1
|
Ye Y, Song R, Xiao H, Xian G, Guo H, Yang H, Chen H, Gao HJ. Visualization of Unconventional Rashba Bands and Vortex Zero Mode in the Topological Superconductor Candidate AuSn 4. NANO LETTERS 2024; 24:13455-13463. [PMID: 39392335 DOI: 10.1021/acs.nanolett.4c04734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The noble metal alloy AuSn4 has recently been identified as an intrinsic surface topological superconductor, promisingly hosting the Majorana zero mode (MZM) for topological quantum computing. However, the atomic visualization of its nontrivial surface states and MZM remains elusive. Here, we report the direct observation of unconventional surface states and vortex zero mode in AuSn4 by scanning tunneling microscopy/spectroscopy. Unlike the trivial metallic bulk states of Sn-terminated surfaces, the Au-terminated surfaces exhibit pronounced surface states near the Fermi level, arising from unconventional Rashba bands characterized by shared helical spin textures. In the superconducting state, the Sn-terminated surfaces exhibit conventional Caroli-de Gennes-Matricon bound states, while the Au-terminated surfaces display sharp zero-energy core states resembling MZMs in a nonquantum-limit condition. This distinction may result from the dominant contribution of unconventional Rashba bands on the Au-terminated surface. Our results provide a new platform for studying termination-dependent topological surface states and MZM in noble-metal-based superconductors.
Collapse
Affiliation(s)
- Yuhan Ye
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, PR China
| | - Rui Song
- Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621908, PR China
| | - Hongqin Xiao
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, PR China
| | - Guoyu Xian
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, PR China
| | - Hui Guo
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, PR China
- Hefei National Laboratory, 230088 Hefei, Anhui, PR China
| | - Haitao Yang
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, PR China
- Hefei National Laboratory, 230088 Hefei, Anhui, PR China
| | - Hui Chen
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, PR China
- Hefei National Laboratory, 230088 Hefei, Anhui, PR China
| | - Hong-Jun Gao
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, PR China
- Hefei National Laboratory, 230088 Hefei, Anhui, PR China
| |
Collapse
|
2
|
Zhang Z, Wu Z, Fang C, Zhang FC, Hu J, Wang Y, Qin S. Topological superconductivity from unconventional band degeneracy with conventional pairing. Nat Commun 2024; 15:7971. [PMID: 39266505 PMCID: PMC11393466 DOI: 10.1038/s41467-024-52156-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024] Open
Abstract
We present a new scheme for Majorana modes in systems with nonsymmorphic-symmetry-protected band degeneracy. We reveal that when the gapless fermionic excitations are encoded with conventional superconductivity and magnetism, which can be intrinsic or induced by proximity effect, topological superconductivity and Majorana modes can be obtained. We illustrate this outcome in a system which respects the space group P4/nmm and features a fourfold-degenerate fermionic mode at (π, π) in the Brillouin zone. We show that in the presence of conventional superconductivity, different types of topological superconductivity, i.e., first-order and second-order topological superconductivity, with coexisting fragile Wannier obstruction in the latter case, can be generated in accordance with the different types of magnetic orders; Majorana modes are shown to exist on the boundary, at the corner and in the vortices. To further demonstrate the effectiveness of our approach, another example related to the space group P4/ncc based on this scheme is also provided. Our study offers insights into constructing topological superconductors based on bulk energy bands and conventional superconductivity and helps to find new material candidates and design new platforms for realizing Majorana modes.
Collapse
Affiliation(s)
- Zhongyi Zhang
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Beijing National Research Center for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhenfei Wu
- Department of Physics, University of Florida, Gainesville, Florida, 32601, USA
| | - Chen Fang
- Beijing National Research Center for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- Kavli Institute for Theoretical Sciences and CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Fu-Chun Zhang
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Kavli Institute for Theoretical Sciences and CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, 100190, Beijing, China
- Collaborative Innovation Center for Advanced Microstructure, Nanjing University, 210093, Nanjing, China
| | - Jiangping Hu
- Beijing National Research Center for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- Kavli Institute for Theoretical Sciences and CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Yuxuan Wang
- Department of Physics, University of Florida, Gainesville, Florida, 32601, USA.
| | - Shengshan Qin
- School of Physics, Beijing Institute of Technology, 100081, Beijing, China.
| |
Collapse
|
3
|
Liu T, Wan CY, Yang H, Zhao Y, Xie B, Zheng W, Yi Z, Guan D, Wang S, Zheng H, Liu C, Fu L, Liu J, Li Y, Jia J. Signatures of hybridization of multiple Majorana zero modes in a vortex. Nature 2024; 633:71-76. [PMID: 39198651 DOI: 10.1038/s41586-024-07857-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024]
Abstract
Majorana zero modes (MZMs) are emergent zero-energy topological quasiparticles that are their own antiparticles1,2. Detected MZMs are spatially separated and electrically neutral, so producing hybridization between MZMs is extremely challenging in superconductors3,4. Here, we report the magnetic field response of vortex bound states in superconducting topological crystalline insulator SnTe (001) films. Several MZMs were predicted to coexist in a single vortex due to magnetic mirror symmetry. Using a scanning tunnelling microscope equipped with a three-axis vector magnet, we found that the zero-bias peak (ZBP) in a single vortex exhibits an apparent anisotropic response even though the magnetic field is weak. The ZBP can robustly extend a long distance of up to approximately 100 nm at the (001) surface when the magnetic field is parallel to the ( 1 1 ¯ 0 )-type mirror plane, otherwise it displays an asymmetric splitting. Our systematic simulations demonstrate that the anisotropic response cannot be reproduced with trivial ZBPs. Although the different MZMs cannot be directly distinguished due to the limited energy resolution in our experiments, our comparisons between experimental measurements and theoretical simulations strongly support the existence and hybridization of symmetry-protected multiple MZMs. Our work demonstrates a way to hybridize different MZMs by controlling the orientation of the magnetic field and expands the types of MZM available for tuning topological states.
Collapse
Affiliation(s)
- Tengteng Liu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Tsung-Dao Lee Institute, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
| | - Chun Yu Wan
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China
| | - Hao Yang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Tsung-Dao Lee Institute, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
| | - Yujun Zhao
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China
| | - Bangjin Xie
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Tsung-Dao Lee Institute, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
| | - Weiyan Zheng
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Tsung-Dao Lee Institute, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaoxia Yi
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Tsung-Dao Lee Institute, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
| | - Dandan Guan
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Tsung-Dao Lee Institute, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Research Center for Quantum Sciences, Shanghai, China
- Hefei National Laboratory, Hefei, China
| | - Shiyong Wang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Tsung-Dao Lee Institute, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Research Center for Quantum Sciences, Shanghai, China
- Hefei National Laboratory, Hefei, China
| | - Hao Zheng
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Tsung-Dao Lee Institute, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Research Center for Quantum Sciences, Shanghai, China
- Hefei National Laboratory, Hefei, China
| | - Canhua Liu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Tsung-Dao Lee Institute, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Research Center for Quantum Sciences, Shanghai, China
- Hefei National Laboratory, Hefei, China
| | - Liang Fu
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Junwei Liu
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China.
| | - Yaoyi Li
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Tsung-Dao Lee Institute, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Research Center for Quantum Sciences, Shanghai, China.
- Hefei National Laboratory, Hefei, China.
| | - Jinfeng Jia
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Tsung-Dao Lee Institute, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Research Center for Quantum Sciences, Shanghai, China.
- Hefei National Laboratory, Hefei, China.
- Department of Physics, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
4
|
Nakamura S, Matsumoto H, Ogawa H, Kobayashi T, Nabeshima F, Maeda A, Shimano R. Picosecond Trajectory of Two-Dimensional Vortex Motion in FeSe_{0.5}Te_{0.5} Visualized by Terahertz Second Harmonic Generation. PHYSICAL REVIEW LETTERS 2024; 133:036004. [PMID: 39094164 DOI: 10.1103/physrevlett.133.036004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/19/2024] [Accepted: 05/06/2024] [Indexed: 08/04/2024]
Abstract
We have investigated the vortex dynamics in a thin film of an iron-based superconductor FeSe_{0.5}Te_{0.5} by observing second-harmonic generation (SHG) in the terahertz frequency range. We visualized the picosecond trajectory of two-dimensional vortex motion in a pinning potential tilted by Meissner shielding current. The SHG perpendicular to the driving field is observed, corresponding to the nonreciprocal nonlinear Hall effect under the current-induced inversion symmetry breaking, whereas the linear Hall effect is negligible. The estimated vortex mass, as light as a bare electron, suggests that the vortex core moves independently from quasiparticles at such a high frequency and large velocity ≈300 km/s.
Collapse
|
5
|
Hu S, Qiao J, Gu G, Xue QK, Zhang D. Vortex entropy and superconducting fluctuations in ultrathin underdoped Bi 2Sr 2CaCu 2O 8+x superconductor. Nat Commun 2024; 15:4818. [PMID: 38844439 PMCID: PMC11156657 DOI: 10.1038/s41467-024-48899-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 05/15/2024] [Indexed: 06/09/2024] Open
Abstract
Vortices in superconductors can help identify emergent phenomena but certain fundamental aspects of vortices, such as their entropy, remain poorly understood. Here, we study the vortex entropy in underdoped Bi2Sr2CaCu2O8+x by measuring both magneto-resistivity and Nernst effect on ultrathin flakes (≤2 unit-cell). We extract the London penetration depth from the magneto-transport measurements on samples with different doping levels. It reveals that the superfluid phase stiffness ρs scales linearly with the superconducting transition temperature Tc, down to the extremely underdoped case. On the same batch of ultrathin flakes, we measure the Nernst effect via on-chip thermometry. Together, we obtain the vortex entropy and find that it decays exponentially with Tc or ρs. We further analyze the Nernst signal above Tc in the framework of Gaussian superconducting fluctuations. The combination of electrical and thermoelectric measurements in the two-dimensional limit provides fresh insight into high temperature superconductivity.
Collapse
Affiliation(s)
- Shuxu Hu
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China
| | - Jiabin Qiao
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China.
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement, School of Physics, Beijing Institute of Technology, Beijing, China.
- Beijing Academy of Quantum Information Sciences, Beijing, China.
| | - Genda Gu
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Qi-Kun Xue
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China.
- Beijing Academy of Quantum Information Sciences, Beijing, China.
- Southern University of Science and Technology, Shenzhen, China.
- Frontier Science Center for Quantum Information, Beijing, China.
| | - Ding Zhang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China.
- Beijing Academy of Quantum Information Sciences, Beijing, China.
- Frontier Science Center for Quantum Information, Beijing, China.
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama, Japan.
| |
Collapse
|
6
|
Hirayama M, Nomoto T, Arita R. Topological band inversion and chiral Majorana mode in hcp thallium. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:275502. [PMID: 38447148 DOI: 10.1088/1361-648x/ad3093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/06/2024] [Indexed: 03/08/2024]
Abstract
The chiral Majorana fermion is an exotic particle that is its own antiparticle. It can arise in a one-dimensional edge of topological materials, and especially that in a topological superconductor can be exploited in non-Abelian quantum computation. While the chiral Majorana mode (CMM) remains elusive, a promising situation is realized when superconductivity coexists with a topologically non-trivial surface state. Here, we perform fully non-empirical calculation for the CMM considering superconductivity and surface relaxation, and show that hexagonal close-packed thallium (Tl) has an ideal electronic state that harbors the CMM. Thekz=0plane of Tl is a mirror plane, realizing a full-gap band inversion corresponding to a topological crystalline insulating phase. Its surface and hinge are stable and easy to make various structures. Another notable feature is that the surface Dirac point is very close to the Fermi level, so that a small Zeeman field can induce a topological transition. Our calculation indicates that Tl will provide a new platform of the Majorana fermion.
