1
|
Molina A, Prakash M. Droplet tilings in precessive fields: hysteresis, elastic defects, and annealing. SOFT MATTER 2024; 20:6730-6741. [PMID: 38922641 DOI: 10.1039/d4sm00475b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Two-component Marangoni contracted droplets can be arranged into arbitrary two-dimensional tiling patterns where they display rich dynamics due to vapor-mediated long-range interactions. Recent work has characterized the centered hexagonal honeycomb lattice, showing it to be a highly frustrated system with many metastable states and relaxation occurring over multiple timescales [Molina et al., Proc. Natl. Acad. Sci. U. S. A., 2021, 118, e2020014118]. Here, we study this system under the influence of a rotating gravitational field. High amplitudes are able to completely disrupt droplet-droplet interactions, making it possible to identify a transition between field-dominated and interaction-dominated regimes. The system displays complex hysteresis behavior, the details of which are connected to the emergence of linear mesoscale structures. These mesoscale features display an elasticity that is governed by the balance between gravity and long-range vapor-mediated attractions. We find that disorder plays an important role in determining the dynamics of these features. Finally, we demonstrate annealing the system by progressively reducing the field amplitude, a process that reduces configurational energy compared to a rapid quench. The ability to manipulate vapor-mediated interactions in deliberately designed droplet tilings provides a novel platform for table-top explorations of multi-body interactions.
Collapse
Affiliation(s)
- Anton Molina
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, USA
- Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, California 94305, USA.
| | - Manu Prakash
- Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, California 94305, USA.
| |
Collapse
|
2
|
Zhang X, Chioar IA, Fitez G, Hurben A, Saccone M, Bingham NS, Ramberger J, Leighton C, Nisoli C, Schiffer P. Artificial Magnetic Tripod Ice. PHYSICAL REVIEW LETTERS 2023; 131:126701. [PMID: 37802961 DOI: 10.1103/physrevlett.131.126701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/10/2023] [Indexed: 10/08/2023]
Abstract
We study the collective behavior of interacting arrays of nanomagnetic tripods. These objects have six discrete moment states, in contrast to the usual two states of an Ising-like moment. Our experimental data demonstrate that triangular lattice arrays form a "tripod ice" that exhibits charge ordering among the effective vertex magnetic charges, in direct analogy to artificial kagome spin ice. The results indicate that the interacting tripods have effective moments that act as emergent local variables, with strong connections to the well-studied Potts and clock models. In addition, the tripod moments display a tendency toward a nearest neighbor alignment in our thermalized samples that separates this system from kagome spin ice. Our results open a path toward the study of the collective behavior of nonbinary moments that is unavailable in other physical systems.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Applied Physics, Yale University, New Haven, Connecticut 06511, USA
| | - Ioan-Augustin Chioar
- Department of Applied Physics, Yale University, New Haven, Connecticut 06511, USA
| | - Grant Fitez
- Department of Physics, Yale University, New Haven, Connecticut 06511, USA
| | - Anthony Hurben
- Department of Applied Physics, Yale University, New Haven, Connecticut 06511, USA
| | - Michael Saccone
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Nicholas S Bingham
- Department of Applied Physics, Yale University, New Haven, Connecticut 06511, USA
| | - Justin Ramberger
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Chris Leighton
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Cristiano Nisoli
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Peter Schiffer
- Department of Applied Physics, Yale University, New Haven, Connecticut 06511, USA
- Department of Physics, Yale University, New Haven, Connecticut 06511, USA
| |
Collapse
|
3
|
Saccone M, Caravelli F, Hofhuis K, Dhuey S, Scholl A, Nisoli C, Farhan A. Real-space observation of ergodicity transitions in artificial spin ice. Nat Commun 2023; 14:5674. [PMID: 37704596 PMCID: PMC10499874 DOI: 10.1038/s41467-023-41235-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 08/23/2023] [Indexed: 09/15/2023] Open
Abstract
Ever since its introduction by Ludwig Boltzmann, the ergodic hypothesis became a cornerstone analytical concept of equilibrium thermodynamics and complex dynamic processes. Examples of its relevance range from modeling decision-making processes in brain science to economic predictions. In condensed matter physics, ergodicity remains a concept largely investigated via theoretical and computational models. Here, we demonstrate the direct real-space observation of ergodicity transitions in a vertex-frustrated artificial spin ice. Using synchrotron-based photoemission electron microscopy we record thermally-driven moment fluctuations as a function of temperature, allowing us to directly observe transitions between ergodicity-breaking dynamics to system freezing, standing in contrast to simple trends observed for the temperature-dependent vertex populations, all while the entropy features arise as a function of temperature. These results highlight how a geometrically frustrated system, with thermodynamics strictly adhering to local ice-rule constraints, runs back-and-forth through periods of ergodicity-breaking dynamics. Ergodicity breaking and the emergence of memory is important for emergent computation, particularly in physical reservoir computing. Our work serves as further evidence of how fundamental laws of thermodynamics can be experimentally explored via real-space imaging.
