciplinary Center for Archaeology and Evolution of Human Behaviour, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - William Archer
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany; Department of Archaeology, University of Cape Town, Cape Town, South Africa
| | - Marion Bamford
- Evolutionary Studies Institute, University of the Witwatersrand, South Africa
| | - Dora Biro
- Department of Zoology, University of Oxford, UK
| | - René Bobe
- ICArEHB - Interdisciplinary Center for Archaeology and Evolution of Human Behaviour, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Primate Models for Behavioural Evolution Lab, Institute of Cognitive and Evolutionary Anthropology, School of Anthropology and Museum Ethnography, University of Oxford, UK; Gorongosa National Park, Sofala, Mozambique
| | - David R Braun
- Center for the Advanced Study of Human Paleobiology, George Washington University, 800 22nd Street NW, Washington DC 20052, USA
| | - Jörg M Habermann
- ICArEHB - Interdisciplinary Center for Archaeology and Evolution of Human Behaviour, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Primate Models for Behavioural Evolution Lab, Institute of Cognitive and Evolutionary Anthropology, School of Anthropology and Museum Ethnography, University of Oxford, UK; GeoZentrumNordbayern, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Tina Lüdecke
- Primate Models for Behavioural Evolution Lab, Institute of Cognitive and Evolutionary Anthropology, School of Anthropology and Museum Ethnography, University of Oxford, UK; Senckenberg Biodiversity and Climate Research Centre, Germany
| | | | | | - Enquye Negash
- Center for the Advanced Study of Human Paleobiology, George Washington University, 800 22nd Street NW, Washington DC 20052, USA
| | - Luis M Paulo
- AESDA - Associação de Estudos Subterrâneos e Defesado Ambiente, Portugal
| | - Maria Pinto
- AESDA - Associação de Estudos Subterrâneos e Defesado Ambiente, Portugal
| | | | - Frederico Tátá
- ICArEHB - Interdisciplinary Center for Archaeology and Evolution of Human Behaviour, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; AESDA - Associação de Estudos Subterrâneos e Defesado Ambiente, Portugal
| | - Susana Carvalho
- ICArEHB - Interdisciplinary Center for Archaeology and Evolution of Human Behaviour, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Primate Models for Behavioural Evolution Lab, Institute of Cognitive and Evolutionary Anthropology, School of Anthropology and Museum Ethnography, University of Oxford, UK; Gorongosa National Park, Sofala, Mozambique; Centre for Functional Ecology, Coimbra University, Portugal
| |
Collapse
|