1
|
Pyenson NC, Leeks A, Nweke O, Goldford JE, Schluter J, Turner PE, Foster KR, Sanchez A. Diverse phage communities are maintained stably on a clonal bacterial host. Science 2024; 386:1294-1300. [PMID: 39666794 DOI: 10.1126/science.adk1183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 04/25/2024] [Accepted: 10/29/2024] [Indexed: 12/14/2024]
Abstract
Bacteriophages are the most abundant and phylogenetically diverse biological entities on Earth, yet the ecological mechanisms that sustain this extraordinary diversity remain unclear. In this study, we discovered that phage diversity consistently outstripped the diversity of their bacterial hosts under simple experimental conditions. We assembled and passaged dozens of diverse phage communities on a single, nonevolving strain of Escherichia coli until the phage communities reached equilibrium. In all cases, we found that two or more phage species coexisted stably, despite competition for a single, clonal host population. Phage coexistence was supported through host phenotypic heterogeneity, whereby bacterial cells adopting different growth phenotypes served as niches for different phage species. Our experiments reveal that a rich community ecology of bacteriophages can emerge on a single bacterial host.
Collapse
Affiliation(s)
- Nora C Pyenson
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY, USA
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Asher Leeks
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Quantitative Biology Institute, Yale University, New Haven, CT, USA
| | - Odera Nweke
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Joshua E Goldford
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Jonas Schluter
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY, USA
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Paul E Turner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Quantitative Biology Institute, Yale University, New Haven, CT, USA
- Program in Microbiology, Yale School of Medicine, New Haven, CT, USA
- Center for Phage Biology and Therapy, Yale University, New Haven, CT, USA
| | - Kevin R Foster
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Alvaro Sanchez
- Institute of Functional Biology and Genomics, CSIC & University of Salamanca, Salamanca, Spain
| |
Collapse
|
2
|
Draghi J, Zook E. Spatial clustering of hosts can favor specialist parasites. Ecol Evol 2024; 14:e70273. [PMID: 39559465 PMCID: PMC11570423 DOI: 10.1002/ece3.70273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 11/20/2024] Open
Abstract
Generalist parasites seem to enjoy the clear ecological advantage of a greater chance to find a host, and genetic trade-offs are therefore often invoked to explain why specialists can coexist with or outcompete generalists. Here we develop an alternative perspective based on optimal foraging theory to explain why spatial clustering can favor specialists even without genetic trade-offs. Using analytical and simulation models inspired by bacteriophage, we examine the optimal use of two hosts, one yielding greater reproductive success for the parasite than the other. We find that a phage may optimally ignore the worse host when the two hosts are clustered together in dense, ephemeral patches. We model conditions that enhance or reduce this selective benefit to a specialist parasite and show that it is eliminated entirely when the hosts occur only in separate patches. These results show that specialists can be favored even when trade-offs are weak or absent and emphasize the importance of spatiotemporal heterogeneity in models of optimal niche breadth.
Collapse
Affiliation(s)
- Jeremy Draghi
- Department of Biological SciencesVirginia TechBlacksburgVirginiaUSA
| | - Evan Zook
- Department of Biological SciencesVirginia TechBlacksburgVirginiaUSA
| |
Collapse
|
3
|
Graham EB, Camargo AP, Wu R, Neches RY, Nolan M, Paez-Espino D, Kyrpides NC, Jansson JK, McDermott JE, Hofmockel KS. A global atlas of soil viruses reveals unexplored biodiversity and potential biogeochemical impacts. Nat Microbiol 2024; 9:1873-1883. [PMID: 38902374 PMCID: PMC11222151 DOI: 10.1038/s41564-024-01686-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/25/2024] [Indexed: 06/22/2024]
Abstract
Historically neglected by microbial ecologists, soil viruses are now thought to be critical to global biogeochemical cycles. However, our understanding of their global distribution, activities and interactions with the soil microbiome remains limited. Here we present the Global Soil Virus Atlas, a comprehensive dataset compiled from 2,953 previously sequenced soil metagenomes and composed of 616,935 uncultivated viral genomes and 38,508 unique viral operational taxonomic units. Rarefaction curves from the Global Soil Virus Atlas indicate that most soil viral diversity remains unexplored, further underscored by high spatial turnover and low rates of shared viral operational taxonomic units across samples. By examining genes associated with biogeochemical functions, we also demonstrate the viral potential to impact soil carbon and nutrient cycling. This study represents an extensive characterization of soil viral diversity and provides a foundation for developing testable hypotheses regarding the role of the virosphere in the soil microbiome and global biogeochemistry.
Collapse
Affiliation(s)
- Emily B Graham
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
- School of Biological Sciences, Washington State University, Pullman, WA, USA.
| | - Antonio Pedro Camargo
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ruonan Wu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Russell Y Neches
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - Matt Nolan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David Paez-Espino
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nikos C Kyrpides
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Janet K Jansson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jason E McDermott
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Kirsten S Hofmockel
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
- Department of Agronomy, Iowa State University, Ames, IA, USA
| |
Collapse
|
4
|
Ruan C, Ramoneda J, Kan A, Rudge TJ, Wang G, Johnson DR. Phage predation accelerates the spread of plasmid-encoded antibiotic resistance. Nat Commun 2024; 15:5397. [PMID: 38926498 PMCID: PMC11208555 DOI: 10.1038/s41467-024-49840-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
Phage predation is generally assumed to reduce microbial proliferation while not contributing to the spread of antibiotic resistance. However, this assumption does not consider the effect of phage predation on the spatial organization of different microbial populations. Here, we show that phage predation can increase the spread of plasmid-encoded antibiotic resistance during surface-associated microbial growth by reshaping spatial organization. Using two strains of the bacterium Escherichia coli, we demonstrate that phage predation slows the spatial segregation of the strains during growth. This increases the number of cell-cell contacts and the extent of conjugation-mediated plasmid transfer between them. The underlying mechanism is that phage predation shifts the location of fastest growth from the biomass periphery to the interior where cells are densely packed and aligned closer to parallel with each other. This creates straighter interfaces between the strains that are less likely to merge together during growth, consequently slowing the spatial segregation of the strains and enhancing plasmid transfer between them. Our results have implications for the design and application of phage therapy and reveal a mechanism for how microbial functions that are deleterious to human and environmental health can proliferate in the absence of positive selection.
Collapse
Affiliation(s)
- Chujin Ruan
- College of Land Science and Technology, China Agricultural University, Beijing, China
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| | - Josep Ramoneda
- Spanish Research Council (CSIC), Center for Advanced Studies of Blanes (CEAB), Blanes, Spain
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
| | - Anton Kan
- Department of Materials, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland
| | - Timothy J Rudge
- Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - Gang Wang
- College of Land Science and Technology, China Agricultural University, Beijing, China.
