1
|
Rades M, Poschet G, Gegner H, Wilke T, Reichert J. Chronic effects of exposure to polyethylene microplastics may be mitigated at the expense of growth and photosynthesis in reef-building corals. MARINE POLLUTION BULLETIN 2024; 205:116631. [PMID: 38917503 DOI: 10.1016/j.marpolbul.2024.116631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
The causes of the physiological effects of microplastic pollution, potentially harming reef-building corals, are unclear. Reasons might include increased energy demands for handling particles and immune reactions. This study is among the first assessing the effects of long-term microplastic exposure on coral physiology at realistic concentrations (200 polyethylene particles L-1). The coral species Acropora muricata, Pocillopora verrucosa, Porites lutea, and Heliopora coerulea were exposed to microplastics for 11 months, and energy reserves, metabolites, growth, and photosymbiont state were analyzed. Results showed an overall low impact on coral physiology, yet species-specific effects occurred. Specifically, H. coerulea exhibited reduced growth, P. lutea and A. muricata showed changes in photosynthetic efficiency, and A. muricata variations in taurine levels. These findings suggest that corals may possess compensatory mechanisms mitigating the effects of microplastics. However, realistic microplastic concentrations only occasionally affected corals. Yet, corals exposed to increasing pollution scenarios will likely experience more negative impacts.
Collapse
Affiliation(s)
- Marvin Rades
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany.
| | - Gernot Poschet
- Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Hagen Gegner
- Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Thomas Wilke
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany
| | - Jessica Reichert
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany; Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA
| |
Collapse
|
2
|
Johnston EC, Caruso C, Mujica E, Walker NS, Drury C. Complex parental effects impact variation in larval thermal tolerance in a vertically transmitting coral. Heredity (Edinb) 2024; 132:275-283. [PMID: 38538721 PMCID: PMC11167003 DOI: 10.1038/s41437-024-00681-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 06/13/2024] Open
Abstract
Coral populations must be able to adapt to changing environmental conditions for coral reefs to persist under climate change. The adaptive potential of these organisms is difficult to forecast due to complex interactions between the host animal, dinoflagellate symbionts and the environment. Here we created 26 larval families from six Montipora capitata colonies from a single reef, showing significant, heritable variation in thermal tolerance. Our results indicate that 9.1% of larvae are expected to exhibit four times the thermal tolerance of the general population. Differences in larval thermotolerance were driven mainly by maternal contributions, but we found no evidence that these effects were driven by symbiont identity despite vertical transmission from the dam. We also document no evidence of reproductive incompatibility attributable to symbiont identity. These data demonstrate significant genetic variation within this population which provides the raw material upon which natural selection can act.
Collapse
Affiliation(s)
- Erika C Johnston
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI, USA.
| | - Carlo Caruso
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI, USA
| | - Elena Mujica
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Nia S Walker
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI, USA
| | - Crawford Drury
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI, USA
| |
Collapse
|
3
|
Mills MS, Ungermann M, Rigot G, den Haan J, Leon JX, Schils T. Coral reefs in transition: Temporal photoquadrat analyses and validation of underwater hyperspectral imaging for resource-efficient monitoring in Guam. PLoS One 2024; 19:e0299523. [PMID: 38502667 PMCID: PMC10950215 DOI: 10.1371/journal.pone.0299523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/13/2024] [Indexed: 03/21/2024] Open
Abstract
The island of Guam in the west Pacific has seen a significant decrease in coral cover since 2013. Lafac Bay, a marine protected area in northeast Guam, served as a reference site for benthic communities typical of forereefs on the windward side of the island. The staghorn coral Acropora abrotanoides is a dominant and characteristic ecosystem engineer of forereef communities on exposed shorelines. Photoquadrat surveys were conducted in 2015, 2017, and 2019, and a diver-operated hyperspectral imager (i.e., DiveRay) was used to survey the same transects in 2019. Machine learning algorithms were used to develop an automated pipeline to assess the benthic cover of 10 biotic and abiotic categories in 2019 based on hyperspectral imagery. The cover of scleractinian corals did not differ between 2015 and 2017 despite being subjected to a series of environmental disturbances in these years. Surveys in 2019 documented the almost complete decline of the habitat-defining staghorn coral Acropora abrotanoides (a practically complete disappearance from about 10% cover), a significant decrease (~75%) in the cover of other scleractinian corals, and a significant increase (~55%) in the combined cover of bare substrate, turf algae, and cyanobacteria. The drastic change in community composition suggests that the reef at Lafac Bay is transitioning to a turf algae-dominated community. However, the capacity of this reef to recover from previous disturbances suggests that this transition could be reversed, making Lafac Bay an excellent candidate for long-term monitoring. Community analyses showed no significant difference between automatically classified benthic cover estimates derived from the hyperspectral scans in 2019 and those derived from photoquadrats. These findings suggest that underwater hyperspectral imagers can be efficient and effective tools for fast, frequent, and accurate monitoring of dynamic reef communities.
