1
|
Modak TH, Literman R, Puritz JB, Johnson KM, Roberts EM, Proestou D, Guo X, Gomez-Chiarri M, Schwartz RS. Extensive genome-wide duplications in the eastern oyster ( Crassostrea virginica). Philos Trans R Soc Lond B Biol Sci 2021; 376:20200164. [PMID: 33813893 DOI: 10.1098/rstb.2020.0164] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Genomic structural variation is an important source of genetic and phenotypic diversity, playing a critical role in evolution. The recent availability of a high-quality reference genome for the eastern oyster, Crassostrea virginica, and whole-genome sequence data of samples from across the species range in the USA, provides an opportunity to explore structural variation across the genome of this species. Our analysis shows significantly greater individual-level duplications of regions across the genome than that of most model vertebrate species. Duplications are widespread across all ten chromosomes with variation in frequency per chromosome. The eastern oyster shows a large interindividual variation in duplications as well as particular chromosomal regions with a higher density of duplications. A high percentage of duplications seen in C. virginica lie completely within genes and exons, suggesting the potential for impacts on gene function. These results support the hypothesis that structural changes may play a significant role in standing genetic variation in C. virginica, and potentially have a role in their adaptive and evolutionary success. Altogether, these results suggest that copy number variation plays an important role in the genomic variation of C. virginica. This article is part of the Theo Murphy meeting issue 'Molluscan genomics: broad insights and future directions for a neglected phylum'.
Collapse
Affiliation(s)
- Tejashree H Modak
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston, RI 02881, USA
| | - Robert Literman
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston, RI 02881, USA
| | - Jonathan B Puritz
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston, RI 02881, USA
| | - Kevin M Johnson
- Center for Coastal Marine Sciences, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, CA 93407, USA.,Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.,California Sea Grant, University of California San Diego, La Jolla, CA 92093-0232, USA
| | - Erin M Roberts
- Department of Fisheries, Animal and Veterinary Sciences, University of Rhode Island, 120 Flagg Road, Kingston, RI 02881, USA
| | - Dina Proestou
- USDA Agricultural Research Service, National Cold Water Marine Aquaculture Center, 469 CBLS, 120 Flagg Road, Kingston, RI 02881, USA
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, 6959 Miller Avenue, Port Norris, NJ 08349, USA
| | - Marta Gomez-Chiarri
- Department of Fisheries, Animal and Veterinary Sciences, University of Rhode Island, 120 Flagg Road, Kingston, RI 02881, USA
| | - Rachel S Schwartz
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston, RI 02881, USA
| |
Collapse
|
2
|
Wang J, Itgen MW, Wang H, Gong Y, Jiang J, Li J, Sun C, Sessions SK, Mueller RL. Gigantic Genomes Provide Empirical Tests of Transposable Element Dynamics Models. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 19:123-139. [PMID: 33677107 PMCID: PMC8498967 DOI: 10.1016/j.gpb.2020.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022]
Abstract
Transposable elements (TEs) are a major determinant of eukaryotic genome size. The collective properties of a genomic TE community reveal the history of TE/host evolutionary dynamics and impact present-day host structure and function, from genome to organism levels. In rare cases, TE community/genome size has greatly expanded in animals, associated with increased cell size and changes to anatomy and physiology. Here, we characterize the TE landscape of the genome and transcriptome in an amphibian with a giant genome — the caecilianIchthyophis bannanicus, which we show has a genome size of 12.2 Gb. Amphibians are an important model system because the clade includes independent cases of genomic gigantism. The I. bannanicus genome differs compositionally from other giant amphibian genomes, but shares a low rate of ectopic recombination-mediated deletion. We examine TE activity using expression and divergence plots; TEs account for 15% of somatic transcription, and most superfamilies appear active. We quantify TE diversity in the caecilian, as well as other vertebrates with a range of genome sizes, using diversity indices commonly applied in community ecology. We synthesize previous models that integrate TE abundance, diversity, and activity, and test whether the caecilian meets model predictions for genomes with high TE abundance. We propose thorough, consistent characterization of TEs to strengthen future comparative analyses. Such analyses will ultimately be required to reveal whether the divergent TE assemblages found across convergent gigantic genomes reflect fundamental shared features of TE/host genome evolutionary dynamics.