- National Black Soil & Agriculture Research, China Agricultural University, Beijing, China.
| | - David R Johnson
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland.
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.
| |
Collapse
|
5
|
Jing M, Yang W, Rao L, Chen J, Ding X, Zhou Y, Zhang Q, Lu K, Zhu J. Mechanisms of microbial coexistence in a patchy ecosystem: Differences in ecological niche overlap and species fitness between rhythmic and non-rhythmic species. WATER RESEARCH 2024; 256:121626. [PMID: 38642534 DOI: 10.1016/j.watres.2024.121626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/28/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
Resource patchiness caused by external events breaks the continuity and homogeneity of resource distribution in the original ecosystem. For local organisms, this leads to drastic changes in the availability of resources, breaks down the co-existence of species, and reshuffles the local ecosystem. West Lake is a freshwater lake with resource patchiness caused by multiple exogenous disturbances that has strong environmental heterogeneity that prevents clear observation of seasonal changes in the microbial communities. Despite this, the emergence of rhythmic species in response to irregular changes in the environment has been helpful for observing microbial communities dynamics in patchy ecosystems. We investigated the ecological mechanisms of seasonal changes in microbial communities in West Lake by screening rhythmic species based on the ecological niche and modern coexistence theories. The results showed that rhythmic species were the dominant factors in microbial community changes and the effects of most environmental factors on the microbial community were indirectly realised through the rhythmic species. Random forest analyses showed that seasonal changes in the microbial community were similarly predicted by the rhythmic species. In addition, we incorporated species interactions and community phylogenetic patterns into stepwise multiple regression analyses, the results of which indicate that ecological niches and species fitness may drive the coexistence of these subcommunities. Thus, this study extends our understanding of seasonal changes in microbial communities and provides new ways for observing seasonal changes in microbial communities, especially in ecosystems with resource patches. Our study also show that combining community phylogenies with co-occurrence networks based on ecological niches and modern coexistence theory can further help us understand the ecological mechanisms of interspecies coexistence.
Collapse
Affiliation(s)
- MingFei Jing
- School of Marine Science, Ningbo University, No.169 Qixingnan Road, Beilun District, Ningbo, Zhejiang 315800, China
| | - Wen Yang
- School of Marine Science, Ningbo University, No.169 Qixingnan Road, Beilun District, Ningbo, Zhejiang 315800, China
| | - Lihua Rao
- Division of Hangzhou West Lake Aquatic Area Management, Hangzhou 310002, China
| | - Jun Chen
- Division of Hangzhou West Lake Aquatic Area Management, Hangzhou 310002, China
| | - Xiuying Ding
- Division of Hangzhou West Lake Aquatic Area Management, Hangzhou 310002, China
| | - Yinying Zhou
- Division of Hangzhou West Lake Aquatic Area Management, Hangzhou 310002, China
| | - Quanxiang Zhang
- School of Marine Science, Ningbo University, No.169 Qixingnan Road, Beilun District, Ningbo, Zhejiang 315800, China
| | - Kaihong Lu
- School of Marine Science, Ningbo University, No.169 Qixingnan Road, Beilun District, Ningbo, Zhejiang 315800, China
| | - Jinyong Zhu
- School of Marine Science, Ningbo University, No.169 Qixingnan Road, Beilun District, Ningbo, Zhejiang 315800, China.
| |
Collapse
|
6
|
Boeckaerts D, Stock M, Ferriol-González C, Oteo-Iglesias J, Sanjuán R, Domingo-Calap P, De Baets B, Briers Y. Prediction of Klebsiella phage-host specificity at the strain level. Nat Commun 2024; 15:4355. [PMID: 38778023 PMCID: PMC11111740 DOI: 10.1038/s41467-024-48675-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Phages are increasingly considered promising alternatives to target drug-resistant bacterial pathogens. However, their often-narrow host range can make it challenging to find matching phages against bacteria of interest. Current computational tools do not accurately predict interactions at the strain level in a way that is relevant and properly evaluated for practical use. We present PhageHostLearn, a machine learning system that predicts strain-level interactions between receptor-binding proteins and bacterial receptors for Klebsiella phage-bacteria pairs. We evaluate this system both in silico and in the laboratory, in the clinically relevant setting of finding matching phages against bacterial strains. PhageHostLearn reaches a cross-validated ROC AUC of up to 81.8% in silico and maintains this performance in laboratory validation. Our approach provides a framework for developing and evaluating phage-host prediction methods that are useful in practice, which we believe to be a meaningful contribution to the machine-learning-guided development of phage therapeutics and diagnostics.
Collapse
Affiliation(s)
- Dimitri Boeckaerts
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Ghent, Belgium
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
| | - Michiel Stock
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
| | - Celia Ferriol-González
- Institute for Integrative Systems Biology (I2SysBio), Universitat de Valencia-CSIC, Paterna, Spain
| | - Jesús Oteo-Iglesias
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Universitat de Valencia-CSIC, Paterna, Spain
| | - Pilar Domingo-Calap
- Institute for Integrative Systems Biology (I2SysBio), Universitat de Valencia-CSIC, Paterna, Spain
| | - Bernard De Baets
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
| | - Yves Briers
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Ghent, Belgium.
| |
Collapse
|
7
|
Bisesi AT, Möbius W, Nadell CD, Hansen EG, Bowden SD, Harcombe WR. Bacteriophage specificity is impacted by interactions between bacteria. mSystems 2024; 9:e0117723. [PMID: 38376179 PMCID: PMC11237722 DOI: 10.1128/msystems.01177-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/20/2024] [Indexed: 02/21/2024] Open
Abstract
Predators play a central role in shaping community structure, function, and stability. The degree to which bacteriophage predators (viruses that infect bacteria) evolve to be specialists with a single bacterial prey species versus generalists able to consume multiple types of prey has implications for their effect on microbial communities. The presence and abundance of multiple bacterial prey types can alter selection for phage generalists, but less is known about how interactions between prey shape predator specificity in microbial systems. Using a phenomenological mathematical model of phage and bacterial populations, we find that the dominant phage strategy depends on prey ecology. Given a fitness cost for generalism, generalist predators maintain an advantage when prey species compete, while specialists dominate when prey are obligately engaged in cross-feeding interactions. We test these predictions in a synthetic microbial community with interacting strains of Escherichia coli and Salmonella enterica by competing a generalist T5-like phage able to infect both prey against P22vir, an S. enterica-specific phage. Our experimental data conform to our modeling expectations when prey species are competing or obligately mutualistic, although our results suggest that the in vitro cost of generalism is caused by a combination of biological mechanisms not anticipated in our model. Our work demonstrates that interactions between bacteria play a role in shaping ecological selection on predator specificity in obligately lytic bacteriophages and emphasizes the diversity of ways in which fitness trade-offs can manifest. IMPORTANCE There is significant natural diversity in how many different types of bacteria a bacteriophage can infect, but the mechanisms driving this diversity are unclear. This study uses a combination of mathematical modeling and an in vitro system consisting of Escherichia coli, Salmonella enterica, a T5-like generalist phage, and the specialist phage P22vir to highlight the connection between bacteriophage specificity and interactions between their potential microbial prey. Mathematical modeling suggests that competing bacteria tend to favor generalist bacteriophage, while bacteria that benefit each other tend to favor specialist bacteriophage. Experimental results support this general finding. The experiments also show that the optimal phage strategy is impacted by phage degradation and bacterial physiology. These findings enhance our understanding of how complex microbial communities shape selection on bacteriophage specificity, which may improve our ability to use phage to manage antibiotic-resistant microbial infections.
