1
|
Yang J, Zhu H, Zhao Z, Huang J, Lumley D, Stern RJ, Dunn RA, Arnulf AF, Ma J. Asymmetric magma plumbing system beneath Axial Seamount based on full waveform inversion of seismic data. Nat Commun 2024; 15:4767. [PMID: 38834567 PMCID: PMC11535059 DOI: 10.1038/s41467-024-49188-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/21/2024] [Indexed: 06/06/2024] Open
Abstract
The architecture of magma plumbing systems plays a fundamental role in volcano eruption and evolution. However, the precise configuration of crustal magma reservoirs and conduits responsible for supplying eruptions are difficult to explore across most active volcanic systems. Consequently, our understanding of their correlation with eruption dynamics is limited. Axial Seamount is an active submarine volcano located along the Juan de Fuca Ridge, with known eruptions in 1998, 2011, and 2015. Here we present high-resolution images of P-wave velocity, attenuation, and estimates of temperature and partial melt beneath the summit of Axial Seamount, derived from multi-parameter full waveform inversion of a 2D multi-channel seismic line. Multiple magma reservoirs, including a newly discovered western magma reservoir, are identified in the upper crust, with the maximum melt fraction of ~15-32% in the upper main magma reservoir (MMR) and lower fractions of 10% to 26% in other satellite reservoirs. In addition, a feeding conduit below the MMR with a melt fraction of ~4-11% and a low-velocity throat beneath the eastern caldera wall connecting the MMR roof with eruptive fissures are imaged. These findings delineate an asymmetric shallow plumbing system beneath Axial Seamount, providing insights into the magma pathways that fed recent eruptions.
Collapse
Affiliation(s)
- Jidong Yang
- National Key Laboratory of Deep Oil and Gas, School of Geosciences, China University of Petroleum (East China), Qingdao, Shandong, China.
| | - Hejun Zhu
- Department of Sustainable Earth Systems Sciences, The University of Texas at Dallas, Richardson, TX, USA
- Department of Physics, The University of Texas at Dallas, Richardson, TX, USA
| | - Zeyu Zhao
- School of Earth and Space Sciences, Peking University, Beijing, China.
| | - Jianping Huang
- National Key Laboratory of Deep Oil and Gas, School of Geosciences, China University of Petroleum (East China), Qingdao, Shandong, China.
| | - David Lumley
- Department of Sustainable Earth Systems Sciences, The University of Texas at Dallas, Richardson, TX, USA
- Department of Physics, The University of Texas at Dallas, Richardson, TX, USA
| | - Robert J Stern
- Department of Sustainable Earth Systems Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Robert A Dunn
- Department of Earth Sciences, University of Hawaii, Honolulu, HI, USA
| | - Adrien F Arnulf
- Institute for Geophysics, University of Texas at Austin, Austin, TX, USA
- Amazon Web Services, Seattle, CA, USA
| | - Jianwei Ma
- School of Earth and Space Sciences, Peking University, Beijing, China
| |
Collapse
|
2
|
Wang Z, Singh SC. Seismic evidence for uniform crustal accretion along slow-spreading ridges in the equatorial Atlantic Ocean. Nat Commun 2022; 13:7809. [PMID: 36528618 PMCID: PMC9759516 DOI: 10.1038/s41467-022-35459-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
The crustal accretion along mid-ocean ridges is known to be spreading-rate dependent. Along fast-spreading ridges, two-dimensional sheet-like mantle upwelling creates relatively uniform crust. In contrast, the crust formed along slow-spreading ridges shows large along-axis thickness variations with thicker crust at segment centres, which is hypothesised to be due a three-dimensional plume-like mantle upwelling or due to focused melt migration to segment centres. Using wide-angle seismic data acquired from the equatorial Atlantic Ocean, here we show that the crustal thickness is nearly uniform (~5.5 km) across five crustal segments for crust formed at the slow-spreading Mid-Atlantic Ridge with age varying from 8 to 70 Ma. The crustal velocities indicate that this crust is predominantly of magmatic origin. We suggest that this uniform magmatic crustal accretion is due to a two-dimensional sheet-like mantle upwelling facilitated by the long-offset transform faults in the equatorial Atlantic region and the presence of a high concentration of volatiles in the primitive melt in the mantle.
Collapse
Affiliation(s)
- Zhikai Wang
- grid.9489.c0000 0001 0675 8101Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, 1 rue Jussieu, Paris, 75238 France
| | - Satish C. Singh
- grid.9489.c0000 0001 0675 8101Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, 1 rue Jussieu, Paris, 75238 France
| |
Collapse
|