Collapse
Affiliation(s)
- Matthew S. Mills
- Marine Laboratory, University of Guam, Mangilao, Guam
- School of Science, Technology, and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | | | | | | | - Javier X. Leon
- School of Science, Technology, and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Tom Schils
- Marine Laboratory, University of Guam, Mangilao, Guam
| |
Collapse
|
4
|
Goodbody-Gringley G, Martinez S, Bellworthy J, Chequer A, Nativ H, Mass T. Irradiance driven trophic plasticity in the coral Madracis pharensis from the Eastern Mediterranean. Sci Rep 2024; 14:3646. [PMID: 38351312 PMCID: PMC10864392 DOI: 10.1038/s41598-024-54217-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/09/2024] [Indexed: 02/16/2024] Open
Abstract
The distribution of symbiotic scleractinian corals is driven, in part, by light availability, as host energy demands are partially met through translocation of photosynthate. Physiological plasticity in response to environmental conditions, such as light, enables the expansion of resilient phenotypes in the face of changing environmental conditions. Here we compared the physiology, morphology, and taxonomy of the host and endosymbionts of individual Madracis pharensis corals exposed to dramatically different light conditions based on colony orientation on the surface of a shipwreck at 30 m depth in the Bay of Haifa, Israel. We found significant differences in symbiont species consortia, photophysiology, and stable isotopes, suggesting that these corals can adjust multiple aspects of host and symbiont physiology in response to light availability. These results highlight the potential of corals to switch to a predominantly heterotrophic diet when light availability and/or symbiont densities are too low to sustain sufficient photosynthesis, which may provide resilience for corals in the face of climate change.
Collapse
Affiliation(s)
| | - Stephane Martinez
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Leon H. Charney School of Marine Sciences, Morris Kahn Marine Research Station, University of Haifa, Haifa, Israel
| | - Jessica Bellworthy
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Leon H. Charney School of Marine Sciences, Morris Kahn Marine Research Station, University of Haifa, Haifa, Israel
| | - Alex Chequer
- Reef Ecology and Evolution, Central Caribbean Marine Institute, Little Cayman, Cayman Islands
| | - Hagai Nativ
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Leon H. Charney School of Marine Sciences, Morris Kahn Marine Research Station, University of Haifa, Haifa, Israel
| | - Tali Mass
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Leon H. Charney School of Marine Sciences, Morris Kahn Marine Research Station, University of Haifa, Haifa, Israel
| |
Collapse
|
5
|
Morais J, Tebbett SB, Morais RA, Bellwood DR. Natural recovery of corals after severe disturbance. Ecol Lett 2024; 27:e14332. [PMID: 37850584 DOI: 10.1111/ele.14332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 10/19/2023]
Abstract
Ecosystem recovery from human-induced disturbances, whether through natural processes or restoration, is occurring worldwide. Yet, recovery dynamics, and their implications for broader ecosystem management, remain unclear. We explored recovery dynamics using coral reefs as a case study. We tracked the fate of 809 individual coral recruits that settled after a severe bleaching event at Lizard Island, Great Barrier Reef. Recruited Acropora corals, first detected in 2020, grew to coral cover levels that were equivalent to global average coral cover within just 2 years. Furthermore, we found that just 11.5 Acropora recruits per square meter were sufficient to reach this cover within 2 years. However, wave exposure, growth form and colony density had a marked effect on recovery rates. Our results underscore the importance of considering natural recovery in management and restoration and highlight how lessons learnt from reef recovery can inform our understanding of recovery dynamics in high-diversity climate-disturbed ecosystems.