Collapse
Affiliation(s)
- Ave T. Bisesi
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, USA
| | - Wolfram Möbius
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
- Department of Physics and Astronomy, University of Exeter, Exeter, United Kingdom
| | - Carey D. Nadell
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Eleanore G. Hansen
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
| | - Steven D. Bowden
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
| | - William R. Harcombe
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, USA
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
8
|
Wang X, Leptihn S. Defense and anti-defense mechanisms of bacteria and bacteriophages. J Zhejiang Univ Sci B 2024; 25:181-196. [PMID: 38453634 PMCID: PMC10918411 DOI: 10.1631/jzus.b2300101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/24/2023] [Indexed: 03/09/2024]
Abstract
In the post-antibiotic era, the overuse of antimicrobials has led to a massive increase in antimicrobial resistance, leaving medical doctors few or no treatment options to fight infections caused by superbugs. The use of bacteriophages is a promising alternative to treat infections, supplementing or possibly even replacing antibiotics. Using phages for therapy is possible, since these bacterial viruses can kill bacteria specifically, causing no harm to the normal flora. However, bacteria have developed a multitude of sophisticated and complex ways to resist infection by phages, including abortive infection and the clustered regularly interspersed short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system. Phages also can evolve and acquire new anti-defense strategies to continue predation. An in-depth exploration of both defense and anti-defense mechanisms would contribute to optimizing phage therapy, while we would also gain novel insights into the microbial world. In this paper, we summarize recent research on bacterial phage resistance and phage anti-defense mechanisms, as well as collaborative win-win systems involving both virus and host.
Collapse
Affiliation(s)
- Xiaoqing Wang
- School of Medicine, Lishui University, Lishui 323000, China.
| | - Sebastian Leptihn
- University of Edinburgh Medical School, Biomedical Sciences, College of Medicine & Veterinary Medicine, The University of Edinburgh, Edinburgh EH8 9JZ, UK.
- HMU Health and Medical University, Am Anger 64/73- 99084 Erfurt, Germany.
| |
Collapse
|
9
|
Liu K, Wang C, Zhou X, Guo X, Yang Y, Liu W, Zhao R, Song H. Bacteriophage therapy for drug-resistant Staphylococcus aureus infections. Front Cell Infect Microbiol 2024; 14:1336821. [PMID: 38357445 PMCID: PMC10864608 DOI: 10.3389/fcimb.2024.1336821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
Drug-resistant Staphylococcus aureus stands as a prominent pathogen in nosocomial and community-acquired infections, capable of inciting various infections at different sites in patients. This includes Staphylococcus aureus bacteremia (SaB), which exhibits a severe infection frequently associated with significant mortality rate of approximately 25%. In the absence of better alternative therapies, antibiotics is still the main approach for treating infections. However, excessive use of antibiotics has, in turn, led to an increase in antimicrobial resistance. Hence, it is imperative that new strategies are developed to control drug-resistant S. aureus infections. Bacteriophages are viruses with the ability to infect bacteria. Bacteriophages, were used to treat bacterial infections before the advent of antibiotics, but were subsequently replaced by antibiotics due to limited theoretical understanding and inefficient preparation processes at the time. Recently, phages have attracted the attention of many researchers again because of the serious problem of antibiotic resistance. This article provides a comprehensive overview of phage biology, animal models, diverse clinical case treatments, and clinical trials in the context of drug-resistant S. aureus phage therapy. It also assesses the strengths and limitations of phage therapy and outlines the future prospects and research directions. This review is expected to offer valuable insights for researchers engaged in phage-based treatments for drug-resistant S. aureus infections.
Collapse
Affiliation(s)
- Kaixin Liu
- College of Public Health, Zhengzhou University, Zhengzhou, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Chao Wang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Xudong Zhou
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
- College of Public Health, China Medical University, Shenyang, China
| | - Xudong Guo
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Yi Yang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Wanying Liu
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Rongtao Zhao
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Hongbin Song
- College of Public Health, Zhengzhou University, Zhengzhou, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
- College of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
10
|
Varona NS, Hesketh-Best PJ, Coutinho FH, Stiffler AK, Wallace BA, Garcia SL, Scholten Y, Haas AF, Little M, Vermeij M, Luque A, Silveira C. Host-specific viral predation network on coral reefs. THE ISME JOURNAL 2024; 18:wrae240. [PMID: 39657233 PMCID: PMC11694666 DOI: 10.1093/ismejo/wrae240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/22/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024]
Abstract
Viral infections are major modulators of marine microbial community assembly and biogeochemical cycling. In coral reefs, viral lysis controls bacterial overgrowth that is detrimental to coral health. However, methodological limitations have prevented the identification of viral hosts and quantification of their interaction frequencies. Here, we reconstructed an abundance-resolved virus-bacteria interaction network in the oligotrophic coral reef waters of Curaçao by integrating direct microscopy counts with virus-host links obtained from proximity-ligation, prophage integration, and CRISPR spacers. This network of 3013 individual links (97 unique species-level interactions) revealed that the abundance of free viral particles was weakly related to host abundance and viral production, as indicated by the cell-associated virus-to-host ratio (VHR). The viruses with the highest free and cell-associated VHR, interpreted here as highly productive viruses, formed links with intermediate-to-low abundance hosts belonging to Gammaproteobacteria, Bacteroidia, and Planctomycetia. In contrast, low-production viruses interacted with abundant members of Alphaproteobacteria and Gammaproteobacteria enriched in prophages. These findings highlight the decoupling between viral abundance and production and identify potentially active viruses. We propose that differential decay rates and burst sizes may explain the decoupling between free viral abundance and production and that lysogenic infections play an important role in the ecology of high-abundance hosts.
