1
|
Domingues TS, Coifman R, Haji-Akbari A. Estimating Position-Dependent and Anisotropic Diffusivity Tensors from Molecular Dynamics Trajectories: Existing Methods and Future Outlook. J Chem Theory Comput 2024; 20:4427-4455. [PMID: 38815171 DOI: 10.1021/acs.jctc.4c00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Confinement can substantially alter the physicochemical properties of materials by breaking translational isotropy and rendering all physical properties position-dependent. Molecular dynamics (MD) simulations have proven instrumental in characterizing such spatial heterogeneities and probing the impact of confinement on materials' properties. For static properties, this is a straightforward task and can be achieved via simple spatial binning. Such an approach, however, cannot be readily applied to transport coefficients due to lack of natural extensions of autocorrelations used for their calculation in the bulk. The prime example of this challenge is diffusivity, which, in the bulk, can be readily estimated from the particles' mobility statistics, which satisfy the Fokker-Planck equation. Under confinement, however, such statistics will follow the Smoluchowski equation, which lacks a closed-form analytical solution. This brief review explores the rich history of estimating profiles of the diffusivity tensor from MD simulations and discusses various approximate methods and algorithms developed for this purpose. Besides discussing heuristic extensions of bulk methods, we overview more rigorous algorithms, including kernel-based methods, Bayesian approaches, and operator discretization techniques. Additionally, we outline methods based on applying biasing potentials or imposing constraints on tracer particles. Finally, we discuss approaches that estimate diffusivity from mean first passage time or committor probability profiles, a conceptual framework originally developed in the context of collective variable spaces describing rare events in computational chemistry and biology. In summary, this paper offers a concise survey of diverse approaches for estimating diffusivity from MD trajectories, highlighting challenges and opportunities in this area.
Collapse
Affiliation(s)
- Tiago S Domingues
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Ronald Coifman
- Department of Mathematics, Yale University, New Haven, Connecticut 06520, United States
- Department of Computer Science, Yale University, New Haven, Connecticut 06520, United States
| | - Amir Haji-Akbari
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
2
|
Mehlhose S, Sakamoto T, Eickhoff M, Kato T, Tanaka M. Electrochemical Detection of Selective Anion Transport through Subnanopores in Liquid-Crystalline Water Treatment Membranes. J Phys Chem B 2024; 128:4537-4543. [PMID: 38683761 PMCID: PMC11089498 DOI: 10.1021/acs.jpcb.4c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/02/2024] [Accepted: 03/04/2024] [Indexed: 05/02/2024]
Abstract
The anion-selective transport through subnanoporous liquid-crystalline (LC) water treatment membranes was quantitatively detected by the deposition and electrochemical analysis of the LC membrane on the GaN electrode. The time course of the capacitance and Warburg resistance of the LC membrane suggest that the interaction of the LC membrane with monovalent Cl- ions is distinctly different from that with SO42- ions. A continuous decay in capacitance suggests the condensation of Cl- ions in subnanopores, whereas the interaction between SO42- ions and the inner wall of subnanopores is much weaker. The chronoamperometry data further suggest that SO42- ions are transported through subnanoporous channels 10 times faster than Cl- ions. These results, together with the previous X-ray emission spectroscopy, suggest that SO42- ions, which possess similar hydrogen-bonded structures to the hydrogen-bonded networks inside the subnanopores, can exchange the associated water molecules and hop along the network of water molecules, but Cl- ions bind and accumulate inside subnanopores. The well-controlled supramolecular self-assembly of LC building blocks opens a large potential toward the fine adjustment of hydrogen-bonding networks in nanospace providing materials new functions, which cannot be realized by bulk water.
Collapse
Affiliation(s)
- Sven Mehlhose
- Physical
Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, D69120 Heidelberg, Germany
| | - Takeshi Sakamoto
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Martin Eickhoff
- Institut
für Festkörperphysik, Universität Bremen, Otto-Hahn-Allee NW1, D28359 Bremen, Germany
| | - Takashi Kato
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- Research
Initiative for Supra-Materials, Shinshu
University, Wakasato, Nagano 380-8553, Japan
| | - Motomu Tanaka
- Physical
Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, D69120 Heidelberg, Germany
- Center
for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
3
|
Su L, Lu F, Li Y, Wang Y, Li X, Zheng L, Gao X. Gyroid Liquid Crystals as Quasi-Solid-State Electrolytes Toward Ultrastable Zinc Batteries. ACS NANO 2024; 18:7633-7643. [PMID: 38411092 DOI: 10.1021/acsnano.4c00593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The potential for optimizing ion transport through triply periodic minimal surface (TPMS) structures renders promising electrochemical applications. In this study, as a proof-of-concept, we extend the inherent efficiency and mathematical beauty of TPMS structures to fabricate liquid-crystalline electrolytes with high ionic conductivity and superior structural stability for aqueous rechargeable zinc-ion batteries. The specific topological configuration of the liquid-crystalline electrolytes, featuring a Gyroid geometry, enables the formation of a continuous ion conduction pathway enriched with confined water. This, in turn, promotes the smooth transport of charge carriers and contributes to high ionic conductivity. Meanwhile, the quasi-solid hydrophobic phase assembled by hydrophobic alkyl chains exhibits notable rigidity and toughness, enabling uniform and compact dendrite-free Zn deposition. These merits synergistically enhance the overall performance of the corresponding full batteries. This work highlights the distinctive role of TPMS structures in developing high-performance, liquid-crystalline electrolytes, which can provide a viable route for the rational design of next-generation quasi-solid-state electrolytes.