Collapse
Affiliation(s)
- Motoaki Hirayama
- Quantum-Phase Electronics Center, University of Tokyo, Tokyo 113-8656, Japan
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Takuya Nomoto
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904, Japan
| | - Ryotaro Arita
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako 351-0198, Japan
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904, Japan
| |
Collapse
|
7
|
Liu A, Zhang X, Liu Z, Li Y, Peng X, Li X, Qin Y, Hu C, Qiu Y, Jiang H, Wang Y, Li Y, Tang J, Liu J, Guo H, Deng T, Peng S, Tian H, Ren TL. The Roadmap of 2D Materials and Devices Toward Chips. NANO-MICRO LETTERS 2024; 16:119. [PMID: 38363512 PMCID: PMC10873265 DOI: 10.1007/s40820-023-01273-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/30/2023] [Indexed: 02/17/2024]
Abstract
Due to the constraints imposed by physical effects and performance degradation, silicon-based chip technology is facing certain limitations in sustaining the advancement of Moore's law. Two-dimensional (2D) materials have emerged as highly promising candidates for the post-Moore era, offering significant potential in domains such as integrated circuits and next-generation computing. Here, in this review, the progress of 2D semiconductors in process engineering and various electronic applications are summarized. A careful introduction of material synthesis, transistor engineering focused on device configuration, dielectric engineering, contact engineering, and material integration are given first. Then 2D transistors for certain electronic applications including digital and analog circuits, heterogeneous integration chips, and sensing circuits are discussed. Moreover, several promising applications (artificial intelligence chips and quantum chips) based on specific mechanism devices are introduced. Finally, the challenges for 2D materials encountered in achieving circuit-level or system-level applications are analyzed, and potential development pathways or roadmaps are further speculated and outlooked.
Collapse
Affiliation(s)
- Anhan Liu
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China
| | - Xiaowei Zhang
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China
| | - Ziyu Liu
- School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yuning Li
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| | - Xueyang Peng
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China
- School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xin Li
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China
| | - Yue Qin
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China
| | - Chen Hu
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China
- School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yanqing Qiu
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China
- School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Han Jiang
- School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yang Wang
- School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yifan Li
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China
| | - Jun Tang
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China
| | - Jun Liu
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China
| | - Hao Guo
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China.
| | - Tao Deng
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China.
| | - Songang Peng
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China.
- IMECAS-HKUST-Joint Laboratory of Microelectronics, Beijing, 100029, People's Republic of China.
| | - He Tian
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China.
| | - Tian-Ling Ren
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China.
| |
Collapse
|
8
|
Li G, Li M, Zhou X, Gao HJ. Toward large-scale, ordered and tunable Majorana-zero-modes lattice on iron-based superconductors. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2023; 87:016501. [PMID: 37963402 DOI: 10.1088/1361-6633/ad0c5c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/14/2023] [Indexed: 11/16/2023]
Abstract
Majorana excitations are the quasiparticle analog of Majorana fermions in solid materials. Typical examples are the Majorana zero modes (MZMs) and the dispersing Majorana modes. When probed by scanning tunneling spectroscopy, the former manifest as a pronounced conductance peak locating precisely at zero-energy, while the latter behaves as constant or slowly varying density of states. The MZMs obey non-abelian statistics and are believed to be building blocks for topological quantum computing, which is highly immune to the environmental noise. Existing MZM platforms include hybrid structures such as topological insulator, semiconducting nanowire or 1D atomic chains on top of a conventional superconductor, and single materials such as the iron-based superconductors (IBSs) and 4Hb-TaS2. Very recently, ordered and tunable MZM lattice has also been realized in IBS LiFeAs, providing a scalable and applicable platform for future topological quantum computation. In this review, we present an overview of the recent local probe studies on MZMs. Classified by the material platforms, we start with the MZMs in the iron-chalcogenide superconductors where FeTe0.55Se0.45and (Li0.84Fe0.16)OHFeSe will be discussed. We then review the Majorana research in the iron-pnictide superconductors as well as other platforms beyond the IBSs. We further review recent works on ordered and tunable MZM lattice, showing that strain is a feasible tool to tune the topological superconductivity. Finally, we give our summary and perspective on future Majorana research.
Collapse
Affiliation(s)
- Geng Li
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Hefei National Laboratory, Hefei 230088, People's Republic of China
| | - Meng Li
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xingtai Zhou
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Hong-Jun Gao
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|
9
|
Qiu G, Yang HY, Hu L, Zhang H, Chen CY, Lyu Y, Eckberg C, Deng P, Krylyuk S, Davydov AV, Zhang R, Wang KL. Emergent ferromagnetism with superconductivity in Fe(Te,Se) van der Waals Josephson junctions. Nat Commun 2023; 14:6691. [PMID: 37872165 PMCID: PMC10593760 DOI: 10.1038/s41467-023-42447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
Ferromagnetism and superconductivity are two key ingredients for topological superconductors, which can serve as building blocks of fault-tolerant quantum computers. Adversely, ferromagnetism and superconductivity are typically also two hostile orderings competing to align spins in different configurations, and thus making the material design and experimental implementation extremely challenging. A single material platform with concurrent ferromagnetism and superconductivity is actively pursued. In this paper, we fabricate van der Waals Josephson junctions made with iron-based superconductor Fe(Te,Se), and report the global device-level transport signatures of interfacial ferromagnetism emerging with superconducting states for the first time. Magnetic hysteresis in the junction resistance is observed only below the superconducting critical temperature, suggesting an inherent correlation between ferromagnetic and superconducting order parameters. The 0-π phase mixing in the Fraunhofer patterns pinpoints the ferromagnetism on the junction interface. More importantly, a stochastic field-free superconducting diode effect was observed in Josephson junction devices, with a significant diode efficiency up to 10%, which unambiguously confirms the spontaneous time-reversal symmetry breaking. Our work demonstrates a new way to search for topological superconductivity in iron-based superconductors for future high Tc fault-tolerant qubit implementations from a device perspective.
Collapse
Affiliation(s)
- Gang Qiu
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, 90095, USA.
| | - Hung-Yu Yang
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Lunhui Hu
- Department of Physics & Astronomy, The University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
| | - Huairuo Zhang
- Materials Science and Engineering Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA
- Theiss Research, Inc, La Jolla, CA, 92037, USA
| | - Chih-Yen Chen
- Department of Electrophysics, National Yang Ming Chiao Tung University (NYCU), Hsinchu, 30010, Taiwan
| | - Yanfeng Lyu
- School of Science, Nanjing University of Posts and Telecommunications, 210023, Nanjing, China
| | - Christopher Eckberg
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, 90095, USA
- Fibertek Inc, Herndon, VA, 20171, USA
- DEVCOM Army Research Laboratory, Adelphi, MD, 20783, USA
- DEVCOM Army Research Laboratory, Playa Vista, Los Angeles, CA, 90094, USA
| | - Peng Deng
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, 90095, USA
- Beijing Academy of Quantum Information Sciences, 100193, Beijing, China
| | - Sergiy Krylyuk
- Materials Science and Engineering Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA
| | - Albert V Davydov
- Materials Science and Engineering Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA
| | - Ruixing Zhang
- Department of Physics & Astronomy, The University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
| | - Kang L Wang
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
10
|
Mandal M, Drucker NC, Siriviboon P, Nguyen T, Boonkird A, Lamichhane TN, Okabe R, Chotrattanapituk A, Li M. Topological Superconductors from a Materials Perspective. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:6184-6200. [PMID: 37637011 PMCID: PMC10448998 DOI: 10.1021/acs.chemmater.3c00713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/12/2023] [Indexed: 08/29/2023]
Abstract
Topological superconductors (TSCs) have garnered significant research and industry attention in the past two decades. By hosting Majorana bound states which can be used as qubits that are robust against local perturbations, TSCs offer a promising platform toward (nonuniversal) topological quantum computation. However, there has been a scarcity of TSC candidates, and the experimental signatures that identify a TSC are often elusive. In this Perspective, after a short review of the TSC basics and theories, we provide an overview of the TSC materials candidates, including natural compounds and synthetic material systems. We further introduce various experimental techniques to probe TSCs, focusing on how a system is identified as a TSC candidate and why a conclusive answer is often challenging to draw. We conclude by calling for new experimental signatures and stronger computational support to accelerate the search for new TSC candidates.
Collapse
Affiliation(s)
- Manasi Mandal
- Quantum
Measurement Group, MIT, Cambridge, Massachusetts 02139, United States
- Department
of Nuclear Science and Engineering, MIT, Cambridge, Massachusetts 02139, United States
| | - Nathan C. Drucker
- Quantum
Measurement Group, MIT, Cambridge, Massachusetts 02139, United States
- School
of Engineering and Applied Sciences, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Phum Siriviboon
- Department
of Physics, MIT, Cambridge, Massachusetts 02139, United States
| | - Thanh Nguyen
- Quantum
Measurement Group, MIT, Cambridge, Massachusetts 02139, United States
- Department
of Nuclear Science and Engineering, MIT, Cambridge, Massachusetts 02139, United States
| | - Artittaya Boonkird
- Quantum
Measurement Group, MIT, Cambridge, Massachusetts 02139, United States
- Department
of Nuclear Science and Engineering, MIT, Cambridge, Massachusetts 02139, United States
| | - Tej Nath Lamichhane
- Quantum
Measurement Group, MIT, Cambridge, Massachusetts 02139, United States
- Department
of Nuclear Science and Engineering, MIT, Cambridge, Massachusetts 02139, United States
| | - Ryotaro Okabe
- Quantum
Measurement Group, MIT, Cambridge, Massachusetts 02139, United States
- Department
of Chemistry, MIT, Cambridge, Massachusetts 02139, United States
| | - Abhijatmedhi Chotrattanapituk
- Quantum
Measurement Group, MIT, Cambridge, Massachusetts 02139, United States
- Department
of Electrical Engineering and Computer Science, MIT, Cambridge, Massachusetts 02139, United States
| | - Mingda Li
- Quantum
Measurement Group, MIT, Cambridge, Massachusetts 02139, United States
- Department
of Nuclear Science and Engineering, MIT, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
11
|
Ding P, Schwemmer T, Lee CH, Wu X, Thomale R. Hyperbolic Fringe Signal for Twin Impurity Quasiparticle Interference. PHYSICAL REVIEW LETTERS 2023; 130:256001. [PMID: 37418713 DOI: 10.1103/physrevlett.130.256001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/31/2022] [Accepted: 05/17/2023] [Indexed: 07/09/2023]
Abstract
We study the quasiparticle interference (QPI) pattern emanating from a pair of adjacent impurities on the surface of a gapped superconductor (SC). We find that hyperbolic fringes (HFs) in the QPI signal can appear due to the loop contribution of the two-impurity scattering, where the locations of the two impurities are the hyperbolic focus points. For a single pocket Fermiology, a HF pattern signals chiral SC order for nonmagnetic impurities and requires magnetic impurities for a nonchiral SC. For a multipocket scenario, a sign-changing order parameter such as an s_{±} wave likewise yields a HF signature. We discuss twin impurity QPI as a new tool to complement the analysis of superconducting order from local spectroscopy.