Collapse
Affiliation(s)
- Natascha S Varona
- Department of Biology, University of Miami, Coral Gables, FL 33146, United States
| | - Poppy J Hesketh-Best
- Department of Biology, University of Miami, Coral Gables, FL 33146, United States
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, United States
| | - Felipe H Coutinho
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM), Consejo Superior de Investigaciones Científicas (CSIC), Passeig Maritìm de la Barceloneta, 37-49, 08003 Barcelona, Catalunya, Spain
| | - Alexandra K Stiffler
- Department of Biology, University of Miami, Coral Gables, FL 33146, United States
| | - Bailey A Wallace
- Department of Biology, University of Miami, Coral Gables, FL 33146, United States
| | - Sofia L Garcia
- Department of Biology, University of Miami, Coral Gables, FL 33146, United States
| | - Yun Scholten
- Department Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, Den Burg 1790 AB, Texel, The Netherlands
| | - Andreas F Haas
- Department Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, Den Burg 1790 AB, Texel, The Netherlands
| | - Mark Little
- Department of Organismal & Evolutionary Biology, Harvard University, 26 Oxford St, Cambridge, MA, 02138, United States
| | - Mark Vermeij
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands
- CARMABI Foundation, P.O. Box 2090, Piscaderabaai z/n, Willemstad, Curaçao
| | - Antoni Luque
- Department of Biology, University of Miami, Coral Gables, FL 33146, United States
| | - Cynthia Silveira
- Department of Biology, University of Miami, Coral Gables, FL 33146, United States
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL 33149, United States
| |
Collapse
|
11
|
Wu R, Davison MR, Nelson WC, Smith ML, Lipton MS, Jansson JK, McClure RS, McDermott JE, Hofmockel KS. Hi-C metagenome sequencing reveals soil phage-host interactions. Nat Commun 2023; 14:7666. [PMID: 37996432 PMCID: PMC10667309 DOI: 10.1038/s41467-023-42967-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023] Open
Abstract
Bacteriophages are abundant in soils. However, the majority are uncharacterized, and their hosts are unknown. Here, we apply high-throughput chromosome conformation capture (Hi-C) to directly capture phage-host relationships. Some hosts have high centralities in bacterial community co-occurrence networks, suggesting phage infections have an important impact on the soil bacterial community interactions. We observe increased average viral copies per host (VPH) and decreased viral transcriptional activity following a two-week soil-drying incubation, indicating an increase in lysogenic infections. Soil drying also alters the observed phage host range. A significant negative correlation between VPH and host abundance prior to drying indicates more lytic infections result in more host death and inversely influence host abundance. This study provides empirical evidence of phage-mediated bacterial population dynamics in soil by directly capturing specific phage-host interactions.
Collapse
Affiliation(s)
- Ruonan Wu
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Michelle R Davison
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - William C Nelson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Montana L Smith
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Mary S Lipton
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Janet K Jansson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ryan S McClure
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jason E McDermott
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Kirsten S Hofmockel
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
- Department of Agronomy, Iowa State University, Ames, IA, USA.
| |
Collapse
|
12
|
Van Cauwenberghe J, Simms EL. How might bacteriophages shape biological invasions? mBio 2023; 14:e0188623. [PMID: 37812005 PMCID: PMC10653932 DOI: 10.1128/mbio.01886-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023] Open
Abstract
Invasions by eukaryotes dependent on environmentally acquired bacterial mutualists are often limited by the ability of bacterial partners to survive and establish free-living populations. Focusing on the model legume-rhizobium mutualism, we apply invasion biology hypotheses to explain how bacteriophages can impact the competitiveness of introduced bacterial mutualists. Predicting how phage-bacteria interactions affect invading eukaryotic hosts requires knowing the eco-evolutionary constraints of introduced and native microbial communities, as well as their differences in abundance and diversity. By synthesizing research from invasion biology, as well as bacterial, viral, and community ecology, we create a conceptual framework for understanding and predicting how phages can affect biological invasions through their effects on bacterial mutualists.
Collapse
Affiliation(s)
- Jannick Van Cauwenberghe
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Ellen L. Simms
- Department of Integrative Biology, University of California, Berkeley, California, USA
| |
Collapse
|
13
|
Abstract
Soil viruses are highly abundant and have important roles in the regulation of host dynamics and soil ecology. Climate change is resulting in unprecedented changes to soil ecosystems and the life forms that reside there, including viruses. In this Review, we explore our current understanding of soil viral diversity and ecology, and we discuss how climate change (such as extended and extreme drought events or more flooding and altered precipitation patterns) is influencing soil viruses. Finally, we provide our perspective on future research needs to better understand how climate change will impact soil viral ecology.
Collapse
Affiliation(s)
- Janet K Jansson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Ruonan Wu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
14
|
More's the Same-Multiple Hosts Do Not Select for Broader Host Range Phages. Viruses 2023; 15:v15020518. [PMID: 36851732 PMCID: PMC9960766 DOI: 10.3390/v15020518] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Bacteriophage host range is a result of the interactions between phages and their hosts. For phage therapy, phages with a broader host range are desired so that a phage can infect and kill the broadest range of pathogen strains or related species possible. A common, but not well-tested, belief is that using multiple hosts during the phage isolation will make the isolation of broader host range phage more likely. Using a Bacillus cereus group system, we compared the host ranges of phages isolated on one or four hosts and found that there was no difference in the breadth of host ranges of the isolated phages. Both narrow and broader host range phage were also equally likely to be isolated from either isolation procedure. While there are methods that reliably isolate broader host range phages, such as sequential host isolation, and there are other reasons to use multiple hosts during isolation, multiple hosts are not a consistent way to obtain broader host range phages.
Collapse
|
15
|
Shaer Tamar E, Kishony R. Multistep diversification in spatiotemporal bacterial-phage coevolution. Nat Commun 2022; 13:7971. [PMID: 36577749 PMCID: PMC9797572 DOI: 10.1038/s41467-022-35351-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 11/29/2022] [Indexed: 12/29/2022] Open
Abstract
The evolutionary arms race between phages and bacteria, where bacteria evolve resistance to phages and phages retaliate with resistance-countering mutations, is a major driving force of molecular innovation and genetic diversification. Yet attempting to reproduce such ongoing retaliation dynamics in the lab has been challenging; laboratory coevolution experiments of phage and bacteria are typically performed in well-mixed environments and often lead to rapid stagnation with little genetic variability. Here, co-culturing motile E. coli with the lytic bacteriophage T7 on swimming plates, we observe complex spatiotemporal dynamics with multiple genetically diversifying adaptive cycles. Systematically quantifying over 10,000 resistance-infectivity phenotypes between evolved bacteria and phage isolates, we observe diversification into multiple coexisting ecotypes showing a complex interaction network with both host-range expansion and host-switch tradeoffs. Whole-genome sequencing of these evolved phage and bacterial isolates revealed a rich set of adaptive mutations in multiple genetic pathways including in genes not previously linked with phage-bacteria interactions. Synthetically reconstructing these new mutations, we discover phage-general and phage-specific resistance phenotypes as well as a strong synergy with the more classically known phage-resistance mutations. These results highlight the importance of spatial structure and migration for driving phage-bacteria coevolution, providing a concrete system for revealing new molecular mechanisms across diverse phage-bacterial systems.
