1
|
Li B, Wang L, Kang Y, Cao H, Liu Y, He Q, Li Z, Tang X, Chen J, Wang L, Xu C. Amino Acid Decorated Phenanthroline Diimide as Sustainable Hydrophilic Am(III) Masking Agent with High Acid Resistance. JACS AU 2024; 4:3668-3678. [PMID: 39328760 PMCID: PMC11423330 DOI: 10.1021/jacsau.4c00659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024]
Abstract
Hydrophilic actinide masking agents are believed to be efficient alternatives to circumvent the extensive hazardous organic solvents/diluents typically employed in the liquid-liquid extraction for nuclear waste management. However, the practical application of hydrophilic ligands faces significant challenges in both synthetic/purification procedures and, more importantly, the acid resistance of the ligands themselves. Herein, we have demonstrated the combination of phenanthroline diimide framework with a biomotif of histidine flanking parts could achieve efficient separation of trivalent lanthanides/actinides (also actinides/actinides) under high acidity of over 1 M HNO3. This approach leverages the soft-hard coordination properties of N, O-hybrid ligands, as well as the energetically favored imides for metal coordination and the multiple protonation of histidine. These factors collectively contribute to the synthesis of an easily accessible, highly water-soluble, superior selective, and acid-resistant Am(III) masking agent. Thus, we have shown in this paper, by proper combination of synthetic N, O-hybrid ligand with amino acid, trivalent lanthanide and actinide separation could be efficiently fulfilled in a more sustainable manner.
Collapse
Affiliation(s)
- Bin Li
- Institute
of Nuclear and New Energy Technology, Tsinghua
University, Haidian District, Beijing, 100084, China
- Department
of Chemistry, Capital Normal University, Haidian District, Beijing, 100048 China
| | - Ludi Wang
- Department
of Chemistry, Capital Normal University, Haidian District, Beijing, 100048 China
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Polymer
Chemistry and Physics of Ministry of Education, Centre for Soft Matter
Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Haidian District, Beijing, 100871, China
| | - Yu Kang
- Department
of Chemistry, Capital Normal University, Haidian District, Beijing, 100048 China
| | - Hong Cao
- Institute
of Nuclear and New Energy Technology, Tsinghua
University, Haidian District, Beijing, 100084, China
| | - Yaoyang Liu
- Institute
of Nuclear and New Energy Technology, Tsinghua
University, Haidian District, Beijing, 100084, China
| | - Qiange He
- Institute
of Nuclear and New Energy Technology, Tsinghua
University, Haidian District, Beijing, 100084, China
| | - Zhongfeng Li
- Department
of Chemistry, Capital Normal University, Haidian District, Beijing, 100048 China
| | - Xiaoyan Tang
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Polymer
Chemistry and Physics of Ministry of Education, Centre for Soft Matter
Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Haidian District, Beijing, 100871, China
| | - Jing Chen
- Institute
of Nuclear and New Energy Technology, Tsinghua
University, Haidian District, Beijing, 100084, China
| | - Li Wang
- Department
of Chemistry, Capital Normal University, Haidian District, Beijing, 100048 China
| | - Chao Xu
- Institute
of Nuclear and New Energy Technology, Tsinghua
University, Haidian District, Beijing, 100084, China
| |
Collapse
|