Collapse
Affiliation(s)
- Long Su
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, P. R. China
| | - Fei Lu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, P. R. China
| | - Yanrui Li
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, P. R. China
| | - Yuanqi Wang
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, P. R. China
| | - Xia Li
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, P. R. China
| | - Liqiang Zheng
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, P. R. China
| | - Xinpei Gao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, P. R. China
| |
Collapse
|
4
|
Domingues TS, Coifman RR, Haji-Akbari A. Robust Estimation of Position-Dependent Anisotropic Diffusivity Tensors from Stochastic Trajectories. J Phys Chem B 2023. [PMID: 37261948 DOI: 10.1021/acs.jpcb.3c00670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Materials under confinement can possess properties that deviate considerably from their bulk counterparts. Indeed, confinement makes all physical properties position-dependent and possibly anisotropic, and characterizing such spatial variations and directionality has been an intense area of focus in experimental and computational studies of confined matter. While this task is fairly straightforward for simple mechanical observables, it is far more daunting for transport properties such as diffusivity that can only be estimated from autocorrelations of mechanical observables. For instance, there are well established methods for estimating diffusivity from experimentally observed or computationally generated trajectories in bulk systems. No rigorous generalizations of such methods, however, exist for confined systems. In this work, we present two filtered covariance estimators for computing anisotropic and position-dependent diffusivity tensors and validate them by applying them to stochastic trajectories generated according to known diffusivity profiles. These estimators can accurately capture spatial variations that span over several orders of magnitude and that assume different functional forms. Our kernel-based approach is also very robust to implementation details such as the localization function and time discretization and performs significantly better than estimators that are solely based on local covariance. Moreover, the kernel function does not have to be localized and can instead belong to a dictionary of orthogonal functions. Therefore, the proposed estimator can be readily used to obtain functional estimates of diffusivity rather than a tabulated collection of pointwise estimates. Nonetheless, the susceptibility of the proposed estimators to time discretization is higher at the immediate vicinity of hard boundaries. We demonstrate this heightened susceptibility to be common among all covariance-based estimators.
Collapse
Affiliation(s)
- Tiago S Domingues
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Ronald R Coifman
- Department of Mathematics, Yale University, New Haven, Connecticut 06520, United States
| | - Amir Haji-Akbari
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
5
|
Liang R, Xue Y, Fu X, Le AN, Song Q, Qiang Y, Xie Q, Dong R, Sun Z, Osuji CO, Johnson JA, Li W, Zhong M. Hierarchically engineered nanostructures from compositionally anisotropic molecular building blocks. NATURE MATERIALS 2022; 21:1434-1440. [PMID: 36357688 DOI: 10.1038/s41563-022-01393-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
The inability to synthesize hierarchical structures with independently tailored nanoscale and mesoscale features limits the discovery of next-generation multifunctional materials. Here we present a predictable molecular self-assembly strategy to craft nanostructured materials with a variety of phase-in-phase hierarchical morphologies. The compositionally anisotropic building blocks employed in the assembly process are formed by multicomponent graft block copolymers containing sequence-defined side chains. The judicious design of various structural parameters in the graft block copolymers enables broadly tunable compositions, morphologies and lattice parameters across the nanoscale and mesoscale in the assembled structures. Our strategy introduces advanced design principles for the efficient creation of complex hierarchical structures and provides a facile synthetic platform to access nanomaterials with multiple precisely integrated functionalities.
Collapse
Affiliation(s)
- Ruiqi Liang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Yazhen Xue
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Xiaowei Fu
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, China
| | - An N Le
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Qingliang Song
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Yicheng Qiang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Qiong Xie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Ruiqi Dong
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Zehao Sun
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chinedum O Osuji
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Mingjiang Zhong
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA.
- Department of Chemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
6
|
Cao M, Liu S, Zhu Q, Wang Y, Ma J, Li Z, Chang D, Zhu E, Ming X, Puchtler F, Breu J, Wu Z, Liu Y, Jiang Y, Xu Z, Gao C. Monodomain Liquid Crystals of Two-Dimensional Sheets by Boundary-Free Sheargraphy. NANO-MICRO LETTERS 2022; 14:192. [PMID: 36121520 PMCID: PMC9485412 DOI: 10.1007/s40820-022-00925-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/26/2022] [Indexed: 06/02/2023]
Abstract
Eliminating topological defects to achieve monodomain liquid crystals is highly significant for the fundamental studies of soft matter and building long-range ordered materials. However, liquid crystals are metastable and sensitive to external stimuli, such as flow, confinement, and electromagnetic fields, which cause their intrinsic polycrystallinity and topological defects. Here, we achieve the monodomain liquid crystals of graphene oxide over 30 cm through boundary-free sheargraphy. The obtained monodomain liquid crystals exhibit large-area uniform alignment of sheets, which has the same optical polarized angle and intensity. The monodomain liquid crystals provide bidirectionally ordered skeletons, which can be applied as lightweight thermal management materials with bidirectionally high thermal and electrical conductivity. Furthermore, we extend the controllable topology of two-dimensional colloids by introducing singularities and disclinations in monodomain liquid crystals. Topological structures with defect strength from - 2 to + 2 were realized. This work provides a facile methodology to study the structural order of soft matter at a macroscopic level, facilitating the fabrication of metamaterials with tunable and highly anisotropic architectures.