Collapse
Affiliation(s)
- Peize Ding
- Institute for Theoretical Physics, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
- School of the Gifted Young, University of Science and Technology of China, Hefei 230026, China
- Department of Physics, Columbia University, New York, New York 10027, USA
| | - Tilman Schwemmer
- Institute for Theoretical Physics, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Ching Hua Lee
- Department of Physics, National University of Singapore, Singapore, 117542
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Xianxin Wu
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ronny Thomale
- Institute for Theoretical Physics, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
12
|
Yazdani A, von Oppen F, Halperin BI, Yacoby A. Hunting for Majoranas. Science 2023; 380:eade0850. [PMID: 37347870 DOI: 10.1126/science.ade0850] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 05/22/2023] [Indexed: 06/24/2023]
Abstract
Over the past decade, there have been considerable efforts to observe non-abelian quasiparticles in novel quantum materials and devices. These efforts are motivated by the goals of demonstrating quantum statistics of quasiparticles beyond those of fermions and bosons and of establishing the underlying science for the creation of topologically protected quantum bits. In this Review, we focus on efforts to create topological superconducting phases that host Majorana zero modes. We consider the lessons learned from existing experimental efforts, which are motivating both improvements to present platforms and the exploration of new approaches. Although the experimental detection of non-abelian quasiparticles remains challenging, the knowledge gained thus far and the opportunities ahead offer high potential for discovery and advances in this exciting area of quantum physics.
Collapse
Affiliation(s)
- Ali Yazdani
- Joseph Henry Laboratories and Department of Physics, Princeton University, Princeton, NJ 08540, USA
| | - Felix von Oppen
- Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| | | | - Amir Yacoby
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
13
|
Moore RG, Lu Q, Jeon H, Yao X, Smith T, Pai YY, Chilcote M, Miao H, Okamoto S, Li AP, Oh S, Brahlek M. Monolayer Superconductivity and Tunable Topological Electronic Structure at the Fe(Te,Se)/Bi 2 Te 3 Interface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210940. [PMID: 36921318 DOI: 10.1002/adma.202210940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/07/2023] [Indexed: 06/02/2023]
Abstract
The interface between 2D topological Dirac states and an s-wave superconductor is expected to support Majorana-bound states (MBS) that can be used for quantum computing applications. Realizing these novel states of matter and their applications requires control over superconductivity and spin-orbit coupling to achieve spin-momentum-locked topological interface states (TIS) which are simultaneously superconducting. While signatures of MBS have been observed in the magnetic vortex cores of bulk FeTe0.55 Se0.45 , inhomogeneity and disorder from doping make these signatures unclear and inconsistent between vortices. Here superconductivity is reported in monolayer (ML) FeTe1-y Sey (Fe(Te,Se)) grown on Bi2 Te3 by molecular beam epitaxy (MBE). Spin and angle-resolved photoemission spectroscopy (SARPES) directly resolve the interfacial spin and electronic structure of Fe(Te,Se)/Bi2 Te3 heterostructures. For y = 0.25, the Fe(Te,Se) electronic structure is found to overlap with the Bi2 Te3 TIS and the desired spin-momentum locking is not observed. In contrast, for y = 0.1, reduced inhomogeneity measured by scanning tunneling microscopy (STM) and a smaller Fe(Te,Se) Fermi surface with clear spin-momentum locking in the topological states are found. Hence, it is demonstrated that the Fe(Te,Se)/Bi2 Te3 system is a highly tunable platform for realizing MBS where reduced doping can improve characteristics important for Majorana interrogation and potential applications.
Collapse
Affiliation(s)
- Robert G Moore
- Materials Sciences and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Qiangsheng Lu
- Materials Sciences and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Hoyeon Jeon
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Xiong Yao
- Department of Physics and Astronomy, Rutgers the State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Tyler Smith
- Materials Sciences and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Yun-Yi Pai
- Materials Sciences and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Michael Chilcote
- Materials Sciences and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Hu Miao
- Materials Sciences and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Satoshi Okamoto
- Materials Sciences and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - An-Ping Li
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Seongshik Oh
- Department of Physics and Astronomy, Rutgers the State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Matthew Brahlek
- Materials Sciences and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
14
|
Zhang X, Zangeneh-Nejad F, Chen ZG, Lu MH, Christensen J. A second wave of topological phenomena in photonics and acoustics. Nature 2023; 618:687-697. [PMID: 37344649 DOI: 10.1038/s41586-023-06163-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 05/03/2023] [Indexed: 06/23/2023]
Abstract
Light and sound are the most ubiquitous forms of waves, associated with a variety of phenomena and physical effects such as rainbows and echoes. Light and sound, both categorized as classical waves, have lately been brought into unexpected connections with exotic topological phases of matter. We are currently witnessing the onset of a second wave of active research into this topic. The past decade has been marked by fundamental advances comprising two-dimensional quantum Hall insulators and quantum spin and valley Hall insulators, whose topological properties are characterized using linear band topology. Here, going beyond these conventional topological systems, we focus on the latest frontiers, including non-Hermitian, nonlinear and non-Abelian topology as well as topological defects, for which the characterization of the topological features goes beyond the standard band-topology language. In addition to an overview of the current state of the art, we also survey future research directions for valuable applications.
Collapse
Affiliation(s)
- Xiujuan Zhang
- National Laboratory of Solid State Microstructures and College of Engineering and Applied Sciences, Nanjing University, Nanjing, China
| | | | - Ze-Guo Chen
- School of Materials Science and Intelligent Engineering, Nanjing University, Suzhou, China
| | - Ming-Hui Lu
- National Laboratory of Solid State Microstructures and College of Engineering and Applied Sciences, Nanjing University, Nanjing, China.
| | | |
Collapse
|
15
|
Keren I, Gutfreund A, Noah A, Fridman N, Di Bernardo A, Steinberg H, Anahory Y. Chip-Integrated Vortex Manipulation. NANO LETTERS 2023; 23:4669-4674. [PMID: 36917692 DOI: 10.1021/acs.nanolett.3c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The positions of Abrikosov vortices have long been considered as means to encode classical information. Although it is possible to move individual vortices using local probes, the challenge of scalable on-chip vortex-control remains outstanding, especially when considering the demands of controlling multiple vortices. Realization of vortex logic requires means to shuttle vortices reliably between engineered pinning potentials, while concomitantly keeping all other vortices fixed. We demonstrate such capabilities using Nb loops patterned below a NbSe2 layer. SQUID-on-Tip (SOT) microscopy reveals that the loops localize vortices in designated sites to a precision better than 100 nm; they realize "push" and "pull" operations of vortices as far as 3 μm. Successive application of such operations shuttles a vortex between adjacent loops. Our results may be used as means to integrate vortices in future quantum circuitry. Strikingly, we demonstrate a winding operation, paving the way for future topological quantum computing and simulations.
Collapse
Affiliation(s)
- Itai Keren
- Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel
| | - Alon Gutfreund
- Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel
| | - Avia Noah
- Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel
| | - Nofar Fridman
- Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel
| | - Angelo Di Bernardo
- Department of Physics, University of Konstanz, Universitätstrasse 10, 78457 Konstanz, Germany
| | - Hadar Steinberg
- Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel
- Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yonathan Anahory
- Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel
- Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
16
|
Fan P, Chen H, Zhou X, Cao L, Li G, Li M, Qian G, Xing Y, Shen C, Wang X, Jin C, Gu G, Ding H, Gao HJ. Nanoscale Manipulation of Wrinkle-Pinned Vortices in Iron-Based Superconductors. NANO LETTERS 2023; 23:4541-4547. [PMID: 37162755 DOI: 10.1021/acs.nanolett.3c00982] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The controlled manipulation of Abrikosov vortices is essential for both fundamental science and logical applications. However, achieving nanoscale manipulation of vortices while simultaneously measuring the local density of states within them remains challenging. Here, we demonstrate the manipulation of Abrikosov vortices by moving the pinning center, namely one-dimensional wrinkles, on the terminal layers of Fe(Te,Se) and LiFeAs, by utilizing low-temperature scanning tunneling microscopy/spectroscopy (STM/S). The wrinkles trap the Abrikosov vortices induced by the external magnetic field. In some of the wrinkle-pinned vortices, robust zero-bias conductance peaks are observed. We tailor the wrinkle into short pieces and manipulate the wrinkles by using an STM tip. Strikingly, we demonstrate that the pinned vortices move together with these wrinkles even at high magnetic field up to 6 T. Our results provide a universal and effective routine for manipulating wrinkle-pinned vortices and simultaneously measuring the local density of states on the iron-based superconductor surfaces.
Collapse
Affiliation(s)
- Peng Fan
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Physical Sciences, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Hui Chen
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Physical Sciences, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Hefei National Laboratory, Hefei, Anhui 230088, P. R. China
| | - Xingtai Zhou
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Physical Sciences, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Lu Cao
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Physical Sciences, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Geng Li
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Physical Sciences, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Hefei National Laboratory, Hefei, Anhui 230088, P. R. China
| | - Meng Li
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Physical Sciences, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Guojian Qian
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Physical Sciences, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yuqing Xing
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Physical Sciences, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Chengmin Shen
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Physical Sciences, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xiancheng Wang
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Physical Sciences, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Changqing Jin
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Physical Sciences, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Genda Gu
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Hong Ding
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Hong-Jun Gao
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Physical Sciences, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Hefei National Laboratory, Hefei, Anhui 230088, P. R. China
| |
Collapse
|
17
|
Giwa R, Hosur P. Superconductor Vortex Spectrum Including Fermi Arc States in Time-Reversal Symmetric Weyl Semimetals. PHYSICAL REVIEW LETTERS 2023; 130:156402. [PMID: 37115867 DOI: 10.1103/physrevlett.130.156402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/21/2022] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Using semiclassics to surmount the hurdle of bulk-surface inseparability, we derive the superconductor vortex spectrum in nonmagnetic Weyl semimetals and show that it stems from the Berry phase of orbits made of Fermi arcs on opposite surfaces and bulk chiral modes. Tilting the vortex transmutes it between bosonic, fermionic, and supersymmetric, produces periodic peaks in the density of states that signify novel nonlocal Majorana modes, and yields a thickness-independent spectrum at magic "magic angles." We propose (Nb,Ta)P as candidate materials and tunneling spectroscopy as the ideal experiment.
Collapse
Affiliation(s)
- Rauf Giwa
- University of Houston, Houston, Texas 77204, USA
| | - Pavan Hosur
- University of Houston, Houston, Texas 77204, USA
- Texas Center for Superconductivity at the University of Houston, Houston, Texas 77204, USA
| |
Collapse
|
18
|
Song SY, Hua C, Bell L, Ko W, Fangohr H, Yan J, Halász GB, Dumitrescu EF, Lawrie BJ, Maksymovych P. Nematically Templated Vortex Lattices in Superconducting FeSe. NANO LETTERS 2023; 23:2822-2830. [PMID: 36940166 PMCID: PMC10103702 DOI: 10.1021/acs.nanolett.3c00125] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/16/2023] [Indexed: 06/18/2023]
Abstract
New pathways to controlling the morphology of superconducting vortex lattices─and their subsequent dynamics─are required to guide and scale vortex world-lines into a computing platform. We have found that the nematic twin boundaries align superconducting vortices in the adjacent terraces due to the incommensurate potential between vortices surrounding twin boundaries and those trapped within them. With the varying density and morphology of twin boundaries, the vortex lattice assumes several distinct structural phases, including square, regular, and irregular one-dimensional lattices. Through concomitant analysis of vortex lattice models, we have inferred the characteristic energetics of the twin boundary potential and furthermore predicted the existence of geometric size effects as a function of increasing confinement by the twin boundaries. These findings extend the ideas of directed control over vortex lattices to intrinsic topological defects and their self-organized networks, which have direct implications for the future design and control of strain-based topological quantum computing architectures.