Collapse
Affiliation(s)
- Juliano Morais
- Research Hub for Coral Reef Ecosystem Functions and College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Sterling B Tebbett
- Research Hub for Coral Reef Ecosystem Functions and College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Renato A Morais
- Research Hub for Coral Reef Ecosystem Functions and College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Paris Sciences et Lettres Université, École Pratique des Hautes Études, EPHE-UPVD-CNRS, UAR 3278 CRIOBE, University of Perpignan, Perpignan, France
| | - David R Bellwood
- Research Hub for Coral Reef Ecosystem Functions and College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
6
|
Mills MS, Ungermann M, Rigot G, den Haan J, Leon JX, Schils T. Assessment of the utility of underwater hyperspectral imaging for surveying and monitoring coral reef ecosystems. Sci Rep 2023; 13:21103. [PMID: 38036628 PMCID: PMC10689744 DOI: 10.1038/s41598-023-48263-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023] Open
Abstract
Technological innovations that improve the speed, scale, reproducibility, and accuracy of monitoring surveys will allow for a better understanding of the global decline in tropical reef health. The DiveRay, a diver-operated hyperspectral imager, and a complementary machine learning pipeline to automate the analysis of hyperspectral imagery were developed for this purpose. To evaluate the use of a hyperspectral imager underwater, the automated classification of benthic taxa in reef communities was tested. Eight reefs in Guam were surveyed and two approaches for benthic classification were employed: high taxonomic resolution categories and broad benthic categories. The results from the DiveRay surveys were validated against data from concurrently conducted photoquadrat surveys to determine their accuracy and utility as a proxy for reef surveys. The high taxonomic resolution classifications did not reliably predict benthic communities when compared to those obtained by standard photoquadrat analysis. At the level of broad benthic categories, however, the hyperspectral results were comparable to those of the photoquadrat analysis. This was particularly true when estimating scleractinian coral cover, which was accurately predicted for six out of the eight sites. The annotation libraries generated for this study were insufficient to train the model to fully account for the high biodiversity on Guam's reefs. As such, prediction accuracy is expected to improve with additional surveying and image annotation. This study is the first to directly compare the results from underwater hyperspectral scanning with those from traditional photoquadrat survey techniques across multiple sites with two levels of identification resolution and different degrees of certainty. Our findings show that dependent on a well-annotated library, underwater hyperspectral imaging can be used to quickly, repeatedly, and accurately monitor and map dynamic benthic communities on tropical reefs using broad benthic categories.
Collapse
Affiliation(s)
- Matthew S Mills
- Marine Laboratory, University of Guam, Mangilao, GU, USA.
- School of Science, Technology, and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia.
| | | | | | | | - Javier X Leon
- School of Science, Technology, and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Tom Schils
- Marine Laboratory, University of Guam, Mangilao, GU, USA
| |
Collapse
|
7
|
Yao L, Lin W, Aretz M, Bottjer DJ, Wang X. Colonial coral resilience by decreasing size: reaction to increased detrital influx during onset of the late Palaeozoic Ice Age. Proc Biol Sci 2023; 290:20230220. [PMID: 37221847 PMCID: PMC10206454 DOI: 10.1098/rspb.2023.0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/28/2023] [Indexed: 05/25/2023] Open
Abstract
Modern coral reefs and associated biodiversity are severely threatened by increasing terrestrial runoff. Similar scenarios could be suspected for geological times, but reef coral resilience is still an enigma. In late Visean-Serpukhovian (Mississippian foraminiferal zones/MFZ 14-16) times, a major glaciation phase of the late Palaeozoic Ice Age (LPIA) associated with enhanced terrestrial weathering and runoff coincides with a biodiversity crisis and coral reef decline. In this study, the impact of enhanced terrestrial runoff is tested on size variations of colonial corals Aulina rotiformis and Lithostrotion decipiens along a gradient of contemporaneous (Serpukhovian) open marine carbonate to near-shore siliciclastic facies in South China. Along this gradient, their sizes decrease from carbonate, through intermediate carbonate-siliciclastic, to siliciclastic facies. This is consistent with increasing abundance of terrestrial materials of high silicon, aluminium and phosphorus values. On a larger million-year-long interval (MFZ14-16) and for several palaeocontinents, size data of Lithostrotion decipiens and Siphonodendron pauciradiale show a distinct decline in late Visean, when enhanced terrestrial weathering occurred commonly with palaeosols developed during regression. This suggests that terrestrial sediment and nutrient input may have mainly controlled phenotypic plasticity in Mississippian reef corals, with a decrease in size as a component of resilience across the LPIA onset.