Collapse
Affiliation(s)
- Min Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027 People’s Republic of China
| | - Senping Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027 People’s Republic of China
| | - Qingli Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027 People’s Republic of China
| | - Ya Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027 People’s Republic of China
| | - Jingyu Ma
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027 People’s Republic of China
| | - Zeshen Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027 People’s Republic of China
| | - Dan Chang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027 People’s Republic of China
| | - Enhui Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027 People’s Republic of China
| | - Xin Ming
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027 People’s Republic of China
| | - Florian Puchtler
- Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Josef Breu
- Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Ziliang Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027 People’s Republic of China
| | - Yingjun Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027 People’s Republic of China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, People’s Republic of China
| | - Yanqiu Jiang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027 People’s Republic of China
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027 People’s Republic of China
| | - Zhen Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027 People’s Republic of China
| | - Chao Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027 People’s Republic of China
| |
Collapse
|
7
|
Monti J, Concellón A, Dong R, Simmler M, Münchinger A, Huck C, Tegeder P, Nirschl H, Wegener M, Osuji CO, Blasco E. Two-Photon Laser Microprinting of Highly Ordered Nanoporous Materials Based on Hexagonal Columnar Liquid Crystals. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33746-33755. [PMID: 35849651 DOI: 10.1021/acsami.2c10106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanoporous materials relying on supramolecular liquid crystals (LCs) are excellent candidates for size- and charge-selective membranes. However, whether they can be manufactured using printing technologies remained unexplored so far. In this work, we develop a new approach for the fabrication of ordered nanoporous microstructures based on supramolecular LCs using two-photon laser printing. In particular, we employ photo-cross-linkable hydrogen-bonded complexes, that self-assemble into columnar hexagonal (Colh) mesophases, as the base of our printable photoresist. The presence of photopolymerizable groups in the periphery of the molecules enables the printability using a laser. We demonstrate the conservation of the Colh arrangement and of the adsorptive properties of the materials after laser microprinting, which highlights the potential of the approach for the fabrication of functional nanoporous structures with a defined geometry. This first example of printable Colh LC should open new opportunities for the fabrication of functional porous microdevices with potential application in catalysis, filtration, separation, or molecular recognition.
Collapse
Affiliation(s)
- Joël Monti
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany
| | - Alberto Concellón
- Department of Chemistry, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
| | - Ruiqi Dong
- Department of Chemical and Biomolecular Engineering, The University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Mira Simmler
- Institute of Mechanical Process Engineering and Mechanics (MVM), Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
| | - Alexander Münchinger
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
| | - Christian Huck
- Institute of Physical Chemistry, Heidelberg University, Heidelberg 69120, Germany
| | - Petra Tegeder
- Institute of Physical Chemistry, Heidelberg University, Heidelberg 69120, Germany
| | - Hermann Nirschl
- Institute of Mechanical Process Engineering and Mechanics (MVM), Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
| | - Martin Wegener
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
| | - Chinedum O Osuji
- Department of Chemical and Biomolecular Engineering, The University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Eva Blasco
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany
- Center for Advanced Materials (CAM), Heidelberg University, Heidelberg 69120, Germany
- Organic Chemistry Institute, Heidelberg University, Hedelberg 69120, Germany
| |
Collapse
|
8
|
Bruckner EP, Curk T, Đorđević L, Wang Z, Yang Y, Qiu R, Dannenhoffer AJ, Sai H, Kupferberg J, Palmer LC, Luijten E, Stupp SI. Hybrid Nanocrystals of Small Molecules and Chemically Disordered Polymers. ACS NANO 2022; 16:8993-9003. [PMID: 35588377 DOI: 10.1021/acsnano.2c00266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Organic crystals formed by small molecules can be highly functional but are often brittle or insoluble structures with limited possibilities for use or processing from a liquid phase. A possible solution is the nanoscale integration of polymers into organic crystals without sacrificing long-range order and therefore function. This enables the organic crystals to benefit from the advantageous mechanical and chemical properties of the polymeric component. We report here on a strategy in which small molecules cocrystallize with side chains of chemically disordered polymers to create hybrid nanostructures containing a highly ordered lattice. Synchrotron X-ray scattering, absorption spectroscopy, and coarse-grained molecular dynamics simulations reveal that the polymer backbones form an "exo-crystalline" layer of disordered chains that wrap around the nanostructures, becoming a handle for interesting properties. The morphology of this "hybrid bonding polymer" nanostructure is dictated by the competition between the polymers' entropy and the enthalpy of the lattice allowing for control over the aspect ratio of the nanocrystal by changing the degree of polymer integration. We observed that nanostructures with an exo-crystalline layer of polymer exhibit enhanced fracture strength, self-healing capacity, and dispersion in water, which benefits their use as light-harvesting assemblies in photocatalysis. Guided by computation, future work could further explore these hybrid nanostructures as components for functional materials.