Collapse
Affiliation(s)
- Sang Yong Song
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Chengyun Hua
- Materials
Science and Technology Division, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Luke Bell
- Department
of Physics, Yale University, New Haven, Connecticut 06520, United States
| | - Wonhee Ko
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department
of Physics and Astronomy, University of
Tennessee at Knoxville, Knoxville Tennessee 37996, United States
| | - Hans Fangohr
- Faculty
of Engineering and Physical Sciences, University
of Southampton, Southampton SO17 1BJ, U.K.
- Max Planck
Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Jiaqiang Yan
- Materials
Science and Technology Division, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Gábor B. Halász
- Materials
Science and Technology Division, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Eugene F. Dumitrescu
- Computational
Science and Engineering Division, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Benjamin J. Lawrie
- Materials
Science and Technology Division, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Petro Maksymovych
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
19
|
Ziesen A, Altland A, Egger R, Hassler F. Statistical Majorana Bound State Spectroscopy. PHYSICAL REVIEW LETTERS 2023; 130:106001. [PMID: 36962051 DOI: 10.1103/physrevlett.130.106001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Tunnel spectroscopy data for the detection of Majorana bound states (MBS) is often criticized for its proneness to misinterpretation of genuine MBS with low-lying Andreev bound states. Here, we suggest a protocol removing this ambiguity by extending single shot measurements to sequences performed at varying system parameters. We demonstrate how such sampling, which we argue requires only moderate effort for current experimental platforms, resolves the statistics of Andreev side lobes, thus providing compelling evidence for the presence or absence of a Majorana center peak.
Collapse
Affiliation(s)
- Alexander Ziesen
- JARA Institute for Quantum Information, RWTH Aachen University, 52056 Aachen, Germany
| | - Alexander Altland
- Institut für Theoretische Physik, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany
| | - Reinhold Egger
- Institut für Theoretische Physik, Heinrich-Heine-Universität, D-40225 Düsseldorf, Germany
| | - Fabian Hassler
- JARA Institute for Quantum Information, RWTH Aachen University, 52056 Aachen, Germany
| |
Collapse
|
20
|
Farhang C, Zaki N, Wang J, Gu G, Johnson PD, Xia J. Revealing the Origin of Time-Reversal Symmetry Breaking in Fe-Chalcogenide Superconductor FeTe_{1-x}Se_{x}. PHYSICAL REVIEW LETTERS 2023; 130:046702. [PMID: 36763427 DOI: 10.1103/physrevlett.130.046702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/22/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Recently, evidence has emerged in the topological superconductor Fe-chalcogenide FeTe_{1-x}Se_{x} for time-reversal symmetry breaking (TRSB), the nature of which has strong implications on the Majorana zero modes (MZM) discovered in this system. It remains unclear, however, whether the TRSB resides in the topological surface state (TSS) or in the bulk, and whether it is due to an unconventional TRSB superconducting order parameter or an intertwined order. Here, by performing in superconducting FeTe_{1-x}Se_{x} crystals both surface-magneto-optic-Kerr effect measurements using a Sagnac interferometer and bulk magnetic susceptibility measurements, we pinpoint the TRSB to the TSS, where we also detect a Dirac gap. Further, we observe surface TRSB in nonsuperconducting FeTe_{1-x}Se_{x} of nominally identical composition, indicating that TRSB arises from an intertwined surface ferromagnetic (FM) order. The observed surface FM bears striking similarities to the two-dimensional (2D) FM found in 2D van der Waals crystals, and is highly sensitive to the exact chemical composition, thereby providing a means for optimizing the conditions for Majorana particles that are useful for robust quantum computing.
Collapse
Affiliation(s)
- Camron Farhang
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| | - Nader Zaki
- Condensed Matter Physics and Materials Science Division (CMPMSD), Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Jingyuan Wang
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| | - Genda Gu
- Condensed Matter Physics and Materials Science Division (CMPMSD), Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Peter D Johnson
- Condensed Matter Physics and Materials Science Division (CMPMSD), Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Jing Xia
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| |
Collapse
|
21
|
Hu LH, Wu X, Liu CX, Zhang RX. Competing Vortex Topologies in Iron-Based Superconductors. PHYSICAL REVIEW LETTERS 2022; 129:277001. [PMID: 36638298 DOI: 10.1103/physrevlett.129.277001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
In this Letter, we establish a new theoretical paradigm for vortex Majorana physics in the recently discovered topological iron-based superconductors (TFeSCs). While TFeSCs are widely accepted as an exemplar of topological insulators (TIs) with intrinsic s-wave superconductivity, our theory implies that such a common belief could be oversimplified. Our main finding is that the normal-state bulk Dirac nodes, usually ignored in TI-based vortex Majorana theories for TFeSCs, will play a key role of determining the vortex state topology. In particular, the interplay between TI and Dirac nodal bands will lead to multiple competing topological phases for a superconducting vortex line in TFeSCs, including an unprecedented hybrid topological vortex state that carries both Majorana bound states and a gapless dispersion. Remarkably, this exotic hybrid vortex phase generally exists in the vortex phase diagram for our minimal model for TFeSCs and is directly relevant to TFeSC candidates such as LiFeAs. When the fourfold rotation symmetry is broken by vortex-line tilting or curving, the hybrid vortex gets topologically trivialized and becomes Majorana free, which could explain the puzzle of ubiquitous trivial vortices observed in LiFeAs. The origin of the Majorana signal in other TFeSC candidates such as FeTe_{x}Se_{1-x} and CaKFe_{4}As_{4} is also interpreted within our theory framework. Our theory sheds new light on theoretically understanding and experimentally engineering Majorana physics in high-temperature iron-based systems.
Collapse
Affiliation(s)
- Lun-Hui Hu
- Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996, USA
- Institute for Advanced Materials and Manufacturing, The University of Tennessee, Knoxville, Tennessee 37920, USA
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Xianxin Wu
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
- Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
| | - Chao-Xing Liu
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Rui-Xing Zhang
- Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996, USA
- Institute for Advanced Materials and Manufacturing, The University of Tennessee, Knoxville, Tennessee 37920, USA
- Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
22
|
Hao Y, Zhang G, Liu D, Liu DE. Anomalous universal conductance as a hallmark of non-locality in a Majorana-hosted superconducting island. Nat Commun 2022; 13:6699. [PMID: 36335121 PMCID: PMC9637197 DOI: 10.1038/s41467-022-34437-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2022] Open
Abstract
The non-local feature of topological states of matter is the key for the topological protection of quantum information and enables robust non-local manipulation in quantum information. Here we propose to manifest the non-local feature of a Majorana-hosted superconducting island by measuring the temperature dependence of Coulomb blockade peak conductance in different regimes. In the low-temperature regime, we discover a coherent double Majorana-assisted teleportation (MT) process, where any independent tunneling process always involves two coherent non-local MTs; and we also find an anomalous universal scaling behavior, i.e., a crossover from a \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${[\max (T,eV)]}^{6}$$\end{document}[max(T,eV)]6 power-law to a \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${[\max (T,eV)]}^{3}$$\end{document}[max(T,eV)]3 power-law conductance behavior when energy scale increases — in stark contrast to the usual exponential suppression due to certain local transport. In the high-temperature regime, the conductance is instead proportional to the temperature inverse, indicating a non-monotonic temperature-dependence of the conductance. Both the anomalous power law and non-monotonic temperature-dependence of the conductance can be distinguished from the conductance peak in the traditional Coulomb block, and therefore, together serve as a hallmark for the non-local feature in the Majorana-hosted superconducting island. The ability to detect the non-local nature of topological states in electron transport is highly desirable for topological quantum computation. Hao et al. propose a two-terminal transport scheme to detect the non-locality of a topological superconducting island via anomalous scaling of the tunnelling conductance.
Collapse
Affiliation(s)
- Yiru Hao
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, 100084, Beijing, China.,Frontier Science Center for Quantum Information, 100184, Beijing, China
| | - Gu Zhang
- Beijing Academy of Quantum Information Sciences, 100193, Beijing, China
| | - Donghao Liu
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, 100084, Beijing, China
| | - Dong E Liu
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, 100084, Beijing, China. .,Frontier Science Center for Quantum Information, 100184, Beijing, China. .,Beijing Academy of Quantum Information Sciences, 100193, Beijing, China.
| |
Collapse
|
23
|
Li C, Luo XJ, Chen L, Liu DE, Zhang FC, Liu X. Controllable Majorana vortex states in iron-based superconducting nanowires. Natl Sci Rev 2022; 9:nwac095. [PMID: 36196249 PMCID: PMC9521342 DOI: 10.1093/nsr/nwac095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 11/14/2022] Open
Abstract
To reveal the non-Abelian braiding statistics of Majorana zero modes (MZMs), it is crucial to design a Majorana platform, in which MZMs can be easily manipulated in a broad topological nontrivial parameter space. This is also an essential step to confirm their existence. In this study, we propose an iron-based superconducting nanowire system with Majorana vortex states to satisfy desirable conditions. This system has a radius-induced topological phase transition, giving a lower bound for the nanowire radius. In the topological phase, the iron-based superconducting nanowires have only one pair of MZMs over a wide range of radii, chemical potential and external magnetic fields. The wave function of MZMs has a sizable distribution at the side edge of the nanowires. This property enables the control of the interaction of MZMs in neighboring vortex nanowires and paves the way for Majorana fusion and braiding.
Collapse
Affiliation(s)
- Chuang Li
- School of Physics and Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Wuhan National High Magnetic Field Center and Hubei Key Laboratory of Gravitation and Quantum Physics, Wuhan 430074, China
| | - Xun-Jiang Luo
- School of Physics and Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Wuhan National High Magnetic Field Center and Hubei Key Laboratory of Gravitation and Quantum Physics, Wuhan 430074, China
| | - Li Chen
- School of Physics and Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Wuhan National High Magnetic Field Center and Hubei Key Laboratory of Gravitation and Quantum Physics, Wuhan 430074, China
| | - Dong E Liu
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Fu-Chun Zhang
- Kavli Institute for Theoretical Sciences and CAS Center for Excellence in Topological Quantum Computing, University of Chinese Academy of Sciences, Beijing 100190, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Xin Liu
- School of Physics and Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Wuhan National High Magnetic Field Center and Hubei Key Laboratory of Gravitation and Quantum Physics, Wuhan 430074, China
| |
Collapse
|
24
|
Chiu CK, Wang Z. Yu-Shiba-Rusinov States in a Superconductor with Topological Z_{2} Bands. PHYSICAL REVIEW LETTERS 2022; 128:237001. [PMID: 35749202 DOI: 10.1103/physrevlett.128.237001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
A Yu-Shiba-Rusinov (YSR) state is a localized in-gap state induced by a magnetic impurity in a superconductor. Recent experiments used an STM tip to manipulate the exchange coupling between an Fe adatom and the FeTe_{0.55}Se_{0.45} superconductor possessing a Z_{2} nontrivial band structure with topological surface states. As the tip moves close to the single Fe adatom, the energy of the in-gap state modulates and exhibits a zero-energy crossing followed by an unusual return to zero energy, which cannot be understood by coupling the magnetic impurity to the superconducting topological surface Dirac cone. Here, we numerically and analytically study the YSR states in superconductors with nontrivial Z_{2} bands and show the emergence of the two zero-energy crossings as a function of the exchange coupling between the magnetic impurity and the bulk states. We analyze the role of the topological surface states and compare in-gap states to systems with trivial Z_{2} bands. The spin polarization of the YSR states is further studied for future experimental measurement.
