1
|
Gilbert C, Maumus F. Sidestepping Darwin: horizontal gene transfer from plants to insects. CURRENT OPINION IN INSECT SCIENCE 2023; 57:101035. [PMID: 37061183 DOI: 10.1016/j.cois.2023.101035] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/06/2023]
Abstract
Horizontal transfer of genetic material (HT) is the passage of DNA between organisms by means other than reproduction. Increasing numbers of HT are reported in insects, with bacteria, fungi, plants, and insects acting as the main sources of these transfers. Here, we provide a detailed account of plant-to-insect HT events. At least 14 insect species belonging to 6 orders are known to have received plant genetic material through HT. One of them, the whitefly Bemisia tabaci (Middle East Asia Minor 1), concentrates most of these transfers, with no less than 28 HT events yielding 55 plant-derived genes in this species. Several plant-to-insect HT events reported so far involve gene families known to play a role in plant-parasite interactions. We highlight methodological approaches that may further help characterize these transfers. We argue that plant-to-insect HT is likely more frequent than currently appreciated and that in-depth studies of these transfers will shed new light on plant-insect interactions.
Collapse
Affiliation(s)
- Clément Gilbert
- Université Paris-Saclay, CNRS, IRD, UMR Evolution, Génomes, Comportement et Ecologie, Gif-sur-Yvette, France.
| | - Florian Maumus
- Université Paris-Saclay, INRAE, URGI, Versailles, France
| |
Collapse
|
6
|
Shen XX, Opulente DA, Kominek J, Zhou X, Steenwyk JL, Buh KV, Haase MAB, Wisecaver JH, Wang M, Doering DT, Boudouris JT, Schneider RM, Langdon QK, Ohkuma M, Endoh R, Takashima M, Manabe RI, Čadež N, Libkind D, Rosa CA, DeVirgilio J, Hulfachor AB, Groenewald M, Kurtzman CP, Hittinger CT, Rokas A. Tempo and Mode of Genome Evolution in the Budding Yeast Subphylum. Cell 2018; 175:1533-1545.e20. [PMID: 30415838 DOI: 10.1016/j.cell.2018.10.023] [Citation(s) in RCA: 355] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/12/2018] [Accepted: 10/04/2018] [Indexed: 11/17/2022]
Abstract
Budding yeasts (subphylum Saccharomycotina) are found in every biome and are as genetically diverse as plants or animals. To understand budding yeast evolution, we analyzed the genomes of 332 yeast species, including 220 newly sequenced ones, which represent nearly one-third of all known budding yeast diversity. Here, we establish a robust genus-level phylogeny comprising 12 major clades, infer the timescale of diversification from the Devonian period to the present, quantify horizontal gene transfer (HGT), and reconstruct the evolution of 45 metabolic traits and the metabolic toolkit of the budding yeast common ancestor (BYCA). We infer that BYCA was metabolically complex and chronicle the tempo and mode of genomic and phenotypic evolution across the subphylum, which is characterized by very low HGT levels and widespread losses of traits and the genes that control them. More generally, our results argue that reductive evolution is a major mode of evolutionary diversification.
Collapse
Affiliation(s)
- Xing-Xing Shen
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Dana A Opulente
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jacek Kominek
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xiaofan Zhou
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, 510642 Guangzhou, China
| | - Jacob L Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Kelly V Buh
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Max A B Haase
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA; Sackler Institute of Graduate Biomedical Sciences, NYU School of Medicine, New York, NY 10016, USA
| | - Jennifer H Wisecaver
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Department of Biochemistry, Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Mingshuang Wang
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Drew T Doering
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - James T Boudouris
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Rachel M Schneider
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Quinn K Langdon
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Rikiya Endoh
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Masako Takashima
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Ri-Ichiroh Manabe
- Division of Genomic Technologies, RIKEN Center For Life Science Technologies, Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Neža Čadež
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Diego Libkind
- Laboratorio de Microbiología Aplicada y Biotecnología, Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Consejo Nacional de Investigaciones, Científicas y Técnicas (CONICET)-Universidad Nacional del Comahue, 8400 Bariloche, Argentina
| | - Carlos A Rosa
- Departamento de Microbiologia, ICB, CP 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Jeremy DeVirgilio
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL 61604, USA
| | - Amanda Beth Hulfachor
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Cletus P Kurtzman
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL 61604, USA
| | - Chris Todd Hittinger
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
7
|
Lutfullahoğlu-Bal G, Seferoğlu AB, Keskin A, Akdoğan E, Dunn CD. A bacteria-derived tail anchor localizes to peroxisomes in yeast and mammalian cells. Sci Rep 2018; 8:16374. [PMID: 30401812 PMCID: PMC6219538 DOI: 10.1038/s41598-018-34646-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/18/2018] [Indexed: 11/18/2022] Open
Abstract
Prokaryotes can provide new genetic information to eukaryotes by horizontal gene transfer (HGT), and such transfers are likely to have been particularly consequential in the era of eukaryogenesis. Since eukaryotes are highly compartmentalized, it is worthwhile to consider the mechanisms by which newly transferred proteins might reach diverse organellar destinations. Toward this goal, we have focused our attention upon the behavior of bacteria-derived tail anchors (TAs) expressed in the eukaryote Saccharomyces cerevisiae. In this study, we report that a predicted membrane-associated domain of the Escherichia coli YgiM protein is specifically trafficked to peroxisomes in budding yeast, can be found at a pre-peroxisomal compartment (PPC) upon disruption of peroxisomal biogenesis, and can functionally replace an endogenous, peroxisome-directed TA. Furthermore, the YgiM(TA) can localize to peroxisomes in mammalian cells. Since the YgiM(TA) plays no endogenous role in peroxisomal function or assembly, this domain is likely to serve as an excellent tool allowing further illumination of the mechanisms by which TAs can travel to peroxisomes. Moreover, our findings emphasize the ease with which bacteria-derived sequences might target to organelles in eukaryotic cells following HGT, and we discuss the importance of flexible recognition of organelle targeting information during and after eukaryogenesis.
Collapse
Affiliation(s)
- Güleycan Lutfullahoğlu-Bal
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014, Helsinki, Finland
- Department of Molecular Biology and Genetics, Koç University, 34450, Sarıyer, İstanbul, Turkey
| | - Ayşe Bengisu Seferoğlu
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014, Helsinki, Finland
| | - Abdurrahman Keskin
- Department of Molecular Biology and Genetics, Koç University, 34450, Sarıyer, İstanbul, Turkey
- Department of Biological Sciences, Columbia University, New York, NY, 10027, United States of America
| | - Emel Akdoğan
- Department of Molecular Biology and Genetics, Koç University, 34450, Sarıyer, İstanbul, Turkey
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616, United States of America
| | - Cory D Dunn
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014, Helsinki, Finland.
- Department of Molecular Biology and Genetics, Koç University, 34450, Sarıyer, İstanbul, Turkey.
| |
Collapse
|