Collapse
Affiliation(s)
- Eric P Bruckner
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Tine Curk
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Luka Đorđević
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
| | - Ziwei Wang
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
| | - Yang Yang
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
| | - Ruomeng Qiu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Adam J Dannenhoffer
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Hiroaki Sai
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
| | - Jacob Kupferberg
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Liam C Palmer
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
| | - Erik Luijten
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois 60208, United States
| | - Samuel I Stupp
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
9
|
Mu B, Zhang Z, Hao X, Ma T, Tian W. Positional Isomerism-Mediated Copolymerization Realizing the Continuous Luminescence Color-Tuning of Liquid-Crystalline Polymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bin Mu
- Shanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zhelin Zhang
- Shanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Xiangnan Hao
- Shanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Tianshu Ma
- Shanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Wei Tian
- Shanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
10
|
Xu X, Wang W, Zhang Y, Chen Y, Huang H, Fang T, Li Y, Li Z, Zou Z. Centimeter-scale perovskite SrTaO2N single crystals with enhanced photoelectrochemical performance. Sci Bull (Beijing) 2022; 67:1458-1466. [DOI: 10.1016/j.scib.2022.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/29/2022] [Accepted: 06/03/2022] [Indexed: 11/26/2022]
|
11
|
Chen Y, Chang HY, Lee MT, Yang ZR, Wang CH, Wu KY, Chuang WT, Wang CL. Dual-Axis Alignment of Bulk Artificial Water Channels by Directional Water-Induced Self-Assembly. J Am Chem Soc 2022; 144:7768-7777. [PMID: 35417167 DOI: 10.1021/jacs.2c00929] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Approaching single-crystal-like morphology has always been important in driving materials toward their optimal properties. With only orientational order, liquid crystal (LC) materials require dual-axis orientational control to optimize their structural order in the bulk phase. However, current external guiding fields such as electrical, magnetic, and mechanical guiding fields are less effective in aligning amphiphilic LCs. In this study, water is developed as an excellent structural stabilizer and orientation-directing agent of an amphiphilic discotic molecule (AD) in the water-induced self-assembly (WISA) process. Thermal analysis and structural characterization results show that water increases the stability and domain sizes of the hexagonal columnar (Colh) phase of the AD by co-assembling with the ADs to form bulk artificial water channels (AWCs). Moreover, through control over the nucleation conditions (degree of supercooling and location of nucleation), dual-axis alignment in both the planar and vertical growth of the AWCs is achieved by applying water as the guiding field in the directional WISA. With precise control over the hierarchical structures, the bulk AWC array of the AD delivers excellent salt rejection properties and water permeability. Considering that all the amphiphilic LCs have hydrophilic segments, these new roles of water in the WISA process could launch the further development of functional amphiphilic LCs by providing a dynamic interaction and a readily available guiding field.
Collapse
Affiliation(s)
- Yuan Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 30010, Taiwan
| | - Hsi-Yen Chang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 30010, Taiwan
| | - Mu-Tzu Lee
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 30010, Taiwan
| | - Zong-Ren Yang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Chia-Hsin Wang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Kuan-Yi Wu
- Department of Textile Engineering, Chinese Culture University, 55 Hwa-Kang Road, Yang-Ming-Shan, Taipei 11114, Taiwan
| | - Wei-Tsung Chuang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Chien-Lung Wang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 30010, Taiwan
| |
Collapse
|
12
|
Zhang Y, Kim D, Dong R, Feng X, Osuji CO. Tunable organic solvent nanofiltration in self-assembled membranes at the sub-1 nm scale. SCIENCE ADVANCES 2022; 8:eabm5899. [PMID: 35294234 PMCID: PMC8926336 DOI: 10.1126/sciadv.abm5899] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Organic solvent-stable membranes exhibiting strong selectivity and high permeance have the potential to transform energy utilization in chemical separation processes. A key goal is developing materials with uniform, well-defined pores at the 1-nm scale, with sizes that can be tuned in small increments with high fidelity. Here, we demonstrate a class of organic solvent-stable nanoporous membranes derived from self-assembled liquid crystal mesophases that display such characteristics and elucidate their transport properties. The transport-regulating dimensions are defined by the mesophase geometry and can be controlled in increments of ~0.1 nm by modifying the chemical structure of the mesogen or the composition of the mesophase. The highly ordered nanostructure affords previously unidentified opportunities for the systematic design of organic solvent nanofiltration membranes with tailored selectivity and permeability and for understanding and modeling rejection in nanoscale flows. Hence, these membranes represent progress toward the goal of enabling precise organic solvent nanofiltration.