Collapse
Affiliation(s)
- Ching-Kai Chiu
- RIKEN Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS), Wako, Saitama 351-0198, Japan
- Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Ziqiang Wang
- Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, USA
| |
Collapse
|
25
|
Ordered and tunable Majorana-zero-mode lattice in naturally strained LiFeAs. Nature 2022; 606:890-895. [PMID: 35676489 DOI: 10.1038/s41586-022-04744-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/08/2022] [Indexed: 11/08/2022]
Abstract
Majorana zero modes (MZMs) obey non-Abelian statistics and are considered building blocks for constructing topological qubits1,2. Iron-based superconductors with topological bandstructures have emerged as promising hosting materials, because isolated candidate MZMs in the quantum limit have been observed inside the topological vortex cores3-9. However, these materials suffer from issues related to alloying induced disorder, uncontrolled vortex lattices10-13 and a low yield of topological vortices5-8. Here we report the formation of an ordered and tunable MZM lattice in naturally strained stoichiometric LiFeAs by scanning tunnelling microscopy/spectroscopy. We observe biaxial charge density wave (CDW) stripes along the Fe-Fe and As-As directions in the strained regions. The vortices are pinned on the CDW stripes in the As-As direction and form an ordered lattice. We detect that more than 90 per cent of the vortices are topological and possess the characteristics of isolated MZMs at the vortex centre, forming an ordered MZM lattice with the density and the geometry tunable by an external magnetic field. Notably, with decreasing the spacing of neighbouring vortices, the MZMs start to couple with each other. Our findings provide a pathway towards tunable and ordered MZM lattices as a platform for future topological quantum computation.
Collapse
|
26
|
Liu D, Zhang G, Cao Z, Zhang H, Liu DE. Universal Conductance Scaling of Andreev Reflections Using a Dissipative Probe. PHYSICAL REVIEW LETTERS 2022; 128:076802. [PMID: 35244417 DOI: 10.1103/physrevlett.128.076802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The Majorana search is caught up in an extensive debate about the false-positive signals from nontopological Andreev bound states. We introduce a remedy using the dissipative probe to generate electron-boson interaction. We theoretically show that the interaction-induced renormalization leads to significantly distinct universal zero-bias conductance behaviors, i.e., distinct characteristic power law in temperature, for different types of Andreev reflections, that show a sharp contrast to that of a Majorana zero mode. Various specific cases have been studied, including the cases in which two charges involved in an Andreev reflection process maintain or lose coherence, and the cases for multiple Andreev bound states with or without a Majorana. A transparent list of conductance features in each case is provided to help distinguish the observed subgap states in experiments, which also promotes the identification of Majorana zero modes.
Collapse
Affiliation(s)
- Donghao Liu
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Gu Zhang
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - Zhan Cao
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - Hao Zhang
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
- Frontier Science Center for Quantum Information, Beijing 100184, China
| | - Dong E Liu
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
- Frontier Science Center for Quantum Information, Beijing 100184, China
| |
Collapse
|
27
|
Song R, Zhang P, Hao N. Phase-Manipulation-Induced Majorana Mode and Braiding Realization in Iron-Based Superconductor Fe(Te,Se). PHYSICAL REVIEW LETTERS 2022; 128:016402. [PMID: 35061489 DOI: 10.1103/physrevlett.128.016402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
A recent experiment reported the evidence of dispersing one-dimensional Majorana mode trapped by the crystalline domain walls in FeSe_{0.45}Te_{0.55}. Here, we perform the first-principles calculations to show that iron atoms in the domain wall spontaneously form the ferromagnetic order in line with orientation of the wall. The ferromagnetism can impose a π phase difference between the domain-wall-separated surface superconducting regimes under the appropriate width and magnetization of the wall. Accordingly, the topological surface superconducting state of FeSe_{0.45}Te_{0.55} can give rise to one-dimensional Majorana modes trapped by the wall. More interestingly, we further propose a surface junction in the form of FeSe_{0.45}Te_{0.55}-ferromagnet-FeSe_{0.45}Te_{0.55}, which can be adopted to create and fuse the Majorana zero modes through controlling the width or magnetization of the interior ferromagnetic barrier. The braiding and readout of Majorana zero modes can be realized by the designed device. Such surface junction has the potential application in the superconducting topological quantum computation.
Collapse
Affiliation(s)
- Rui Song
- HEDPS, Center for Applied Physics and Technology and School of Physics, Peking University, Beijing 100871, China
- HEDPS, Center for Applied Physics and Technology and School of Engineering, Peking University, Beijing 100871, China
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, and University of Science and Technology of China, Hefei, China
| | - Ping Zhang
- HEDPS, Center for Applied Physics and Technology and School of Engineering, Peking University, Beijing 100871, China
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
- Beijing Computational Science Research Center, Beijing 100084, China
| | - Ning Hao
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, and University of Science and Technology of China, Hefei, China
| |
Collapse
|
28
|
Iron pnictides and chalcogenides: a new paradigm for superconductivity. Nature 2022; 601:35-44. [PMID: 34987212 DOI: 10.1038/s41586-021-04073-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/29/2021] [Indexed: 11/09/2022]
Abstract
Superconductivity is a remarkably widespread phenomenon that is observed in most metals cooled to very low temperatures. The ubiquity of such conventional superconductors, and the wide range of associated critical temperatures, is readily understood in terms of the well-known Bardeen-Cooper-Schrieffer theory. Occasionally, however, unconventional superconductors are found, such as the iron-based materials, which extend and defy this understanding in unexpected ways. In the case of the iron-based superconductors, this includes the different ways in which the presence of multiple atomic orbitals can manifest in unconventional superconductivity, giving rise to a rich landscape of gap structures that share the same dominant pairing mechanism. In addition, these materials have also led to insights into the unusual metallic state governed by the Hund's interaction, the control and mechanisms of electronic nematicity, the impact of magnetic fluctuations and quantum criticality, and the importance of topology in correlated states. Over the fourteen years since their discovery, iron-based superconductors have proven to be a testing ground for the development of novel experimental tools and theoretical approaches, both of which have extensively influenced the wider field of quantum materials.
Collapse
|
29
|
Giwa R, Hosur P. Fermi Arc Criterion for Surface Majorana Modes in Superconducting Time-Reversal Symmetric Weyl Semimetals. PHYSICAL REVIEW LETTERS 2021; 127:187002. [PMID: 34767402 DOI: 10.1103/physrevlett.127.187002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Many clever routes to Majorana fermions have been discovered by exploiting the interplay between superconductivity and band topology in metals and insulators. However, realizations in semimetals remain less explored. We ask, "Under what conditions do superconductor vortices in time-reversal symmetric Weyl semimetals-three-dimensional semimetals with only time-reversal symmetry-trap Majorana fermions on the surface?" If each constant-k_{z} plane, where z is the vortex axis, contains equal numbers of Weyl nodes of each chirality, we predict a generically gapped vortex and derive a topological invariant ν=±1 in terms of the Fermi arc structure that signals the presence or absence of surface Majorana fermions. In contrast, if certain constant-k_{z} planes contain a net chirality of Weyl nodes, the vortex is gapless. We analytically calculate ν within a perturbative scheme and provide numerical support with a lattice model. The criteria survive the presence of other bulk and surface bands and yield phase transitions between trivial, gapless, and topological vortices upon tilting the vortex. We propose Li(Fe_{0.91}Co_{0.09})As and Fe_{1+y}Se_{0.45}Te_{0.55} with broken inversion symmetry as candidates for realizing our proposals.
Collapse
Affiliation(s)
- Rauf Giwa
- Department of Physics, University of Houston, Houston, Texas 77204, USA
| | - Pavan Hosur
- Department of Physics, University of Houston, Houston, Texas 77204, USA
| |
Collapse
|
30
|
Li Y, Zaki N, Garlea VO, Savici AT, Fobes D, Xu Z, Camino F, Petrovic C, Gu G, Johnson PD, Tranquada JM, Zaliznyak IA. Electronic properties of the bulk and surface states of Fe 1+yTe 1-xSe x. NATURE MATERIALS 2021; 20:1221-1227. [PMID: 33888904 DOI: 10.1038/s41563-021-00984-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
The idea of employing non-Abelian statistics for error-free quantum computing ignited interest in reports of topological surface superconductivity and Majorana zero modes (MZMs) in FeTe0.55Se0.45. However, the topological features and superconducting properties are not observed uniformly across the sample surface. The understanding and practical control of these electronic inhomogeneities present a prominent challenge for potential applications. Here, we combine neutron scattering, scanning angle-resolved photoemission spectroscopy, and microprobe composition and resistivity measurements to characterize the electronic state of Fe1+yTe1-xSex. We establish a phase diagram in which the superconductivity is observed only at sufficiently low Fe concentration, in association with distinct antiferromagnetic correlations, whereas the coexisting topological surface state occurs only at sufficiently high Te concentration. We find that FeTe0.55Se0.45 is located very close to both phase boundaries, which explains the inhomogeneity of superconducting and topological states. Our results demonstrate the compositional control required for use of topological MZMs in practical applications.
Collapse
Affiliation(s)
- Yangmu Li
- Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA
| | - Nader Zaki
- Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA
| | - Vasile O Garlea
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Andrei T Savici
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - David Fobes
- Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA
| | - Zhijun Xu
- Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, USA
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA
| | - Fernando Camino
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, USA
| | - Cedomir Petrovic
- Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA
| | - Genda Gu
- Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA
| | - Peter D Johnson
- Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA
| | - John M Tranquada
- Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA
| | - Igor A Zaliznyak
- Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA.
| |
Collapse
|
31
|
Zhang RX, Das Sarma S. Anomalous Floquet Chiral Topological Superconductivity in a Topological Insulator Sandwich Structure. PHYSICAL REVIEW LETTERS 2021; 127:067001. [PMID: 34420352 DOI: 10.1103/physrevlett.127.067001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
We show that Floquet chiral topological superconductivity arises naturally in Josephson junctions made of magnetic topological insulator-superconductor sandwich structures. The Josephson phase modulation associated with an applied bias voltage across the junction drives the system into the anomalous Floquet chiral topological superconductor hosting chiral Majorana edge modes in the quasienergy spectrum, with the bulk Floquet bands carrying zero Chern numbers. The bias voltage acts as a tuning parameter enabling novel Floquet topological quantum phase transitions driving the system into a myriad of exotic Majorana-carrying Floquet topological superconducting phases. Our theory establishes a new paradigm for realizing Floquet chiral topological superconductivity in solid-state systems, which should be experimentally directly accessible.