Collapse
Affiliation(s)
- Jie Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Michael W Itgen
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Huiju Wang
- School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Yuzhou Gong
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jianping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jiatang Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Cheng Sun
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | | | | |
Collapse
|
3
|
Blommaert J. Genome size evolution: towards new model systems for old questions. Proc Biol Sci 2020; 287:20201441. [PMID: 32842932 PMCID: PMC7482279 DOI: 10.1098/rspb.2020.1441] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022] Open
Abstract
Genome size (GS) variation is a fundamental biological characteristic; however, its evolutionary causes and consequences are the topic of ongoing debate. Whether GS is a neutral trait or one subject to selective pressures, and how strong these selective pressures are, may remain open questions. Fundamentally, the genomic sequences responsible for this variation directly impact the potential evolutionary outcomes and, equally, are the targets of different evolutionary pressures. For example, duplications and deletions of genic regions (large or small) can have immediate and drastic phenotypic effects, while an expansion or contraction of non-coding DNA is less likely to cause catastrophic phenotypic effects. However, in the long term, the accumulation or deletion of ncDNA is likely to have larger effects. Modern sequencing technologies are allowing for the dissection of these proximate causes, but a combination of these new technologies with more traditional evolutionary experiments and approaches could revolutionize this debate and potentially resolve many of these arguments. Here, I discuss an ambitious way forward for GS research, putting it in context of historical debates, theories and sometimes contradictory evidence, and highlighting the promise of combining new sequencing technologies and analytical developments with more traditional experimental evolution approaches.
Collapse
Affiliation(s)
- Julie Blommaert
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Bonett RM, Hess AJ, Ledbetter NM. Facultative Transitions Have Trouble Committing, But Stable Life Cycles Predict Salamander Genome Size Evolution. Evol Biol 2020. [DOI: 10.1007/s11692-020-09497-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
5
|
Seidl F, Levis NA, Schell R, Pfennig DW, Pfennig KS, Ehrenreich IM. Genome of Spea multiplicata, a Rapidly Developing, Phenotypically Plastic, and Desert-Adapted Spadefoot Toad. G3 (BETHESDA, MD.) 2019; 9:3909-3919. [PMID: 31578218 PMCID: PMC6893194 DOI: 10.1534/g3.119.400705] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/23/2019] [Indexed: 12/22/2022]
Abstract
Frogs and toads (anurans) are widely used to study many biological processes. Yet, few anuran genomes have been sequenced, limiting research on these organisms. Here, we produce a draft genome for the Mexican spadefoot toad, Spea multiplicata, which is a member of an unsequenced anuran clade. Atypically for amphibians, spadefoots inhabit deserts. Consequently, they possess many unique adaptations, including rapid growth and development, prolonged dormancy, phenotypic (developmental) plasticity, and adaptive, interspecies hybridization. We assembled and annotated a 1.07 Gb Sp. multiplicata genome containing 19,639 genes. By comparing this sequence to other available anuran genomes, we found gene amplifications in the gene families of nodal, hyas3, and zp3 in spadefoots, and obtained evidence that anuran genome size differences are partially driven by variability in intergenic DNA content. We also used the genome to identify genes experiencing positive selection and to study gene expression levels in spadefoot hybrids relative to their pure-species parents. Completion of the Sp. multiplicata genome advances efforts to determine the genetic bases of spadefoots' unique adaptations and enhances comparative genomic research in anurans.
Collapse
Affiliation(s)
- Fabian Seidl
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, and
| | - Nicholas A Levis
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Rachel Schell
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, and
| | - David W Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Karin S Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Ian M Ehrenreich
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, and
| |
Collapse
|