Collapse
Affiliation(s)
- Yizhou Zhang
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, and School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dahin Kim
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ruiqi Dong
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xunda Feng
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
| | - Chinedum O. Osuji
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corresponding author.
| |
Collapse
|
13
|
Lee S, Lee W, Jung HT, Ross CA. Selective Deposition of Copper on Self-Assembled Block Copolymer Surfaces via Physical Vapor Deposition. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52931-52937. [PMID: 34705438 DOI: 10.1021/acsami.1c15272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Block copolymer (BCP) self-assembly produces chemically and topographically patterned surfaces which are used to guide the formation of Cu nanostructures by exploiting differences in the mobility of vapor-deposited species on each microdomain. Cu metal films a few nm thick were deposited on three different BCP surfaces self-assembled from poly(styrene-b-methyl methacrylate) (PS-b-PMMA) and polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP). For PS-b-PMMA, the effects of chemical heterogeneity dominate over the effects of the 2 nm peak-to-valley topography, and sputtered Cu preferentially wets the PS block. PS-b-P2VP has greater chemical and topographical contrast and shows a wider process window for selective deposition. Cu grown by evaporation has less surface mobility, and shadowing effects are believed to dominate pattern formation. The hierarchical self-assembly process of thin metal films on BCP surfaces provides a route to fabricating heterogeneous metallic nanostructures.
Collapse
Affiliation(s)
- Sangho Lee
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Wonmoo Lee
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemical and Biomolecular Engineering (BK-21 Plus), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Hee-Tae Jung
- Department of Chemical and Biomolecular Engineering (BK-21 Plus), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Caroline A Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
14
|
Qi J, Su G, Li Z. Gel-Based Luminescent Conductive Materials and Their Applications in Biosensors and Bioelectronics. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6759. [PMID: 34832161 PMCID: PMC8621303 DOI: 10.3390/ma14226759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/31/2021] [Accepted: 11/04/2021] [Indexed: 12/27/2022]
Abstract
The gel is an ideal platform for fabricating materials for bio-related applications due to its good biocompatibility, adjustable mechanical strength, and flexible and diversified functionalization. In recent decades, gel-based luminescent conductive materials that possess additional luminescence and conductivity simultaneously advanced applications in biosensors and bioelectronics. Herein, a comprehensive overview of gel-based luminescent conductive materials is summarized in this review. Gel-based luminescent conductive materials are firstly outlined, highlighting their fabrication methods, network structures, and functions. Then, their applications in biosensors and bioelectronics fields are illustrated. Finally, challenges and future perspectives of this emerging field are discussed with the hope of inspire additional ideas.
Collapse
Affiliation(s)
- Jiajin Qi
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (J.Q.); (G.S.)
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing 100081, China
| | - Gongmeiyue Su
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (J.Q.); (G.S.)
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing 100081, China
| | - Zhao Li
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (J.Q.); (G.S.)
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
15
|
Chang HY, Wu KY, Chen WC, Weng JT, Chen CY, Raj A, Hamaguchi HO, Chuang WT, Wang X, Wang CL. Water-Induced Self-Assembly of Amphiphilic Discotic Molecules for Adaptive Artificial Water Channels. ACS NANO 2021; 15:14885-14890. [PMID: 34410689 DOI: 10.1021/acsnano.1c04994] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Inspired by the induced-fit mechanism in nature, we developed the process of water-induced self-assembly (WISA) to make water an active substrate that regulates the self-assembly and function of amphiphilic discotic molecules (ADMs). The ADM is an isotropic liquid that self-assembles only when in contact with water. Characterization results indicate that water fits into the hydrophilic core of the ADMs and induces the formation of a hexagonal columnar phase (Colh), where each column contains a hydrated artificial water channel (AWC). The hydrated AWCs are adaptive rather than static; the dynamic incorporation/removal of water results in the reversible assembly/disassembly of the adaptive AWCs (aAWCs). Furthermore, its dynamic characteristics can enable water to act as an orientation-directional guest molecule that controls the growth direction of the aAWCs. Well-aligned aAWC arrays that showed the ability of water transport were obtained via a "directional WISA" method. In WISA, water thus governs the supramolecular chemistry and function of synthetic molecules as it does with natural materials. By making water an active component in adaptive chemistry and enabling host molecules to dynamically interact with water, this adaptive aquatic material may motivate the development of synthetic molecules further toward biomaterials.
Collapse
Affiliation(s)
- Hsi-Yen Chang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu, 30010, Taiwan
| | - Kuan-Yi Wu
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Wei-Chun Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu, 30010, Taiwan
| | - Jing-Ting Weng
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu, 30010, Taiwan
| | - Chin-Yi Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu, 30010, Taiwan
| | - Ankit Raj
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu, 30010, Taiwan
| | - Hiro-O Hamaguchi
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu, 30010, Taiwan
| | - Wei-Tsung Chuang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Xiaosong Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Chien-Lung Wang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu, 30010, Taiwan
| |
Collapse
|
16
|
Robertson M, Zhou Q, Ye C, Qiang Z. Developing Anisotropy in Self-Assembled Block Copolymers: Methods, Properties, and Applications. Macromol Rapid Commun 2021; 42:e2100300. [PMID: 34272778 DOI: 10.1002/marc.202100300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/23/2021] [Indexed: 01/03/2023]
Abstract
Block copolymers (BCPs) self-assembly has continually attracted interest as a means to provide bottom-up control over nanostructures. While various methods have been demonstrated for efficiently ordering BCP nanodomains, most of them do not generically afford control of nanostructural orientation. For many applications of BCPs, such as energy storage, microelectronics, and separation membranes, alignment of nanodomains is a key requirement for enabling their practical use or enhancing materials performance. This review focuses on summarizing research progress on the development of anisotropy in BCP systems, covering a variety of topics from established aligning techniques, resultant material properties, and the associated applications. Specifically, the significance of aligning nanostructures and the anisotropic properties of BCPs is discussed and highlighted by demonstrating a few promising applications. Finally, the challenges and outlook are presented to further implement aligned BCPs into practical nanotechnological applications, where exciting opportunities exist.