Collapse
Affiliation(s)
- Michael Saccone
- Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| | - Francesco Caravelli
- Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Kevin Hofhuis
- Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland
- Laboratory for Multiscale Materials Experiments (LMX), Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Scott Dhuey
- Molecular Foundry, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA, 94720, USA
| | - Andreas Scholl
- Advanced Light Source, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA, 94720, USA
| | - Cristiano Nisoli
- Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Alan Farhan
- Department of Physics, Baylor University, Waco, TX, 76798, USA.
| |
Collapse
|
4
|
Gartside JC, Stenning KD, Vanstone A, Holder HH, Arroo DM, Dion T, Caravelli F, Kurebayashi H, Branford WR. Reconfigurable training and reservoir computing in an artificial spin-vortex ice via spin-wave fingerprinting. NATURE NANOTECHNOLOGY 2022; 17:460-469. [PMID: 35513584 DOI: 10.1038/s41565-022-01091-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Strongly interacting artificial spin systems are moving beyond mimicking naturally occurring materials to emerge as versatile functional platforms, from reconfigurable magnonics to neuromorphic computing. Typically, artificial spin systems comprise nanomagnets with a single magnetization texture: collinear macrospins or chiral vortices. By tuning nanoarray dimensions we have achieved macrospin-vortex bistability and demonstrated a four-state metamaterial spin system, the 'artificial spin-vortex ice' (ASVI). ASVI can host Ising-like macrospins with strong ice-like vertex interactions and weakly coupled vortices with low stray dipolar field. Vortices and macrospins exhibit starkly differing spin-wave spectra with analogue mode amplitude control and mode frequency shifts of Δf = 3.8 GHz. The enhanced bitextural microstate space gives rise to emergent physical memory phenomena, with ratchet-like vortex injection and history-dependent non-linear fading memory when driven through global magnetic field cycles. We employed spin-wave microstate fingerprinting for rapid, scalable readout of vortex and macrospin populations, and leveraged this for spin-wave reservoir computation. ASVI performs non-linear mapping transformations of diverse input and target signals in addition to chaotic time-series forecasting.