Collapse
Affiliation(s)
- Le Yao
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wei Lin
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China
| | - Markus Aretz
- Géosciences Environment Toulouse, CNRS, IRD, UPS, Université de Toulouse, Toulouse F-31400, France
| | - David J. Bottjer
- Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiangdong Wang
- State Key Laboratory for Mineral Deposits Research and School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|
8
|
Shlesinger T, van Woesik R. Oceanic differences in coral-bleaching responses to marine heatwaves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162113. [PMID: 36773903 DOI: 10.1016/j.scitotenv.2023.162113] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Anomalously high ocean temperatures have increased in frequency, intensity, and duration over the last several decades because of greenhouse gas emissions that cause global warming and marine heatwaves. Reef-building corals are sensitive to such temperature anomalies that commonly lead to coral bleaching, mortality, and changes in community structure. Yet, despite these overarching effects, there are geographical differences in thermal regimes, evolutionary histories, and past disturbances that may lead to different bleaching responses of corals within and among oceans. Here we examined the overall bleaching responses of corals in the Atlantic, Indian, and Pacific Oceans, using both a spatially explicit Bayesian mixed-effects model and a deep-learning neural-network model. We used a 40-year global dataset encompassing 23,288 coral-reef surveys at 11,058 sites in 88 countries, from 1980 to 2020. Focusing on ocean-wide differences we assessed the relationships between the percentage of bleached corals and different temperature-related metrics alongside a suite of environmental variables. We found that while high sea-surface temperatures were consistently, and strongly, related to coral bleaching within all oceans, there were clear geographical differences in the relationships between coral bleaching and most environmental variables. For instance, there was an increase in coral bleaching with depth in the Atlantic Ocean whereas the opposite was observed in the Indian Ocean, and no clear trend could be seen in the Pacific Ocean. The standard deviation of thermal-stress anomalies was negatively related to coral bleaching in the Atlantic and Pacific Oceans, but not in the Indian Ocean. Globally, coral bleaching has progressively occurred at higher temperatures over the last four decades within the Atlantic, Indian, and Pacific Oceans, although, again, there were differences among the three oceans. Together, such patterns highlight that historical circumstances and geographical differences in oceanographic conditions play a central role in contemporary coral-bleaching responses.
Collapse
Affiliation(s)
- Tom Shlesinger
- Institute for Global Ecology, Florida Institute of Technology, Melbourne 32901, FL, USA
| | - Robert van Woesik
- Institute for Global Ecology, Florida Institute of Technology, Melbourne 32901, FL, USA.