Collapse
Affiliation(s)
- Mark Robertson
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Qingya Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Changhuai Ye
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zhe Qiang
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| |
Collapse
|
17
|
Zhang Y, Dong R, Gabinet UR, Poling-Skutvik R, Kim NK, Lee C, Imran OQ, Feng X, Osuji CO. Rapid Fabrication by Lyotropic Self-Assembly of Thin Nanofiltration Membranes with Uniform 1 Nanometer Pores. ACS NANO 2021; 15:8192-8203. [PMID: 33729764 DOI: 10.1021/acsnano.1c00722] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nanostructured materials with precisely defined and water-bicontinuous 1-nm-scale pores are highly sought after as advanced materials for next-generation nanofiltration membranes. While several self-assembled systems appear to satisfy this need, straightforward fabrication of such materials as submicron films with high-fidelity retention of their ordered nanostructure represents a nontrivial challenge. We report the development of a lyotropic liquid crystal mesophase that addresses the aforementioned issue. Films as thin as ∼200 nm are prepared on conventional support membranes using solution-based methods. Within these films, the system is composed of a hexagonally ordered array of ∼3 nm diameter cylinders of cross-linked polymer, embedded in an aqueous medium. The cylinders are uniformly oriented in the plane of the film, providing a transport-limiting dimension of ∼1 nm, associated with the space between the outer surfaces of nearest-neighbor cylinders. These membranes exhibit molecular weight cutoffs of ∼300 Da for organic solutes and are effective in rejecting dissolved salts, and in particular, divalent species, while exhibiting water permeabilities that rival or exceed current state-of-the-art commercial nanofiltration membranes. These materials have the ability to address a broad range of nanofiltration applications, while structure-property considerations suggest several avenues for potential performance improvements.
Collapse
Affiliation(s)
- Yizhou Zhang
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ruiqi Dong
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Uri R Gabinet
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ryan Poling-Skutvik
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Na Kyung Kim
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Changyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Omar Q Imran
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Xunda Feng
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
| | - Chinedum O Osuji
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
18
|
Hampu N, Werber JR, Chan WY, Feinberg EC, Hillmyer MA. Next-Generation Ultrafiltration Membranes Enabled by Block Polymers. ACS NANO 2020; 14:16446-16471. [PMID: 33315381 DOI: 10.1021/acsnano.0c07883] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Reliable and equitable access to safe drinking water is a major and growing challenge worldwide. Membrane separations represent one of the most promising strategies for the energy-efficient purification of potential water sources. In particular, porous membranes are used for the ultrafiltration (UF) of water to remove contaminants with nanometric sizes. However, despite exhibiting excellent water permeability and solution processability, existing UF membranes contain a broad distribution of pore sizes that limit their size selectivity. To maximize the potential utility of UF membranes and allow for precise separations, improvements in the size selectivity of these systems must be achieved. Block polymers represent a potentially transformative solution, as these materials self-assemble into well-defined domains of uniform size. Several different strategies have been reported for integrating block polymers into UF membranes, and each strategy has its own set of materials and processing considerations to ensure that uniform and continuous pores are generated. This Review aims to summarize and critically analyze the chemistries, processing techniques, and properties required for the most common methods for producing porous membranes from block polymers, with a particular focus on the fundamental mechanisms underlying block polymer self-assembly and pore formation. Critical structure-property-performance metrics will be analyzed for block polymer UF membranes to understand how these membranes compare to commercial UF membranes and to identify key research areas for continued improvements. This Review is intended to inform readers of the capabilities and current challenges of block polymer UF membranes, while stimulating critical thought on strategies to advance these technologies.
Collapse
Affiliation(s)
- Nicholas Hampu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jay R Werber
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Wui Yarn Chan
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Elizabeth C Feinberg
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Marc A Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
19
|
De J, Devi M, Shah A, Gupta SP, Bala I, Singh DP, Douali R, Pal SK. Luminescent Conductive Columnar π-Gelators for Fe(II) Sensing and Bio-Imaging Applications. J Phys Chem B 2020; 124:10257-10265. [PMID: 33136408 DOI: 10.1021/acs.jpcb.0c07052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The high demand and scarcity of luminescent, photoconductive, and transparent gels necessitate its finding as they are potential components in photonic devices such as solar cell concentrators where optical losses via scattering and reabsorption require to be minimized. In this direction, we have reported highly transparent, blue luminescent as well as photoconductive gels exhibiting the hole mobility of 10-3 cm2/V s at ambient temperature as investigated by the time-of-flight technique. The π-driven self-standing supergels were formed using triazole-modified phenylene-vinylene derivatives as gelators in a nonpolar solvent. Different microscopic studies revealed its entangled network of interwoven fibrilar self-assembly and anisotropic order in the gel state. Supramolecular assembly of xerogels, studied by small- and wide-angle X-ray scattering (SAXS/WAXS) suggesting their local columnar hexagonal (Colh) superstructure, is beneficial for conducting gels. Rheological measurements direct the stiffness and robustness of the organogels. In addition, the gelators were developed as a sensing platform for the ultrasensitive detection of Fe(II) ions at ppb level. 1H nuclear magnetic resonance (NMR) titrimetric studies revealed that the interaction of the H-atom of triazole units with Fe(II) is responsible for quenching of blue fluorescence. Also, one of the gelators was successfully applied in bio-imaging using the pollen grains of the Hibiscus rosa-sinensis plant.