Collapse
Affiliation(s)
| | | | - Alex Vanstone
- Blackett Laboratory, Imperial College London, London, UK
| | - Holly H Holder
- Blackett Laboratory, Imperial College London, London, UK
| | - Daan M Arroo
- Department of Materials, Imperial College London, London, UK
- London Centre for Nanotechnology, Imperial College London, London, UK
| | - Troy Dion
- London Centre for Nanotechnology, University College London, London, UK
- Solid State Physics Lab., Kyushu University, Fukuoka, Japan
| | - Francesco Caravelli
- Theoretical Division (T4), Los Alamos National Laboratory, Los Alamos, NM, USA
| | | | - Will R Branford
- Blackett Laboratory, Imperial College London, London, UK
- London Centre for Nanotechnology, Imperial College London, London, UK
| |
Collapse
|
5
|
Zhang X, Duzgun A, Lao Y, Subzwari S, Bingham NS, Sklenar J, Saglam H, Ramberger J, Batley JT, Watts JD, Bromley D, Chopdekar RV, O'Brien L, Leighton C, Nisoli C, Schiffer P. String Phase in an Artificial Spin Ice. Nat Commun 2021; 12:6514. [PMID: 34764259 PMCID: PMC8585881 DOI: 10.1038/s41467-021-26734-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/19/2021] [Indexed: 11/11/2022] Open
Abstract
One-dimensional strings of local excitations are a fascinating feature of the physical behavior of strongly correlated topological quantum matter. Here we study strings of local excitations in a classical system of interacting nanomagnets, the Santa Fe Ice geometry of artificial spin ice. We measured the moment configuration of the nanomagnets, both after annealing near the ferromagnetic Curie point and in a thermally dynamic state. While the Santa Fe Ice lattice structure is complex, we demonstrate that its disordered magnetic state is naturally described within a framework of emergent strings. We show experimentally that the string length follows a simple Boltzmann distribution with an energy scale that is associated with the system's magnetic interactions and is consistent with theoretical predictions. The results demonstrate that string descriptions and associated topological characteristics are not unique to quantum models but can also provide a simplifying description of complex classical systems with non-trivial frustration.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Applied Physics, Yale University, New Haven, CT, 06511, USA
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ayhan Duzgun
- Theoretical Division and Center for Nonlinear Studies, MS B258, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Yuyang Lao
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Shayaan Subzwari
- Department of Applied Physics, Yale University, New Haven, CT, 06511, USA
| | - Nicholas S Bingham
- Department of Applied Physics, Yale University, New Haven, CT, 06511, USA
| | - Joseph Sklenar
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Physics and Astronomy, Wayne State University, Detroit, MI, 48201, USA
| | - Hilal Saglam
- Department of Applied Physics, Yale University, New Haven, CT, 06511, USA
| | - Justin Ramberger
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Joseph T Batley
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Justin D Watts
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Daniel Bromley
- Department of Physics, University of Liverpool, Liverpool, L69 3BX, United Kingdom
| | - Rajesh V Chopdekar
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Liam O'Brien
- Department of Physics, University of Liverpool, Liverpool, L69 3BX, United Kingdom
| | - Chris Leighton
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Cristiano Nisoli
- Theoretical Division and Center for Nonlinear Studies, MS B258, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Peter Schiffer
- Department of Applied Physics, Yale University, New Haven, CT, 06511, USA.
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Physics, Yale University, New Haven, CT, 06511, USA.
| |
Collapse
|
6
|
Droplet tilings for rapid exploration of spatially constrained many-body systems. Proc Natl Acad Sci U S A 2021; 118:2020014118. [PMID: 34417307 DOI: 10.1073/pnas.2020014118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Geometry in materials is a key concept which can determine material behavior in ordering, frustration, and fragmentation. More specifically, the behavior of interacting degrees of freedom subject to arbitrary geometric constraints has the potential to be used for engineering materials with exotic phase behavior. While advances in lithography have allowed for an experimental exploration of geometry on ordering that has no precedent in nature, many of these methods are low throughput or the underlying dynamics remain difficult to observe directly. Here, we introduce an experimental system that enables the study of interacting many-body dynamics by exploiting the physics of multidroplet evaporation subject to two-dimensional spatial constraints. We find that a high-energy initial state of this system settles into frustrated, metastable states with relaxation on two timescales. We understand this process using a minimal dynamical model that simulates the overdamped dynamics of motile droplets by identifying the force exerted on a given droplet as being proportional to the two-dimensional vapor gradients established by its neighbors. Finally, we demonstrate the flexibility of this platform by presenting experimental realizations of droplet-lattice systems representing different spin degrees of freedom and lattice geometries. Our platform enables a rapid and low-cost means to directly visualize dynamics associated with complex many-body systems interacting via long-range interactions. More generally, this platform opens up the rich design space between geometry and interactions for rapid exploration with minimal resources.