Collapse
Affiliation(s)
- Rui-Xing Zhang
- Condensed Matter Theory Center and Joint Quantum Institute, Department of Physics, University of Maryland, College Park, Maryland 20742-4111, USA
| | - S Das Sarma
- Condensed Matter Theory Center and Joint Quantum Institute, Department of Physics, University of Maryland, College Park, Maryland 20742-4111, USA
| |
Collapse
|
32
|
Hassan SA, Wu BH, Xu XF, Wang CR, Cao JC. Bending effect on the Majorana bound states in planar Josephson junctions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:385001. [PMID: 34171850 DOI: 10.1088/1361-648x/ac0ea7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
We consider the bending effect on the formation of Majorana bound states (MBSs) in planar Josephson junctions where the normal stripe is tilted in a V shape. Our results show that the MBSs remain robust for moderate bending angles. Beyond some critical angles, the degradation of MBSs can be revealed by its eigenspectrum as well as the Majorana polarization (MP). Our results show that the parameter space of bending angle for robust MBSs can be significantly enlarged by tuning the superconducting phase difference across the Josephson junction. These findings suggest that the interplay of the junction geometry and the device parameters provides richer degree of freedom in designing topological superconducting devices for future applications. The MP analysis is an indispensable tool for characterizing the Majorana states.
Collapse
Affiliation(s)
- S A Hassan
- Department of Applied Physics, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China
| | - B H Wu
- Department of Applied Physics, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China
| | - X F Xu
- Department of Applied Physics, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China
| | - C R Wang
- Department of Applied Physics, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China
| | - J C Cao
- Key Laboratory of Terahertz Solid-State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050, People's Republic of China
| |
Collapse
|
33
|
Kong L, Cao L, Zhu S, Papaj M, Dai G, Li G, Fan P, Liu W, Yang F, Wang X, Du S, Jin C, Fu L, Gao HJ, Ding H. Majorana zero modes in impurity-assisted vortex of LiFeAs superconductor. Nat Commun 2021; 12:4146. [PMID: 34230479 PMCID: PMC8260634 DOI: 10.1038/s41467-021-24372-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 06/10/2021] [Indexed: 11/29/2022] Open
Abstract
The iron-based superconductor is emerging as a promising platform for Majorana zero mode, which can be used to implement topological quantum computation. One of the most significant advances of this platform is the appearance of large vortex level spacing that strongly protects Majorana zero mode from other low-lying quasiparticles. Despite the advantages in the context of physics research, the inhomogeneity of various aspects hampers the practical construction of topological qubits in the compounds studied so far. Here we show that the stoichiometric superconductor LiFeAs is a good candidate to overcome this obstacle. By using scanning tunneling microscopy, we discover that the Majorana zero modes, which are absent on the natural clean surface, can appear in vortices influenced by native impurities. Our detailed analysis reveals a new mechanism for the emergence of those Majorana zero modes, i.e. native tuning of bulk Dirac fermions. The discovery of Majorana zero modes in this homogeneous material, with a promise of tunability, offers an ideal material platform for manipulating and braiding Majorana zero modes, pushing one step forward towards topological quantum computation. Despite the discovery of Majorana zero modes (MZM) in iron-based superconductors, sample inhomogeneity may destroy MZMs during braiding. Here, authors observe MZM in impurity-assisted vortices due to tuning of the bulk Dirac fermions in a homogeneous superconductor LiFeAs.
Collapse
Affiliation(s)
- Lingyuan Kong
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Lu Cao
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shiyu Zhu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Michał Papaj
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Guangyang Dai
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Geng Li
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Peng Fan
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenyao Liu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fazhi Yang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiancheng Wang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Shixuan Du
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, China
| | - Changqing Jin
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong, China
| | - Liang Fu
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Hong-Jun Gao
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China. .,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China. .,CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, China.
| | - Hong Ding
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China. .,CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, China. .,Songshan Lake Materials Laboratory, Dongguan, Guangdong, China.
| |
Collapse
|
34
|
He JJ, Tanaka Y, Nagaosa N. Optical Responses of Chiral Majorana Edge States in Two-Dimensional Topological Superconductors. PHYSICAL REVIEW LETTERS 2021; 126:237002. [PMID: 34170187 DOI: 10.1103/physrevlett.126.237002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/15/2021] [Indexed: 06/13/2023]
Abstract
Majorana fermions exist on the boundaries of two-dimensional topological superconductors (TSCs) as charge-neutral quasiparticles. The neutrality makes the detection of such states challenging from both experimental and theoretical points of view. Current methods largely rely on transport measurements in which Majorana fermions manifest themselves by inducing electron-pair tunneling at the lead-contacting point. Here we show that chiral Majorana fermions in TSCs generate enhanced local optical response. The features of local optical conductivity distinguish them not only from trivial superconductors or insulators but also from normal fermion edge states such as those in quantum Hall systems. Our results provide a new applicable method to detect dispersive Majorana fermions and may lead to a novel direction of this research field.
Collapse
Affiliation(s)
- James Jun He
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
| | - Yukio Tanaka
- Department of Applied Physics, Nagoya University, Nagoya 464-8603, Japan
| | - Naoto Nagaosa
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
- Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
35
|
Esat T, Borgens P, Yang X, Coenen P, Cherepanov V, Raccanelli A, Tautz FS, Temirov R. A millikelvin scanning tunneling microscope in ultra-high vacuum with adiabatic demagnetization refrigeration. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:063701. [PMID: 34243501 DOI: 10.1063/5.0050532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/23/2021] [Indexed: 06/13/2023]
Abstract
We present the design and performance of an ultra-high vacuum scanning tunneling microscope (STM) that uses adiabatic demagnetization of electron magnetic moments for controlling its operating temperature ranging between 30 mK and 1 K with an accuracy of up to 7 μK rms. At the same time, high magnetic fields of up to 8 T can be applied perpendicular to the sample surface. The time available for STM experiments at 50 mK is longer than 20 h, at 100 mK about 40 h. The single-shot adiabatic demagnetization refrigerator can be regenerated automatically within 7 h while keeping the STM temperature below 5 K. The whole setup is located in a vibrationally isolated, electromagnetically shielded laboratory with no mechanical pumping lines penetrating its isolation walls. The 1 K pot of the adiabatic demagnetization refrigeration cryostat can be operated silently for more than 20 days in a single-shot mode using a custom-built high-capacity cryopump. A high degree of vibrational decoupling together with the use of a specially designed minimalistic STM head provides outstanding mechanical stability, demonstrated by the tunneling current noise, STM imaging, and scanning tunneling spectroscopy measurements, all performed on an atomically clean Al(100) surface.
Collapse
Affiliation(s)
- Taner Esat
- Peter Grünberg Institute (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Peter Borgens
- Peter Grünberg Institute (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Xiaosheng Yang
- Peter Grünberg Institute (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Peter Coenen
- Peter Grünberg Institute (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Vasily Cherepanov
- Peter Grünberg Institute (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| | | | - F Stefan Tautz
- Peter Grünberg Institute (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Ruslan Temirov
- Peter Grünberg Institute (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
36
|
Lodge MS, Yang SA, Mukherjee S, Weber B. Atomically Thin Quantum Spin Hall Insulators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008029. [PMID: 33893669 DOI: 10.1002/adma.202008029] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Atomically thin topological materials are attracting growing attention for their potential to radically transform classical and quantum electronic device concepts. Among them is the quantum spin Hall (QSH) insulator-a 2D state of matter that arises from interplay of topological band inversion and strong spin-orbit coupling, with large tunable bulk bandgaps up to 800 meV and gapless, 1D edge states. Reviewing recent advances in materials science and engineering alongside theoretical description, the QSH materials library is surveyed with focus on the prospects for QSH-based device applications. In particular, theoretical predictions of nontrivial superconducting pairing in the QSH state toward Majorana-based topological quantum computing are discussed, which are the next frontier in QSH materials research.
Collapse
Affiliation(s)
- Michael S Lodge
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Shengyuan A Yang
- Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Shantanu Mukherjee
- Department of Physics, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
- Quantum Centres in Diamond and Emergent Materials (QCenDiem)-Group, IIT Madras, Chennai, Tamil Nadu, 600036, India
- Computational Materials Science Group, IIT Madras, Chennai, Tamil Nadu, 600036, India
| | - Bent Weber
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
- Australian Research Council (ARC) Centre of Excellence in Future Low-Energy Electronics Techonologies (FLEET), School of Physics, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
37
|
Interaction-induced topological phase transition and Majorana edge states in low-dimensional orbital-selective Mott insulators. Nat Commun 2021; 12:2955. [PMID: 34011947 PMCID: PMC8134496 DOI: 10.1038/s41467-021-23261-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/21/2021] [Indexed: 11/08/2022] Open
Abstract
Topological phases of matter are among the most intriguing research directions in Condensed Matter Physics. It is known that superconductivity induced on a topological insulator's surface can lead to exotic Majorana modes, the main ingredient of many proposed quantum computation schemes. In this context, the iron-based high critical temperature superconductors are a promising platform to host such an exotic phenomenon in real condensed-matter compounds. The Coulomb interaction is commonly believed to be vital for the magnetic and superconducting properties of these systems. This work bridges these two perspectives and shows that the Coulomb interaction can also drive a canonical superconductor with orbital degrees of freedom into the topological state. Namely, we show that above a critical value of the Hubbard interaction the system simultaneously develops spiral spin order, a highly unusual triplet amplitude in superconductivity, and, remarkably, Majorana fermions at the edges of the system.
Collapse
|
38
|
de Leon NP, Itoh KM, Kim D, Mehta KK, Northup TE, Paik H, Palmer BS, Samarth N, Sangtawesin S, Steuerman DW. Materials challenges and opportunities for quantum computing hardware. Science 2021; 372:372/6539/eabb2823. [PMID: 33859004 DOI: 10.1126/science.abb2823] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Quantum computing hardware technologies have advanced during the past two decades, with the goal of building systems that can solve problems that are intractable on classical computers. The ability to realize large-scale systems depends on major advances in materials science, materials engineering, and new fabrication techniques. We identify key materials challenges that currently limit progress in five quantum computing hardware platforms, propose how to tackle these problems, and discuss some new areas for exploration. Addressing these materials challenges will require scientists and engineers to work together to create new, interdisciplinary approaches beyond the current boundaries of the quantum computing field.
Collapse
Affiliation(s)
- Nathalie P de Leon
- Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Kohei M Itoh
- School of Fundamental Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Dohun Kim
- Department of Physics and Astronomy and Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Karan K Mehta
- Department of Physics, Institute for Quantum Electronics, ETH Zürich, 8092 Zürich, Switzerland
| | - Tracy E Northup
- Institut für Experimentalphysik, Universität Innsbruck, 6020 Innsbruck, Austria
| | - Hanhee Paik
- IBM Quantum, IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, USA.
| | - B S Palmer
- Laboratory for Physical Sciences, University of Maryland, College Park, MD 20740, USA.,Quantum Materials Center, University of Maryland, College Park, MD 20742, USA
| | - N Samarth
- Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sorawis Sangtawesin
- School of Physics and Center of Excellence in Advanced Functional Materials, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - D W Steuerman
- Kavli Foundation, 5715 Mesmer Avenue, Los Angeles, CA 90230, USA
| |
Collapse
|
39
|
Zhang RX, Das Sarma S. Intrinsic Time-Reversal-Invariant Topological Superconductivity in Thin Films of Iron-Based Superconductors. PHYSICAL REVIEW LETTERS 2021; 126:137001. [PMID: 33861104 DOI: 10.1103/physrevlett.126.137001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
We establish quasi-two-dimensional thin films of iron-based superconductors (FeSCs) as a new high-temperature platform for hosting intrinsic time-reversal-invariant helical topological superconductivity (TSC). Based on the combination of Dirac surface state and bulk extended s-wave pairing, our theory should be directly applicable to a large class of experimentally established FeSCs, opening a new TSC paradigm. In particular, an applied electric field serves as a "topological switch" for helical Majorana edge modes in FeSC thin films, allowing for an experimentally feasible design of gate-controlled helical Majorana circuits. Applying an in-plane magnetic field drives the helical TSC phase into a higher-order TSC carrying corner-localized Majorana zero modes. Our proposal should enable the experimental realization of helical Majorana fermions.