Collapse
Affiliation(s)
- Joydip De
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81, SAS Nagar, Knowledge City, Manauli 140306, India
| | - Manisha Devi
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81, SAS Nagar, Knowledge City, Manauli 140306, India
| | - Asmita Shah
- Univ. Littoral Côte d'Opale, UR 4476, UDSMM, Unité de Dynamique et Structure des Matériaux Moléculaires, F-62228 Calais, France
| | | | - Indu Bala
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81, SAS Nagar, Knowledge City, Manauli 140306, India
| | - Dharmendra Pratap Singh
- Univ. Littoral Côte d'Opale, UR 4476, UDSMM, Unité de Dynamique et Structure des Matériaux Moléculaires, F-62228 Calais, France
| | - Redouane Douali
- Univ. Littoral Côte d'Opale, UR 4476, UDSMM, Unité de Dynamique et Structure des Matériaux Moléculaires, F-62228 Calais, France
| | - Santanu Kumar Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81, SAS Nagar, Knowledge City, Manauli 140306, India
| |
Collapse
|
20
|
Hampu N, Hillmyer MA. Nanostructural Rearrangement of Lamellar Block Polymers Cured in the Vicinity of the Order–Disorder Transition. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nicholas Hampu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Marc A. Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
21
|
Lu X, Gabinet UR, Ritt CL, Feng X, Deshmukh A, Kawabata K, Kaneda M, Hashmi SM, Osuji CO, Elimelech M. Relating Selectivity and Separation Performance of Lamellar Two-Dimensional Molybdenum Disulfide (MoS 2) Membranes to Nanosheet Stacking Behavior. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9640-9651. [PMID: 32598838 DOI: 10.1021/acs.est.0c02364] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Increased demand for highly selective and energy-efficient separations processes has stimulated substantial interest in emerging two-dimensional (2D) nanomaterials as a potential platform for next-generation membranes. However, persistently poor separation performance continues to hinder the viability of many novel 2D-nanosheet membranes in desalination applications. In this study, we examine the role of the lamellar structure of 2D membranes on their performance. Using self-fabricated molybdenum disulfide (MoS2) membranes as a platform, we show that the separation layer of 2D nanosheet frameworks not only fails to demonstrate water-salt selectivity but also exhibits low rejection toward dye molecules. Moreover, the MoS2 membranes possess a molecular weight cutoff comparable to its underlying porous support, implying negligible selectivity of the MoS2 layer. By tuning the nanochannel size through intercalation with amphiphilic molecules and analyzing mass transport in the lamellar structure using Monte Carlo simulations, we reveal that small imperfections in the stacking of MoS2 nanosheets result in the formation of catastrophic microporous defects. These defects lead to a precipitous reduction in the selectivity of the lamellar structure by negating the interlayer sieving mechanism that prevents the passage of large penetrants. Notably, the imperfect stacking of nanosheets in the MoS2 membrane was further verified using 2D X-ray diffraction measurements. We conclude that developing a well-controlled fabrication process, in which the lamellar structure can be carefully tuned, is critical to achieving defect-free and highly selective 2D desalination membranes.