| |
Collapse
|
9
|
Reimagining conservation practice: Indigenous self-determination and collaboration in Papua New Guinea. ORYX 2023. [DOI: 10.1017/s003060532200103x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Abstract
Here we describe a 14-year collaboration in New Ireland, Papua New Guinea, between an Indigenous NGO, Indigenous scientists and international researchers. New Ireland is a marine province in the Western Pacific region where most residents depend on fishing, marine gleaning and small-scale gardening for their livelihoods. Ailan Awareness is a locally founded and managed NGO that focuses on the strengthening of Indigenous sovereignty regarding biological, cultural and spiritual diversity as well as fostering Indigenous epistemology practices and strengthening biocultural diversity. In partnership with anthropological researchers, Ailan Awareness has designed an approach to marine conservation informed by the growing field of decolonial research practices. By working to empower coastal communities to make decisions about their marine and cultural resources using a mix of Indigenous, anthropological and scientific methods and giving primacy to strengthening Indigenous modes of knowledge production and the role of community Elders, Ailan Awareness addresses a major gap in the efforts of the national government and international NGOs: giving the people most directly affected by declining biodiversity and loss of tradition the support and tools required to design and carry out the strengthening of both biological diversity and traditional social practices. In this paper we describe the methodology used by Ailan Awareness and the history of collaboration that resulted in these methods.
Collapse
|
10
|
Schmidt CA, Cooke I, Wilson DT, Miller DJ, Peigneur S, Tytgat J, Field M, Takjoo R, Smout MJ, Loukas A, Daly NL. Newly Discovered Peptides from the Coral Heliofungia actiniformis Show Structural and Functional Diversity. JOURNAL OF NATURAL PRODUCTS 2022; 85:1789-1798. [PMID: 35829679 DOI: 10.1021/acs.jnatprod.2c00325] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Scleractinian corals are crucially important to the health of some of the world's most biodiverse, productive, and economically important marine habitats. Despite this importance, analysis of coral peptidomes is still in its infancy. Here we show that the tentacle extract from the stony coral Heliofungia actiniformis is rich in peptides with diverse and novel structures. We have characterized the sequences and three-dimensional structures of four new peptides, three of which have no known homologues. We show that a 2 kDa peptide, Hact-2, promotes significant cell proliferation on human cells and speculate this peptide may be involved in the remarkable regenerative capacity of corals. We found a 3 kDa peptide, Hact-3, encoded within a fascin-like domain, and homologues of Hact-3 are present in the genomes of other coral species. Two additional peptides, Hact-4 and Hact-SCRiP1, with limited sequence similarity, both contain a beta-defensin-like fold and highlight a structural link with the small cysteine-rich proteins (SCRiP) family of proteins found predominantly in corals. Our results provide a first glimpse into the remarkable and unexplored structural diversity of coral peptides, providing insight into their diversity and putative functions and, given the ancient lineage of corals, potential insight into the evolution of structural motifs.
Collapse
Affiliation(s)
- Casey A Schmidt
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Ira Cooke
- Department of Molecular and Cell Biology, James Cook University, Townsville, QLD 4811, Australia
| | - David T Wilson
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - David J Miller
- Department of Molecular and Cell Biology, James Cook University, Townsville, QLD 4811, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia
| | - Steve Peigneur
- Toxicology and Pharmacology, Katholieke Universiteit (KU) Leuven, Campus Gasthuisberg, Leuven, 3000, Belgium
| | - Jan Tytgat
- Toxicology and Pharmacology, Katholieke Universiteit (KU) Leuven, Campus Gasthuisberg, Leuven, 3000, Belgium
| | - Matthew Field
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia
| | - Rozita Takjoo
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Michael J Smout
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Norelle L Daly
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| |
Collapse
|
11
|
Siqueira AC, Kiessling W, Bellwood DR. Fast-growing species shape the evolution of reef corals. Nat Commun 2022; 13:2426. [PMID: 35504876 PMCID: PMC9065008 DOI: 10.1038/s41467-022-30234-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 04/21/2022] [Indexed: 11/21/2022] Open
Abstract
Ecological interactions are ubiquitous on tropical coral reefs, where sessile organisms coexist in limited space. Within these high-diversity systems, reef-building scleractinian corals form an intricate interaction network. The role of biotic interactions among reef corals is well established on ecological timescales. However, its potential effect on macroevolutionary patterns remains unclear. By analysing the rich fossil record of Scleractinia, we show that reef coral biodiversity experienced marked evolutionary rate shifts in the last 3 million years, possibly driven by biotic interactions. Our models suggest that there was an overwhelming effect of staghorn corals (family Acroporidae) on the fossil diversity trajectories of other coral groups. Staghorn corals showed an unparalleled spike in diversification during the Pleistocene. But surprisingly, their expansion was linked with increases in both extinction and speciation rates in other coral families, driving a nine-fold increase in lineage turnover. These results reveal a double-edged effect of diversity dependency on reef evolution. Given their fast growth, staghorn corals may have increased extinction rates via competitive interactions, while promoting speciation through their role as ecosystem engineers. This suggests that recent widespread human-mediated reductions in staghorn coral cover, may be disrupting the key macroevolutionary processes that established modern coral reef ecosystems. The effect of biotic interactions among reef corals on macroevolutionary patterns is unclear. Here, the authors study the rich coral fossil record, finding that reef coral diversity experienced potentially biotic interaction-driven evolutionary rate changes, and that Staghorn corals affected fossil diversity trajectories of other coral groups.