Collapse
Affiliation(s)
- Einat Shaer Tamar
- grid.6451.60000000121102151Faculty of Biology, Technion–Israel Institute of Technology, Haifa, Israel
| | - Roy Kishony
- grid.6451.60000000121102151Faculty of Biology, Technion–Israel Institute of Technology, Haifa, Israel ,grid.6451.60000000121102151Faculty of Computer Science, Technion–Israel Institute of Technology, Haifa, Israel ,grid.6451.60000000121102151Faculty of Biomedical Engineering, Technion–Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
16
|
Butterworth NJ, Benbow ME, Barton PS. The ephemeral resource patch concept. Biol Rev Camb Philos Soc 2022; 98:697-726. [PMID: 36517934 DOI: 10.1111/brv.12926] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Ephemeral resource patches (ERPs) - short lived resources including dung, carrion, temporary pools, rotting vegetation, decaying wood, and fungi - are found throughout every ecosystem. Their short-lived dynamics greatly enhance ecosystem heterogeneity and have shaped the evolutionary trajectories of a wide range of organisms - from bacteria to insects and amphibians. Despite this, there has been no attempt to distinguish ERPs clearly from other resource types, to identify their shared spatiotemporal characteristics, or to articulate their broad ecological and evolutionary influences on biotic communities. Here, we define ERPs as any distinct consumable resources which (i) are homogeneous (genetically, chemically, or structurally) relative to the surrounding matrix, (ii) host a discrete multitrophic community consisting of species that cannot replicate solely in any of the surrounding matrix, and (iii) cannot maintain a balance between depletion and renewal, which in turn, prevents multiple generations of consumers/users or reaching a community equilibrium. We outline the wide range of ERPs that fit these criteria, propose 12 spatiotemporal characteristics along which ERPs can vary, and synthesise a large body of literature that relates ERP dynamics to ecological and evolutionary theory. We draw this knowledge together and present a new unifying conceptual framework that incorporates how ERPs have shaped the adaptive trajectories of organisms, the structure of ecosystems, and how they can be integrated into biodiversity management and conservation. Future research should focus on how inter- and intra-resource variation occurs in nature - with a particular focus on resource × environment × genotype interactions. This will likely reveal novel adaptive strategies, aid the development of new eco-evolutionary theory, and greatly improve our understanding of the form and function of organisms and ecosystems.
Collapse
Affiliation(s)
- Nathan J. Butterworth
- School of Biological Sciences, Monash University Wellington Road Clayton VIC 3800 Australia
- School of Life Sciences, University of Technology Sydney 15 Broadway Ultimo NSW 2007 Australia
| | - M. Eric Benbow
- Department of Entomology, Department of Osteopathic Medical Specialties, and Ecology, Evolution and Behavior Program Michigan State University 220 Trowbridge Rd East Lansing MI 48824 USA
| | - Philip S. Barton
- Future Regions Research Centre, Federation University University Drive, Mount Helen VIC 3350 Australia
| |
Collapse
|
17
|
Tang X, Fan C, Zeng G, Zhong L, Li C, Ren X, Song B, Liu X. Phage-host interactions: The neglected part of biological wastewater treatment. WATER RESEARCH 2022; 226:119183. [PMID: 36244146 DOI: 10.1016/j.watres.2022.119183] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/29/2022] [Accepted: 09/29/2022] [Indexed: 05/25/2023]
Abstract
In wastewater treatment plants (WWTPs), the stable operation of biological wastewater treatment is strongly dependent on the stability of associated microbiota. Bacteriophages (phages), viruses that specifically infect bacteria and archaea, are highly abundant and diverse in WWTPs. Although phages do not have known metabolic functions for themselves, they can shape functional microbiota via various phage-host interactions to impact biological wastewater treatment. However, the developments of phage-host interaction in WWTPs and their impact on biological wastewater treatment are overlooked. Here, we review the current knowledge regarding the phage-host interactions in biological wastewater treatment, mainly focusing on the characteristics of different phage populations, the phage-driven changes in functional microbiota, and the potential driving factors of phage-host interactions. We also discuss the efforts required further to understand and manipulate the phage-host interactions in biological wastewater treatment. Overall, this review advocates more attention to the phage dynamics in WWTPs.
Collapse
Affiliation(s)
- Xiang Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Changzheng Fan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Linrui Zhong
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Chao Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China; Nova Skantek (Hunan) Environ Energy Co., Ltd., Changsha 410100, P.R. China
| | - Xiaoya Ren
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Xigui Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| |
Collapse
|
18
|
Taslem Mourosi J, Awe A, Guo W, Batra H, Ganesh H, Wu X, Zhu J. Understanding Bacteriophage Tail Fiber Interaction with Host Surface Receptor: The Key "Blueprint" for Reprogramming Phage Host Range. Int J Mol Sci 2022; 23:12146. [PMID: 36292999 PMCID: PMC9603124 DOI: 10.3390/ijms232012146] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Bacteriophages (phages), as natural antibacterial agents, are being rediscovered because of the growing threat of multi- and pan-drug-resistant bacterial pathogens globally. However, with an estimated 1031 phages on the planet, finding the right phage to recognize a specific bacterial host is like looking for a needle in a trillion haystacks. The host range of a phage is primarily determined by phage tail fibers (or spikes), which initially mediate reversible and specific recognition and adsorption by susceptible bacteria. Recent significant advances at single-molecule and atomic levels have begun to unravel the structural organization of tail fibers and underlying mechanisms of phage-host interactions. Here, we discuss the molecular mechanisms and models of the tail fibers of the well-characterized T4 phage's interaction with host surface receptors. Structure-function knowledge of tail fibers will pave the way for reprogramming phage host range and will bring future benefits through more-effective phage therapy in medicine. Furthermore, the design strategies of tail fiber engineering are briefly summarized, including machine-learning-assisted engineering inspired by the increasingly enormous amount of phage genetic information.