Collapse
|
7
|
Rodríguez-Gallo C, Ortiz-Ambriz A, Tierno P. Topological Boundary Constraints in Artificial Colloidal Ice. PHYSICAL REVIEW LETTERS 2021; 126:188001. [PMID: 34018772 DOI: 10.1103/physrevlett.126.188001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/17/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
The effect of boundaries and how these can be used to influence the bulk behavior in geometrically frustrated systems are both long-standing puzzles, often relegated to a secondary role. Here, we use numerical simulations and "proof of concept" experiments to demonstrate that boundaries can be engineered to control the bulk behavior in a colloidal artificial ice. We show that an antiferromagnetic frontier forces the system to rapidly reach the ground state (GS), as opposed to the commonly implemented open or periodic boundary conditions. We also show that strategically placing defects at the corners generates novel bistable states, or topological strings, which result from competing GS regions in the bulk. Our results could be generalized to other frustrated micro- and nanostructures where boundary conditions may be engineered with lithographic techniques.
Collapse
Affiliation(s)
- Carolina Rodríguez-Gallo
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028, Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, 08028, Barcelona, Spain
| | - Antonio Ortiz-Ambriz
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028, Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain
| | - Pietro Tierno
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028, Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, 08028, Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain
| |
Collapse
|
8
|
Farhan A, Saccone M, Petersen CF, Dhuey S, Hofhuis K, Mansell R, Chopdekar RV, Scholl A, Lippert T, van Dijken S. Geometrical Frustration and Planar Triangular Antiferromagnetism in Quasi-Three-Dimensional Artificial Spin Architecture. PHYSICAL REVIEW LETTERS 2020; 125:267203. [PMID: 33449705 DOI: 10.1103/physrevlett.125.267203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/01/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
We present a realization of highly frustrated planar triangular antiferromagnetism achieved in a quasi-three-dimensional artificial spin system consisting of monodomain Ising-type nanomagnets lithographically arranged onto a deep-etched silicon substrate. We demonstrate how the three-dimensional spin architecture results in the first direct observation of long-range ordered planar triangular antiferromagnetism, in addition to a highly disordered phase with short-range correlations, once competing interactions are perfectly tuned. Our work demonstrates how escaping two-dimensional restrictions can lead to new types of magnetically frustrated metamaterials.
Collapse
Affiliation(s)
- Alan Farhan
- NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland
- Laboratory for Multiscale Materials Experiments (LMX), Paul Scherrer Institut, 5232 Villigen, Switzerland
- Advanced Light Source, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, USA
| | - Michael Saccone
- NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland
- Physics Department, University of California, 1156 High Street, Santa Cruz, California 95064, USA
| | - Charlotte F Petersen
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Scott Dhuey
- Molecular Foundry, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, USA
| | - Kevin Hofhuis
- Laboratory for Multiscale Materials Experiments (LMX), Paul Scherrer Institut, 5232 Villigen, Switzerland
- Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - Rhodri Mansell
- NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland
| | - Rajesh V Chopdekar
- Advanced Light Source, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, USA
| | - Andreas Scholl
- Advanced Light Source, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, USA
| | - Thomas Lippert
- Laboratory for Multiscale Materials Experiments (LMX), Paul Scherrer Institut, 5232 Villigen, Switzerland
- Department of Chemistry and Applied Biosciences, Laboratory of Inorganic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Sebastiaan van Dijken
- NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland
| |
Collapse
|
9
|