Collapse
Affiliation(s)
- Alexandre C Siqueira
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia. .,ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia.
| | - Wolfgang Kiessling
- GeoZentrum Nordbayern, Friedrich-Alexander University Erlangen - Nürnberg (FAU), Erlangen, 91054, Germany
| | - David R Bellwood
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.,ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| |
Collapse
|
12
|
Muir PR, Obura DO, Hoeksema BW, Sheppard C, Pichon M, Richards ZT. Conclusions of low extinction risk for most species of reef-building corals are premature. Nat Ecol Evol 2022; 6:357-358. [DOI: 10.1038/s41559-022-01659-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/07/2022] [Indexed: 01/31/2023]
|
13
|
Reply to: Conclusions of low extinction risk for most species of reef-building corals are premature. Nat Ecol Evol 2022; 6:359-360. [DOI: 10.1038/s41559-022-01660-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/07/2022] [Indexed: 11/09/2022]
|
14
|
Kitamura R, Miura N, Ito M, Takagi T, Yamashiro H, Nishikawa Y, Nishimura Y, Kobayashi K, Kataoka M. Specific Detection of Coral-Associated Ruegeria, a Potential Probiotic Bacterium, in Corals and Subtropical Seawater. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:576-589. [PMID: 34275003 DOI: 10.1007/s10126-021-10047-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Coral microbial flora has been attracting attention because of their potential to protect corals from environmental stresses or pathogens. Although coral-associated bacteria are considered to be acquired from seawater, little is known about the relationships between microbial composition in corals and its surrounding seawater. Here, we tested several methods to identify coral-associated bacteria in coral and its surrounding seawater to detect specific types of Ruegeria species, some of which exhibit growth inhibition activities against the coral pathogen Vibrio coralliilyticus. We first isolated coral-associated bacteria from the reef-building coral Galaxea fascicularis collected at Sesoko Island, Okinawa, Japan, via random colony picking, which showed the existence of varieties of bacteria including Ruegeria species. Using newly constructed primers for colony PCR, several Ruegeria species were successfully isolated from G. fascicularis and seawater. We further investigated the seawater microbiome in association with the distance from coral reefs. By seasonal sampling, it was suggested that the seawater microbiome is more affected by seasonality than the distance from coral reefs. These methods and results may contribute to investigating and understanding the relationships between the presence of corals and microbial diversity in seawater, in addition to the efficient isolation of specific bacterial species from coral or its surrounding seawater.
Collapse
Affiliation(s)
- Ruriko Kitamura
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, 599-8531, Japan
| | - Natsuko Miura
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, 599-8531, Japan.
| | - Michihiro Ito
- Center of Molecular Biosciences, Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, 903-0213, Japan
| | - Toshiyuki Takagi
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, 277-8564, Japan
| | - Hideyuki Yamashiro
- Tropical Biosphere Research Center, Sesoko Station, University of the Ryukyus, Motobu, 905-0227, Japan
| | - Yumi Nishikawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, 599-8531, Japan
| | - Yuna Nishimura
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, 599-8531, Japan
| | - Keita Kobayashi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, 599-8531, Japan
| | - Michihiko Kataoka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, 599-8531, Japan
| |
Collapse
|