Collapse
Affiliation(s)
- Jarin Taslem Mourosi
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - Ayobami Awe
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - Wenzheng Guo
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - Himanshu Batra
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Harrish Ganesh
- VCU Life Sciences, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Xiaorong Wu
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - Jingen Zhu
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| |
Collapse
|
19
|
Skoracka A, Laska A, Radwan J, Konczal M, Lewandowski M, Puchalska E, Karpicka‐Ignatowska K, Przychodzka A, Raubic J, Kuczyński L. Effective specialist or jack of all trades? Experimental evolution of a crop pest in fluctuating and stable environments. Evol Appl 2022; 15:1639-1652. [PMID: 36330306 PMCID: PMC9624081 DOI: 10.1111/eva.13360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/30/2022] [Accepted: 02/06/2022] [Indexed: 11/30/2022] Open
Abstract
Understanding pest evolution in agricultural systems is crucial for developing effective and innovative pest control strategies. Types of cultivation, such as crop monocultures versus polycultures or crop rotation, may act as a selective pressure on pests' capability to exploit the host's resources. In this study, we examined the herbivorous mite Aceria tosichella (commonly known as wheat curl mite), a widespread wheat pest, to understand how fluctuating versus stable environments influence its niche breadth and ability to utilize different host plant species. We subjected a wheat-bred mite population to replicated experimental evolution in a single-host environment (either wheat or barley), or in an alternation between these two plant species every three mite generations. Next, we tested the fitness of these evolving populations on wheat, barley, and on two other plant species not encountered during experimental evolution, namely rye and smooth brome. Our results revealed that the niche breadth of A. tosichella evolved in response to the level of environmental variability. The fluctuating environment expanded the niche breadth by increasing the mite's ability to utilize different plant species, including novel ones. Such an environment may thus promote flexible host-use generalist phenotypes. However, the niche expansion resulted in some costs expressed as reduced performances on both wheat and barley as compared to specialists. Stable host environments led to specialized phenotypes. The population that evolved in a constant environment consisting of barley increased its fitness on barley without the cost of utilizing wheat. However, the population evolving on wheat did not significantly increase its fitness on wheat, but decreased its performance on barley. Altogether, our results indicated that, depending on the degree of environmental heterogeneity, agricultural systems create different conditions that influence pests' niche breadth evolution, which may in turn affect the ability of pests to persist in such systems.
Collapse
Affiliation(s)
- Anna Skoracka
- Population Ecology LabFaculty of BiologyInstitute of Environmental BiologyAdam Mickiewicz UniversityPoznańPoland
- Center for Advanced TechnologyAdam Mickiewicz UniversityPoznańPoland
| | - Alicja Laska
- Population Ecology LabFaculty of BiologyInstitute of Environmental BiologyAdam Mickiewicz UniversityPoznańPoland
| | - Jacek Radwan
- Evolutionary Biology GroupFaculty of BiologyInstitute of Environmental BiologyAdam Mickiewicz UniversityPoznańPoland
| | - Mateusz Konczal
- Evolutionary Biology GroupFaculty of BiologyInstitute of Environmental BiologyAdam Mickiewicz UniversityPoznańPoland
| | - Mariusz Lewandowski
- Section of Applied EntomologyDepartment of Plant ProtectionInstitute of Horticultural SciencesWarsaw University of Life Sciences – SGGWWarsawPoland
| | - Ewa Puchalska
- Section of Applied EntomologyDepartment of Plant ProtectionInstitute of Horticultural SciencesWarsaw University of Life Sciences – SGGWWarsawPoland
| | - Kamila Karpicka‐Ignatowska
- Population Ecology LabFaculty of BiologyInstitute of Environmental BiologyAdam Mickiewicz UniversityPoznańPoland
| | - Anna Przychodzka
- Population Ecology LabFaculty of BiologyInstitute of Environmental BiologyAdam Mickiewicz UniversityPoznańPoland
| | - Jarosław Raubic
- Population Ecology LabFaculty of BiologyInstitute of Environmental BiologyAdam Mickiewicz UniversityPoznańPoland
| | - Lechosław Kuczyński
- Population Ecology LabFaculty of BiologyInstitute of Environmental BiologyAdam Mickiewicz UniversityPoznańPoland
| |
Collapse
|
20
|
Strobel HM, Stuart EC, Meyer JR. A Trait-Based Approach to Predicting Viral Host-Range Evolvability. Annu Rev Virol 2022; 9:139-156. [PMID: 36173699 DOI: 10.1146/annurev-virology-091919-092003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Predicting the evolution of virus host range has proven to be extremely difficult, in part because of the sheer diversity of viruses, each with unique biology and ecological interactions. We have not solved this problem, but to make the problem more tractable, we narrowed our focus to three traits intrinsic to all viruses that may play a role in host-range evolvability: mutation rate, recombination rate, and phenotypic heterogeneity. Although each trait should increase evolvability, they cannot do so unbounded because fitness trade-offs limit the ability of all three traits to maximize evolvability. By examining these constraints, we can begin to identify groups of viruses with suites of traits that make them especially concerning, as well as ecological and environmental conditions that might push evolution toward accelerating host-range expansion.
Collapse
Affiliation(s)
- Hannah M Strobel
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| | - Elizabeth C Stuart
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| | - Justin R Meyer
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
21
|
Somerville V, Schowing T, Chabas H, Schmidt RS, von Ah U, Bruggmann R, Engel P. Extensive diversity and rapid turnover of phage defense repertoires in cheese-associated bacterial communities. MICROBIOME 2022; 10:137. [PMID: 36028909 PMCID: PMC9419375 DOI: 10.1186/s40168-022-01328-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/17/2022] [Indexed: 05/14/2023]
Abstract
BACKGROUND Phages are key drivers of genomic diversity in bacterial populations as they impose strong selective pressure on the evolution of bacterial defense mechanisms across closely related strains. The pan-immunity model suggests that such diversity is maintained because the effective immune system of a bacterial species is the one distributed across all strains present in the community. However, only few studies have analyzed the distribution of bacterial defense systems at the community-level, mostly focusing on CRISPR and comparing samples from complex environments. Here, we studied 2778 bacterial genomes and 188 metagenomes from cheese-associated communities, which are dominated by a few bacterial taxa and occur in relatively stable environments. RESULTS We corroborate previous laboratory findings that in cheese-associated communities nearly identical strains contain diverse and highly variable arsenals of innate and adaptive (i.e., CRISPR-Cas) immunity systems suggesting rapid turnover. CRISPR spacer abundance correlated with the abundance of matching target sequences across the metagenomes providing evidence that the identified defense repertoires are functional and under selection. While these characteristics align with the pan-immunity model, the detected CRISPR spacers only covered a subset of the phages previously identified in cheese, providing evidence that CRISPR does not enable complete immunity against all phages, and that the innate immune mechanisms may have complementary roles. CONCLUSIONS Our findings show that the evolution of bacterial defense mechanisms is a highly dynamic process and highlight that experimentally tractable, low complexity communities such as those found in cheese, can help to understand ecological and molecular processes underlying phage-defense system relationships. These findings can have implications for the design of robust synthetic communities used in biotechnology and the food industry. Video Abstract.