Lendinez S, Jungfleisch MB. Magnetization dynamics in artificial spin ice. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:013001. [PMID: 31600143 DOI: 10.1088/1361-648x/ab3e78] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this topical review, we present key results of studies on magnetization dynamics in artificial spin ice (ASI), which are arrays of magnetically interacting nanostructures. Recent experimental and theoretical progress in this emerging area, which is at the boundary between research on frustrated magnetism and high-frequency studies of artificially created nanomagnets, is reviewed. The exploration of ASI structures has revealed fascinating discoveries in correlated spin systems. Artificially created spin ice lattices offer unique advantages as they allow for a control of the interactions between the elements by their geometric properties and arrangement. Magnonics, on the other hand, is a field that explores spin dynamics in the gigahertz frequency range in magnetic micro- and nanostructures. In this context, magnonic crystals are particularly important as they allow the modification of spin-wave properties and the observation of band gaps in the resonance spectra. Very recently, there has been considerable progress, experimentally and theoretically, in combining aspects of both fields-artificial spin ice and magnonics-enabling new functionalities in magnonic and spintronic applications using ASI, as well as providing a deeper understanding of geometrical frustration in the gigahertz range. Different approaches for the realization of ASI structures and their experimental characterization in the high-frequency range are described and the appropriate theoretical models and simulations are reviewed. Special attention is devoted to linking these findings to the quasi-static behavior of ASI and dynamic investigations in magnonics in an effort to bridge the gap between both areas further and to stimulate new research endeavors.
Collapse
Affiliation(s)
- S Lendinez
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, United States of America
| | | |
Collapse
|
10
|
Wyss M, Gliga S, Vasyukov D, Ceccarelli L, Romagnoli G, Cui J, Kleibert A, Stamps RL, Poggio M. Stray-Field Imaging of a Chiral Artificial Spin Ice during Magnetization Reversal. ACS NANO 2019; 13:13910-13916. [PMID: 31820931 DOI: 10.1021/acsnano.9b05428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Artificial spin ices are a class of metamaterials consisting of magnetostatically coupled nanomagnets. Their interactions give rise to emergent behavior, which has the potential to be harnessed for the creation of functional materials. Consequently, the ability to map the stray field of such systems can be decisive for gaining an understanding of their properties. Here, we use a scanning nanometer-scale superconducting quantum interference device (SQUID) to image the magnetic stray field distribution of an artificial spin ice system exhibiting structural chirality as a function of applied magnetic fields at 4.2 K. The images reveal that the magnetostatic interaction gives rise to a measurable bending of the magnetization at the edges of the nanomagnets. Micromagnetic simulations predict that, owing to the structural chirality of the system, this edge bending is asymmetric in the presence of an external field and gives rise to a preferred direction for the reversal of the magnetization. This effect is not captured by models assuming a uniform magnetization. Our technique thus provides a promising means for understanding the collective response of artificial spin ices and their interactions.
Collapse
Affiliation(s)
- Marcus Wyss
- Department of Physics , University of Basel , 4056 Basel , Switzerland
| | - Sebastian Gliga
- SUPA, School of Physics and Astronomy , University of Glasgow , Glasgow , G12 8QQ , United Kingdom
- Paul Scherrer Institute , Villigen 5232 , Switzerland
| | - Denis Vasyukov
- Department of Physics , University of Basel , 4056 Basel , Switzerland
| | | | - Giulio Romagnoli
- Department of Physics , University of Basel , 4056 Basel , Switzerland
| | - Jizhai Cui
- Paul Scherrer Institute , Villigen 5232 , Switzerland
- Laboratory for Mesoscopic Systems, Department of Materials , ETH Zürich , 8093 Zürich , Switzerland
| | | | - Robert L Stamps
- Department of Physics and Astronomy , University of Manitoba , Winnipeg , R3T 2N2 , Canada
| | - Martino Poggio
- Department of Physics , University of Basel , 4056 Basel , Switzerland
| |
Collapse
|