Collapse
Affiliation(s)
- Rui-Xing Zhang
- Condensed Matter Theory Center and Joint Quantum Institute, Department of Physics, University of Maryland, College Park, Maryland 20742-4111, USA
| | - S Das Sarma
- Condensed Matter Theory Center and Joint Quantum Institute, Department of Physics, University of Maryland, College Park, Maryland 20742-4111, USA
| |
Collapse
|
40
|
Zhang T, Bao W, Chen C, Li D, Lu Z, Hu Y, Yang W, Zhao D, Yan Y, Dong X, Wang QH, Zhang T, Feng D. Observation of Distinct Spatial Distributions of the Zero and Nonzero Energy Vortex Modes in (Li_{0.84}Fe_{0.16})OHFeSe. PHYSICAL REVIEW LETTERS 2021; 126:127001. [PMID: 33834795 DOI: 10.1103/physrevlett.126.127001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/18/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
The energy and spatial distributions of vortex bound state in superconductors carry important information about superconducting pairing and the electronic structure. Although discrete vortex states, and sometimes a zero energy mode, had been observed in several iron-based superconductors, their spatial properties are rarely explored. In this study, we used low-temperature scanning tunneling microscopy to measure the vortex state of (Li,Fe)OHFeSe with high spatial resolution. We found that the nonzero energy states display clear spatial oscillations with a period corresponding to bulk Fermi wavelength; while in contrast, the zero energy mode does not show such oscillation, which suggests its distinct electronic origin. Furthermore, the oscillations of positive and negative energy states near E_{F} are found to be clearly out of phase. Based on a two-band model calculation, we show that our observation is more consistent with an s_{++} wave pairing in the bulk of (Li, Fe)OHFeSe, and superconducting topological states on the surface.
Collapse
Affiliation(s)
- Tianzhen Zhang
- State Key Laboratory of Surface Physics, Department of Physics, and Advanced Materials Laboratory, Fudan University, Shanghai 200438, China
| | - Weicheng Bao
- National Laboratory of Solid State Microstructures & School of Physics, Nanjing University, Nanjing 210093, China
- Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
| | - Chen Chen
- State Key Laboratory of Surface Physics, Department of Physics, and Advanced Materials Laboratory, Fudan University, Shanghai 200438, China
| | - Dong Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zouyuwei Lu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yining Hu
- State Key Laboratory of Surface Physics, Department of Physics, and Advanced Materials Laboratory, Fudan University, Shanghai 200438, China
| | - Wentao Yang
- State Key Laboratory of Surface Physics, Department of Physics, and Advanced Materials Laboratory, Fudan University, Shanghai 200438, China
| | - Dongming Zhao
- State Key Laboratory of Surface Physics, Department of Physics, and Advanced Materials Laboratory, Fudan University, Shanghai 200438, China
| | - Yajun Yan
- Hefei National Laboratory for Physical Science at Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Xiaoli Dong
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Qiang-Hua Wang
- National Laboratory of Solid State Microstructures & School of Physics, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Tong Zhang
- State Key Laboratory of Surface Physics, Department of Physics, and Advanced Materials Laboratory, Fudan University, Shanghai 200438, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Donglai Feng
- Hefei National Laboratory for Physical Science at Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| |
Collapse
|
41
|
Udagawa M, Takayoshi S, Oka T. Scanning Tunneling Microscopy as a Single Majorana Detector of Kitaev's Chiral Spin Liquid. PHYSICAL REVIEW LETTERS 2021; 126:127201. [PMID: 33834823 DOI: 10.1103/physrevlett.126.127201] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
We propose a local detection scheme for the Majorana zero mode (MZM) carried by a vison in Kitaev's chiral spin liquid (CSL) using scanning tunneling microscopy (STM). The STM introduces a single Majorana into the system through hole-charge injection and the Majorana interacts with the MZM to form a stable composite object. We derive the exact analytical expression of single-hole Green's function in the Mott insulating limit of Kitaev's model, and show that the differential conductance has split peaks, as a consequence of resonant tunneling through the vison-hole composite. The peak splitting turns out comparable to the Majorana gap in CSL, well within the reach of experimental observation.
Collapse
Affiliation(s)
- Masafumi Udagawa
- Department of Physics, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan
- Max-Planck-Institut für Physik komplexer Systeme, 01187 Dresden, Germany
| | - Shintaro Takayoshi
- Max-Planck-Institut für Physik komplexer Systeme, 01187 Dresden, Germany
- Department of Physics, Konan University, Kobe, 658-8501, Japan
| | - Takashi Oka
- Max-Planck-Institut für Physik komplexer Systeme, 01187 Dresden, Germany
- Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan
- Trans-scale Quantum Science Institute, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
42
|
Jiang D, Pan Y, Wang S, Lin Y, Holland CM, Kirtley JR, Chen X, Zhao J, Chen L, Yin S, Wang Y. Observation of robust edge superconductivity in Fe(Se,Te) under strong magnetic perturbation. Sci Bull (Beijing) 2021; 66:425-432. [PMID: 36654179 DOI: 10.1016/j.scib.2020.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/04/2020] [Accepted: 09/29/2020] [Indexed: 01/20/2023]
Abstract
The iron-chalcogenide high temperature superconductor Fe(Se,Te) (FST) has been reported to exhibit complex magnetic ordering and nontrivial band topology which may lead to novel superconducting phenomena. However, the recent studies have so far been largely concentrated on its band and spin structures while its mesoscopic electronic and magnetic response, crucial for future device applications, has not been explored experimentally. Here, we used scanning superconducting quantum interference device microscopy for its sensitivity to both local diamagnetic susceptibility and current distribution in order to image the superfluid density and supercurrent in FST. We found that in FST with 10% interstitial Fe, whose magnetic structure was heavily disrupted, bulk superconductivity was significantly suppressed whereas edge still preserved strong superconducting diamagnetism. The edge dominantly carried supercurrent despite of a very long magnetic penetration depth. The temperature dependences of the superfluid density and supercurrent distribution were distinctively different between the edge and the bulk. Our Heisenberg modeling showed that magnetic dopants stabilize anti-ferromagnetic spin correlation along the edge, which may contribute towards its robust superconductivity. Our observations hold implication for FST as potential platforms for topological quantum computation and superconducting spintronics.
Collapse
Affiliation(s)
- Da Jiang
- Shanghai Institute of Microsystem and Information Technology, Shanghai 200050, China.
| | - Yinping Pan
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Shiyuan Wang
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Yishi Lin
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Connor M Holland
- Department of Physics, Stanford University, Stanford, CA 94305, USA
| | - John R Kirtley
- Department of Physics, Stanford University, Stanford, CA 94305, USA
| | - Xianhui Chen
- Department of Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jun Zhao
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Lei Chen
- Shanghai Institute of Microsystem and Information Technology, Shanghai 200050, China
| | - Shaoyu Yin
- Institute for Theoretical Physics and Cosmology, Zhejiang University of Technology, Hangzhou 310023, China; State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China.
| | - Yihua Wang
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China; Shanghai Research Center for Quantum Sciences, Shanghai 201315, China.
| |
Collapse
|
43
|
Fan P, Yang F, Qian G, Chen H, Zhang YY, Li G, Huang Z, Xing Y, Kong L, Liu W, Jiang K, Shen C, Du S, Schneeloch J, Zhong R, Gu G, Wang Z, Ding H, Gao HJ. Observation of magnetic adatom-induced Majorana vortex and its hybridization with field-induced Majorana vortex in an iron-based superconductor. Nat Commun 2021; 12:1348. [PMID: 33649307 PMCID: PMC7921435 DOI: 10.1038/s41467-021-21646-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 02/05/2021] [Indexed: 11/09/2022] Open
Abstract
Braiding Majorana zero modes is essential for fault-tolerant topological quantum computing. Iron-based superconductors with nontrivial band topology have recently emerged as a surprisingly promising platform for creating distinct Majorana zero modes in magnetic vortices in a single material and at relatively high temperatures. The magnetic field-induced Abrikosov vortex lattice makes it difficult to braid a set of Majorana zero modes or to study the coupling of a Majorana doublet due to overlapping wave functions. Here we report the observation of the proposed quantum anomalous vortex with integer quantized vortex core states and the Majorana zero mode induced by magnetic Fe adatoms deposited on the surface. We observe its hybridization with a nearby field-induced Majorana vortex in iron-based superconductor FeTe0.55Se0.45. We also observe vortex-free Yu-Shiba-Rusinov bound states at the Fe adatoms with a weaker coupling to the substrate, and discover a reversible transition between Yu-Shiba-Rusinov states and Majorana zero mode by manipulating the exchange coupling strength. The dual origin of the Majorana zero modes, from magnetic adatoms and external magnetic field, provides a new single-material platform for studying their interactions and braiding in superconductors bearing topological band structures.
Collapse
Affiliation(s)
- Peng Fan
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fazhi Yang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Guojian Qian
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hui Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, China
| | - Yu-Yang Zhang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, China
| | - Geng Li
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, China
| | - Zihao Huang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuqing Xing
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lingyuan Kong
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenyao Liu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Kun Jiang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
- Department of Physics, Boston College, Boston, MA, USA
| | - Chengmin Shen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, China
| | - Shixuan Du
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, China
| | - John Schneeloch
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Ruidan Zhong
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Genda Gu
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Ziqiang Wang
- Department of Physics, Boston College, Boston, MA, USA.
| | - Hong Ding
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China.
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, China.
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, China.
| | - Hong-Jun Gao
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, China.
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
44
|
Papaj M, Fu L. Creating Majorana modes from segmented Fermi surface. Nat Commun 2021; 12:577. [PMID: 33495471 PMCID: PMC7835351 DOI: 10.1038/s41467-020-20690-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/15/2020] [Indexed: 11/09/2022] Open
Abstract
Majorana bound states provide a fertile ground for both investigation of fundamental phenomena as well as for applications in quantum computation. However, despite enormous experimental and theoretical efforts, the currently available Majorana platforms suffer from a multitude of issues that prevent full realization of their potential. Therefore, improved Majorana systems are still highly sought after. Here we present a platform for creating Majorana bound states from 2D gapless superconducting state in spin-helical systems under the in-plane magnetic or Zeeman field. Topological 1D channels are formed by quantum confinement of quasiparticles via Andreev reflection from the surrounding fully gapped superconducting region. Our proposal can be realized using narrow strips of magnetic insulators on top of proximitized 3D topological insulators. This setup has key advantages that include: small required fields, no necessity of fine-tuning of chemical potential, removal of the low-energy detrimental states, and large attainable topological gap.