Collapse
Affiliation(s)
- Vincent Somerville
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.
- Agroscope, Bern, Switzerland.
| | - Thibault Schowing
- Agroscope, Bern, Switzerland
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Hélène Chabas
- Institute for Integrative Biology, ETH Zürich, Zürich, Switzerland
| | | | | | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
22
|
PhREEPred: Phage Resistance Emergence Prediction web to foresee encapsulated bacterial escape from phage cocktail treatment. J Mol Biol 2022; 434:167670. [PMID: 35671831 DOI: 10.1016/j.jmb.2022.167670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/06/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022]
Abstract
Phages, as well as phage-derived proteins, especially lysins and depolymerases, are intensively studied to become prospective alternatives or supportive antibacterials used alone or in combination. In the common phage therapy approach, the unwanted emergence of phage-resistant variants from the treated bacterial population can be postponed or reduced by the utilization of an effective phage cocktail. In this work, we present a publicly available web tool PhREEPred (Phage Resistance Emergence Prediction) (https://phartner.shinyapps.io/PhREEPred/), which will allow an informed choice of the composition of phage cocktails by predicting the outcome of phage cocktail or phage/depolymerase combination treatments given a mutating population that escapes single phage treatment. PhREEPred simulates solutions of our mathematical model calibrated and tested on the experimental Klebsiella pneumoniae setup and Klebsiella-specific lytic phages: K63 type-specific phage KP34 equipped with a capsule-degrading enzyme (KP34p57), capsule-independent myoviruses KP15 and KP27, and recombinant capsule depolymerase KP34p57. The model can calculate the phage-resistance emergence depending on the bacterial growth rate and initial density, the multiplicity of infection, phage latent period, its infectiveness and the cocktail composition, as well as initial depolymerase concentration and activity rate. This model reproduced the experimental results and showed that (i) the phage cocktail of parallelly infecting phages is less effective than the one composed of sequentially infecting phages; (ii) depolymerase can delay or prevent bacterial resistance by unveiling an alternative receptor for initially inactive phages. In our opinion, this customer-friendly web tool will allow for the primary design of the phage cocktail and phage-depolymerase combination effectiveness against encapsulated pathogens.
Collapse
|
23
|
Koskella B, Hernandez CA, Wheatley RM. Understanding the Impacts of Bacteriophage Viruses: From Laboratory Evolution to Natural Ecosystems. Annu Rev Virol 2022; 9:57-78. [PMID: 35584889 DOI: 10.1146/annurev-virology-091919-075914] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viruses of bacteriophages (phages) have broad effects on bacterial ecology and evolution in nature that mediate microbial interactions, shape bacterial diversity, and influence nutrient cycling and ecosystem function. The unrelenting impact of phages within the microbial realm is the result, in large part, of their ability to rapidly evolve in response to bacterial host dynamics. The knowledge gained from laboratory systems, typically using pairwise interactions between single-host and single-phage systems, has made clear that phages coevolve with their bacterial hosts rapidly, somewhat predictably, and primarily by counteradapting to host resistance. Recent advancement in metagenomics approaches, as well as a shifting focus toward natural microbial communities and host-associated microbiomes, is beginning to uncover the full picture of phage evolution and ecology within more complex settings. As these data reach their full potential, it will be critical to ask when and how insights gained from studies of phage evolution in vitro can be meaningfully applied to understanding bacteria-phage interactions in nature. In this review, we explore the myriad ways that phages shape and are themselves shaped by bacterial host populations and communities, with a particular focus on observed and predicted differences between the laboratory and complex microbial communities. Expected final online publication date for the Annual Review of Virology, Volume 9 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, California, USA;
| | - Catherine A Hernandez
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | | |
Collapse
|
24
|
Patterns and ecological drivers of viral communities in acid mine drainage sediments across Southern China. Nat Commun 2022; 13:2389. [PMID: 35501347 PMCID: PMC9061769 DOI: 10.1038/s41467-022-30049-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 04/14/2022] [Indexed: 11/09/2022] Open
Abstract
Recent advances in environmental genomics have provided unprecedented opportunities for the investigation of viruses in natural settings. Yet, our knowledge of viral biogeographic patterns and the corresponding drivers is still limited. Here, we perform metagenomic deep sequencing on 90 acid mine drainage (AMD) sediments sampled across Southern China and examine the biogeography of viruses in this extreme environment. The results demonstrate that prokaryotic communities dictate viral taxonomic and functional diversity, abundance and structure, whereas other factors especially latitude and mean annual temperature also impact viral populations and functions. In silico predictions highlight lineage-specific virus-host abundance ratios and richness-dependent virus-host interaction structure. Further functional analyses reveal important roles of environmental conditions and horizontal gene transfers in shaping viral auxiliary metabolic genes potentially involved in phosphorus assimilation. Our findings underscore the importance of both abiotic and biotic factors in predicting the taxonomic and functional biogeographic dynamics of viruses in the AMD sediments. The biogeography of viral communities in extreme environments remains understudied. Here, the authors use metagenomic sequencing on 90 acid mine drainage sediments sampled across Southern China, showing the predominant effects of prokaryotic communities and the influence of environmental variables on viral taxonomy and function.
Collapse
|
25
|
Species interactions constrain adaptation and preserve ecological stability in an experimental microbial community. THE ISME JOURNAL 2022; 16:1442-1452. [PMID: 35066567 PMCID: PMC9039033 DOI: 10.1038/s41396-022-01191-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 01/16/2023]
Abstract
Species loss within a microbial community can increase resource availability and spur adaptive evolution. Environmental shifts that cause species loss or fluctuations in community composition are expected to become more common, so it is important to understand the evolutionary forces that shape the stability and function of the emergent community. Here we study experimental cultures of a simple, ecologically stable community of Saccharomyces cerevisiae and Lactobacillus plantarum, in order to understand how the presence or absence of a species impacts coexistence over evolutionary timescales. We found that evolution in coculture led to drastically altered evolutionary outcomes for L. plantarum, but not S. cerevisiae. Both monoculture- and co-culture-evolved L. plantarum evolved dozens of mutations over 925 generations of evolution, but only L. plantarum that had evolved in isolation from S. cerevisiae lost the capacity to coexist with S. cerevisiae. We find that the evolutionary loss of ecological stability corresponds with fitness differences between monoculture-evolved L. plantarum and S. cerevisiae and genetic changes that repeatedly evolve across the replicate populations of L. plantarum. This work shows how coevolution within a community can prevent destabilising evolution in individual species, thereby preserving ecological diversity and stability, despite rapid adaptation.