Collapse
Affiliation(s)
- Xinglin Lu
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Uri R Gabinet
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Cody L Ritt
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Xunda Feng
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
| | - Akshay Deshmukh
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Kohsuke Kawabata
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-Ku, Sendai, Miyagi 980-8578, Japan
| | - Masashi Kaneda
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Sara M Hashmi
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115-5000, United States
| | - Chinedum O Osuji
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
- Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| |
Collapse
|
22
|
Lyu X, Xiao A, Shi D, Li Y, Shen Z, Chen EQ, Zheng S, Fan XH, Zhou QF. Liquid crystalline polymers: Discovery, development, and the future. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122740] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Nie ZZ, Zuo B, Liu L, Wang M, Huang S, Chen XM, Yang H. Nanoporous Supramolecular Liquid Crystal Polymeric Material for Specific and Selective Uptake of Melamine. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Zhen-Zhou Nie
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Institute of Advanced Materials, Southeast University, Nanjing 211189, China
| | - Bo Zuo
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Institute of Advanced Materials, Southeast University, Nanjing 211189, China
| | - Li Liu
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Institute of Advanced Materials, Southeast University, Nanjing 211189, China
| | - Meng Wang
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Institute of Advanced Materials, Southeast University, Nanjing 211189, China
| | - Shuai Huang
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Institute of Advanced Materials, Southeast University, Nanjing 211189, China
| | - Xu-Man Chen
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Institute of Advanced Materials, Southeast University, Nanjing 211189, China
| | - Hong Yang
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Institute of Advanced Materials, Southeast University, Nanjing 211189, China
| |
Collapse
|
24
|
Yunusa M, Lahlou A, Sitti M. Thermal Effects on the Crystallization Kinetics, and Interfacial Adhesion of Single-Crystal Phase-Change Gallium. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907453. [PMID: 32009261 DOI: 10.1002/adma.201907453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/26/2019] [Indexed: 06/10/2023]
Abstract
Although substrates play an important role upon crystallization of supercooled liquids, the influences of surface temperature and thermal property have remained elusive. Here, the crystallization of supercooled phase-change gallium (Ga) on substrates with different thermal conductivity is studied. The effect of interfacial temperature on the crystallization kinetics, which dictates thermo-mechanical stresses between the substrate and the crystallized Ga, is investigated. At an elevated surface temperature, close to the melting point of Ga, an extended single-crystal growth of Ga on dielectric substrates due to layering effect and annealing is realized without the application of external fields. Adhesive strength at the interfaces depends on the thermal conductivity and initial surface temperature of the substrates. This insight can be applicable to other liquid metals for industrial applications, and sheds more light on phase-change memory crystallization.
Collapse
Affiliation(s)
- Muhammad Yunusa
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, 70569, Germany
| | - Aliénor Lahlou
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, 70569, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, 70569, Germany
- School of Medicine and School of Engineering, Koç University, 34450, Istanbul, Turkey
| |
Collapse
|
25
|
Wu M, Gong M, Zhou D, Wang R, Chen D. Effect of grafting density on the self-assembly of side-chain discotic liquid crystalline polymers with triphenylene discogens. SOFT MATTER 2020; 16:375-382. [PMID: 31803877 DOI: 10.1039/c9sm02097g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The self-assembly of triphenylene (TP)-based side-chain discotic liquid crystalline polymers (SDLCPs) with different grafting densities was investigated by using the dissipative particle dynamics (DPD) method. We explored the coupling effect between the main chain and the side-chain TP discogens with various length alkyl tails, and how the rigidity of the main chain, grafting density and spacer lengths affect the self-assembled morphologies of SDLCPs. By changing the above factors, we have obtained nine phases. It is deduced that a moderate grafting density, a polymer backbone with sufficient length and alkyl tails with medium length ensure SDLCPs form ordered columnar mesophases. It is worth noting that double columnar phases (Colne-Col and Colh-Col) were obtained with high grafting densities and sufficiently long backbones. All these results provide an effective basis and helpful guidance for the in-depth research of such kinds of fascinating organic semiconducting materials, SDLCPs, from the perspective of grafting density.
Collapse
Affiliation(s)
- Mei Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, State Key Laboratory of Coordination Chemistry and Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210023, China.
| | | | | | | | | |
Collapse
|
26
|
Petukhov AV. Forced to line up for perfect order. NATURE MATERIALS 2019; 18:1151-1152. [PMID: 31645707 DOI: 10.1038/s41563-019-0517-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Andrei V Petukhov
- Van 't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, the Netherlands.
- Laboratory of Physical Chemistry, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
27
|
Hong SH, Shen TZ, Song JK. Dual-field-induced biaxial nematic ordering of two-dimensional nanoparticles and enhancement of interparticle interactions. Phys Rev E 2019; 100:020701. [PMID: 31574645 DOI: 10.1103/physreve.100.020701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Indexed: 11/07/2022]
Abstract
The ordering of 2D biaxial graphene oxide (GO) particles is investigated under the application of orthogonal electric (E) and magnetic fields (B); nematic, antinematic, or biaxial nematic ordering of GO particles is selectively obtained depending on the field conditions. Particularly, a perfect biaxial nematic ordering with the highest birefringence is induced by the dual fields. Unexpectedly, the presence of B enhances the effective polarizability anisotropy, which may attribute to the enhanced steric interparticle interaction. The dual fields induce the microscopic biaxial stacking assembly of GO particles, producing grainy flocs which are not observed in a single-field condition.
Collapse
Affiliation(s)
- Seung-Ho Hong
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Jangan-Gu, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | - Tian-Zi Shen
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Jangan-Gu, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | - Jang-Kun Song
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Jangan-Gu, Suwon, Gyeonggi-do 440-746, Republic of Korea
| |
Collapse
|
28
|
Li X, Mu B, Chen C, Chen J, Liu J, Liu F, Chen D. Significantly Enhanced Thermotropic Liquid Crystalline Columnar Mesophases in Stereoregular Polymethylenes with Discotic Triphenylene Side Groups. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01433] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Xiao Li
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Collaborative Innovation Center of Chemistry for Life Sciences, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Bin Mu
- School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Changlong Chen
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science & Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Jian Chen
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Collaborative Innovation Center of Chemistry for Life Sciences, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jiang Liu
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Collaborative Innovation Center of Chemistry for Life Sciences, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Feng Liu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science & Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Dongzhong Chen
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Collaborative Innovation Center of Chemistry for Life Sciences, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|