Collapse
|
26
|
Gibson AK. Genetic diversity and disease: The past, present, and future of an old idea. Evolution 2022; 76:20-36. [PMID: 34796478 PMCID: PMC9064374 DOI: 10.1111/evo.14395] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/03/2021] [Accepted: 10/08/2021] [Indexed: 01/21/2023]
Abstract
Why do infectious diseases erupt in some host populations and not others? This question has spawned independent fields of research in evolution, ecology, public health, agriculture, and conservation. In the search for environmental and genetic factors that predict variation in parasitism, one hypothesis stands out for its generality and longevity: genetically homogeneous host populations are more likely to experience severe parasitism than genetically diverse populations. In this perspective piece, I draw on overlapping ideas from evolutionary biology, agriculture, and conservation to capture the far-reaching implications of the link between genetic diversity and disease. I first summarize the development of this hypothesis and the results of experimental tests. Given the convincing support for the protective effect of genetic diversity, I then address the following questions: (1) Where has this idea been put to use, in a basic and applied sense, and how can we better use genetic diversity to limit disease spread? (2) What new hypotheses does the established disease-diversity relationship compel us to test? I conclude that monitoring, preserving, and augmenting genetic diversity is one of our most promising evolutionarily informed strategies for buffering wild, domesticated, and human populations against future outbreaks.
Collapse
Affiliation(s)
- Amanda Kyle Gibson
- Department of Biology University of Virginia Charlottesville Virginia 22903
| |
Collapse
|
27
|
Bono LM, Mao S, Done RE, Okamoto KW, Chan BK, Turner PE. Advancing phage therapy through the lens of virus host-breadth and emergence potential. Adv Virus Res 2021; 111:63-110. [PMID: 34663499 DOI: 10.1016/bs.aivir.2021.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Phages are viruses that specifically infect bacteria, and their biodiversity contributes to historical and current development of phage therapy to treat myriad bacterial infections. Phage therapy holds promise as an alternative to failing chemical antibiotics, but there are benefits and costs of this technology. Here, we review the rich history of phage therapy, highlighting reasons (often political) why it was widely rejected by Western medicine until recently. One longstanding idea involves mixing different phages together in cocktails, to increase the probability of killing target pathogenic bacteria without pre-screening for phage susceptibility. By challenging 30 lytic phages to infect 14 strains of the bacteria Pseudomonas aeruginosa, we showed that some phages were "generalists" with broad host-ranges, emphasizing that extreme host-specificity of phages was not necessarily a liability. Using a "greedy algorithm" analysis, we identified the best cocktail mixture of phages to achieve broad bacteria killing. Additionally, we review how virus host-range can evolve and connect lessons learned from virus emergence-including contributions of elevated virus mutation rates in promoting emergence and virus evolutionary transitions from specialized to generalized host-use-as cautionary tales for avoiding risk of "off-target" phage emergence on commensal bacteria in microbiomes. Throughout, we highlight how fundamental understanding of virus ecology and evolution is vital for developing phage therapy; heeding these principles should help in designing therapeutic strategies that do not recapitulate consequences of virus selection to emerge on novel hosts.
Collapse
Affiliation(s)
- Lisa M Bono
- Department of Biology, Emory University, Atlanta, GA, United States.
| | - Stephanie Mao
- Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Rachel E Done
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States; Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Kenichi W Okamoto
- Department of Biology, University of St. Thomas, St. Paul, MN, United States
| | - Benjamin K Chan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | - Paul E Turner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States; Microbiology Program, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
28
|
Chevallereau A, Pons BJ, van Houte S, Westra ER. Interactions between bacterial and phage communities in natural environments. Nat Rev Microbiol 2021; 20:49-62. [PMID: 34373631 DOI: 10.1038/s41579-021-00602-y] [Citation(s) in RCA: 207] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022]
Abstract
We commonly acknowledge that bacterial viruses (phages) shape the composition and evolution of bacterial communities in nature and therefore have important roles in ecosystem functioning. This view stems from studies in the 1990s to the first decade of the twenty-first century that revealed high viral abundance, high viral diversity and virus-induced microbial death in aquatic ecosystems as well as an association between collapses in bacterial density and peaks in phage abundance. The recent surge in metagenomic analyses has provided deeper insight into the abundance, genomic diversity and spatio-temporal dynamics of phages in a wide variety of ecosystems, ranging from deep oceans to soil and the mammalian digestive tract. However, the causes and consequences of variations in phage community compositions remain poorly understood. In this Review, we explore current knowledge of the composition and evolution of phage communities, as well as their roles in controlling the population and evolutionary dynamics of bacterial communities. We discuss the need for greater ecological realism in laboratory studies to capture the complexity of microbial communities that thrive in natural environments.
Collapse
Affiliation(s)
- Anne Chevallereau
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, UK. .,Department of Infection, Immunity and Inflammation, Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, Paris, France.
| | - Benoît J Pons
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, UK
| | - Stineke van Houte
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, UK
| | - Edze R Westra
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, UK.
| |
Collapse
|
29
|
Dunne M, Prokhorov NS, Loessner MJ, Leiman PG. Reprogramming bacteriophage host range: design principles and strategies for engineering receptor binding proteins. Curr Opin Biotechnol 2021; 68:272-281. [PMID: 33744824 PMCID: PMC10163921 DOI: 10.1016/j.copbio.2021.02.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 01/09/2023]
Abstract
Bacteriophages (phages) use specialized tail machinery to deliver proteins and genetic material into a bacterial cell during infection. Attached at the distal ends of their tails are receptor binding proteins (RBPs) that recognize specific molecules exposed on host bacteria surfaces. Since the therapeutic capacity of naturally occurring phages is often limited by narrow host ranges, there is significant interest in expanding their host range via directed evolution or structure-guided engineering of their RBPs. Here, we describe the design principles of different RBP engineering platforms and draw attention to the mechanisms linking RBP binding and the correct spatial and temporal attachment of the phage to the bacterial surface. A deeper understanding of these mechanisms will directly benefit future engineering of more effective phage-based therapeutics.
Collapse
Affiliation(s)
- Matthew Dunne
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092, Zurich, Switzerland.
| | - Nikolai S Prokhorov
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, USA
| | - Martin J Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092, Zurich, Switzerland
| | - Petr G Leiman
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, USA
| |
Collapse
|