Collapse
Affiliation(s)
- Michał Papaj
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Liang Fu
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
45
|
Li CZ, Wang AQ, Li C, Zheng WZ, Brinkman A, Yu DP, Liao ZM. Topological Transition of Superconductivity in Dirac Semimetal Nanowire Josephson Junctions. PHYSICAL REVIEW LETTERS 2021; 126:027001. [PMID: 33512215 DOI: 10.1103/physrevlett.126.027001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
We report the topological transition by gate control in a Cd_{3}As_{2} Dirac semimetal nanowire Josephson junction with diameter of about 64 nm. In the electron branch, the quantum confinement effect enforces the surface band into a series of gapped subbands and thus nontopological states. In the hole branch, however, because the hole mean free path is smaller than the nanowire perimeter, the quantum confinement effect is inoperative and the topological property maintained. The superconductivity is enhanced by gate tuning from electron to hole conduction, manifested by a larger critical supercurrent and a larger critical magnetic field, which is attributed to the topological transition from gapped surface subbands to a gapless surface band. The gate-controlled topological transition of superconductivity should be valuable for manipulation of Majorana zero modes, providing a platform for future compatible and scalable design of topological qubits.
Collapse
Affiliation(s)
- Cai-Zhen Li
- Shenzhen Institute for Quantum Science and Engineering, and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - An-Qi Wang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Chuan Li
- MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
| | - Wen-Zhuang Zheng
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Alexander Brinkman
- MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
| | - Da-Peng Yu
- Shenzhen Institute for Quantum Science and Engineering, and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhi-Min Liao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Beijing Key Laboratory of Quantum Devices, Peking University, Beijing 100871, China
| |
Collapse
|
46
|
Wu BH, Hassan SA, Gong WJ, Xu XF, Wang CR, Cao JC. Theoretical investigation of the scanning tunneling microscopy of Majorana bound states in topological superconductor vortices. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:025301. [PMID: 33055367 DOI: 10.1088/1361-648x/abb546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Scanning tunneling microscopy (STM) is an indispensable tool in detecting Majorana bound states (MBSs) in vortices of topological superconductors. By reducing the computational complexity via non-uniform grids, we systematically study the tunnel coupling as well as the temperature dependence of the differential conductance of MBSs in two dimensional devices. Numerical results show that the conductance peak approaches the quantized value 2e 2/h in strong coupling limit at low temperatures which are characteristic features of MBSs. More interestingly, a conductance local minimum in the spatially scanning is observed when the STM tip is placed at the vortex center. The dip structure can be enhanced with increased temperature or enlarged vortex size. We ascribe this observation to the sensitivity of the Andreev reflection processes of carriers at the vortex center where the thermal energy could be comparable to the vanishing pair potential. We also investigate the STM of two-vortex systems where the hybridization of the vortices can lead to oscillatory behavior of the state energy. With small inter-vortex distances, the original MBSs in vortices can merge into topologically trivial states and the conductance peak can be significantly suppressed.
Collapse
Affiliation(s)
- B H Wu
- Department of Applied Physics, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China
| | - S A Hassan
- Department of Applied Physics, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China
| | - W J Gong
- College of Sciences, Northeastern University, NO. 3-11, Wenhua Road, Shenyang 110004, People's Republic of China
| | - X F Xu
- Department of Applied Physics, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China
| | - C R Wang
- Department of Applied Physics, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China
| | - J C Cao
- Key Laboratory of Terahertz Solid-State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050, People's Republic of China
| |
Collapse
|
47
|
Chatzopoulos D, Cho D, Bastiaans KM, Steffensen GO, Bouwmeester D, Akbari A, Gu G, Paaske J, Andersen BM, Allan MP. Spatially dispersing Yu-Shiba-Rusinov states in the unconventional superconductor FeTe 0.55Se 0.45. Nat Commun 2021; 12:298. [PMID: 33436594 PMCID: PMC7804303 DOI: 10.1038/s41467-020-20529-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/07/2020] [Indexed: 01/29/2023] Open
Abstract
By using scanning tunneling microscopy (STM) we find and characterize dispersive, energy-symmetric in-gap states in the iron-based superconductor FeTe0.55Se0.45, a material that exhibits signatures of topological superconductivity, and Majorana bound states at vortex cores or at impurity locations. We use a superconducting STM tip for enhanced energy resolution, which enables us to show that impurity states can be tuned through the Fermi level with varying tip-sample distance. We find that the impurity state is of the Yu-Shiba-Rusinov (YSR) type, and argue that the energy shift is caused by the low superfluid density in FeTe0.55Se0.45, which allows the electric field of the tip to slightly penetrate the sample. We model the newly introduced tip-gating scenario within the single-impurity Anderson model and find good agreement to the experimental data.
Collapse
Affiliation(s)
- Damianos Chatzopoulos
- grid.5132.50000 0001 2312 1970Leiden Institute of Physics, Leiden University, Niels Bohrweg 2, Leiden, CA 2333 The Netherlands
| | - Doohee Cho
- grid.5132.50000 0001 2312 1970Leiden Institute of Physics, Leiden University, Niels Bohrweg 2, Leiden, CA 2333 The Netherlands ,grid.15444.300000 0004 0470 5454Department of Physics, Yonsei University, Seoul, 03722 Republic of Korea
| | - Koen M. Bastiaans
- grid.5132.50000 0001 2312 1970Leiden Institute of Physics, Leiden University, Niels Bohrweg 2, Leiden, CA 2333 The Netherlands
| | - Gorm O. Steffensen
- grid.5254.60000 0001 0674 042XCenter for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, Copenhagen Ø, 2100 Denmark
| | - Damian Bouwmeester
- grid.5132.50000 0001 2312 1970Leiden Institute of Physics, Leiden University, Niels Bohrweg 2, Leiden, CA 2333 The Netherlands ,grid.5292.c0000 0001 2097 4740Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, Delft, CJ 2628 Netherlands
| | - Alireza Akbari
- grid.419507.e0000 0004 0491 351XMax Planck Institute for the Chemical Physics of Solids, Dresden, D-01187 Germany ,grid.49100.3c0000 0001 0742 4007Max Planck POSTECH Center for Complex Phase Materials, and Department of Physics, POSTECH, Pohang, Gyeongbuk 790-784 Korea
| | - Genda Gu
- grid.202665.50000 0001 2188 4229Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973 USA
| | - Jens Paaske
- grid.5254.60000 0001 0674 042XCenter for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, Copenhagen Ø, 2100 Denmark
| | - Brian M. Andersen
- grid.5254.60000 0001 0674 042XCenter for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, Copenhagen Ø, 2100 Denmark
| | - Milan P. Allan
- grid.5132.50000 0001 2312 1970Leiden Institute of Physics, Leiden University, Niels Bohrweg 2, Leiden, CA 2333 The Netherlands
| |
Collapse
|
48
|
Ortiz BR, Teicher SML, Hu Y, Zuo JL, Sarte PM, Schueller EC, Abeykoon AMM, Krogstad MJ, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J, Wilson SD. CsV_{3}Sb_{5}: A Z_{2} Topological Kagome Metal with a Superconducting Ground State. PHYSICAL REVIEW LETTERS 2020; 125:247002. [PMID: 33412053 DOI: 10.1103/physrevlett.125.247002] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/04/2020] [Indexed: 05/12/2023]
Abstract
Recently discovered alongside its sister compounds KV_{3}Sb_{5} and RbV_{3}Sb_{5}, CsV_{3}Sb_{5} crystallizes with an ideal kagome network of vanadium and antimonene layers separated by alkali metal ions. This work presents the electronic properties of CsV_{3}Sb_{5}, demonstrating bulk superconductivity in single crystals with a T_{c}=2.5 K. The normal state electronic structure is studied via angle-resolved photoemission spectroscopy and density-functional theory, which categorize CsV_{3}Sb_{5} as a Z_{2} topological metal. Multiple protected Dirac crossings are predicted in close proximity to the Fermi level (E_{F}), and signatures of normal state correlation effects are also suggested by a high-temperature charge density wavelike instability. The implications for the formation of unconventional superconductivity in this material are discussed.
Collapse
Affiliation(s)
- Brenden R Ortiz
- Materials Department and California Nanosystems Institute, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Samuel M L Teicher
- Materials Department and California Nanosystems Institute, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Yong Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Physics and CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Julia L Zuo
- Materials Department and California Nanosystems Institute, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Paul M Sarte
- Materials Department and California Nanosystems Institute, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Emily C Schueller
- Materials Department and California Nanosystems Institute, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - A M Milinda Abeykoon
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Matthew J Krogstad
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439-4845, USA
| | - Stephan Rosenkranz
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439-4845, USA
| | - Raymond Osborn
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439-4845, USA
| | - Ram Seshadri
- Materials Department and California Nanosystems Institute, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Leon Balents
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | - Junfeng He
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Physics and CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Stephen D Wilson
- Materials Department and California Nanosystems Institute, University of California Santa Barbara, Santa Barbara, California 93106, USA
| |
Collapse
|
49
|
Liu W, Cao L, Zhu S, Kong L, Wang G, Papaj M, Zhang P, Liu YB, Chen H, Li G, Yang F, Kondo T, Du S, Cao GH, Shin S, Fu L, Yin Z, Gao HJ, Ding H. A new Majorana platform in an Fe-As bilayer superconductor. Nat Commun 2020; 11:5688. [PMID: 33173056 PMCID: PMC7655862 DOI: 10.1038/s41467-020-19487-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 10/13/2020] [Indexed: 11/12/2022] Open
Abstract
Iron-chalcogenide superconductors have emerged as a promising Majorana platform for topological quantum computation. By combining topological band and superconductivity in a single material, they provide significant advantage to realize isolated Majorana zero modes. However, iron-chalcogenide superconductors, especially Fe(Te,Se), suffer from strong inhomogeneity which may hamper their practical application. In addition, some iron-pnictide superconductors have been demonstrated to have topological surface states, yet no Majorana zero mode has been observed inside their vortices, raising a question of universality about this new Majorana platform. In this work, through angle-resolved photoemission spectroscopy and scanning tunneling microscopy/spectroscopy measurement, we identify Dirac surface states and Majorana zero modes, respectively, for the first time in an iron-pnictide superconductor, CaKFe4As4. More strikingly, the multiple vortex bound states with integer-quantization sequences can be accurately reproduced by our model calculation, firmly establishing Majorana nature of the zero mode. Iron-pnictide superconductors share similar topological band structure with iron-chalcogenide superconductors, but no Majorana modes have been observed in the former. Here, the authors observe both the superconducting Dirac surface states and Majorana zero modes inside its vortex cores in CaKFe4As4.
Collapse
Affiliation(s)
- Wenyao Liu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China.,School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Lu Cao
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China.,School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Shiyu Zhu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China.,School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Lingyuan Kong
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China.,School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Guangwei Wang
- Department of Physics and Center for Advanced Quantum Studies, Beijing Normal University, 100875, Beijing, China
| | - Michał Papaj
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Peng Zhang
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba, 277-8581, Japan
| | - Ya-Bin Liu
- Department of Physics, Zhejiang University, 310027, Hangzhou, China
| | - Hui Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China.,School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Geng Li
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China.,School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Fazhi Yang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China.,School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Takeshi Kondo
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba, 277-8581, Japan
| | - Shixuan Du
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China.,CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Guang-Han Cao
- Department of Physics, Zhejiang University, 310027, Hangzhou, China
| | - Shik Shin
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba, 277-8581, Japan
| | - Liang Fu
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zhiping Yin
- Department of Physics and Center for Advanced Quantum Studies, Beijing Normal University, 100875, Beijing, China
| | - Hong-Jun Gao
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China. .,School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China. .,CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, 100190, Beijing, China.
| | - Hong Ding
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China. .,School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China. .,CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, 100190, Beijing, China. .,Songshan Lake Materials Laboratory, 523808, Dongguan, Guangdong, China.
| |
Collapse
|
50
|
Yang H, Li YY, Liu TT, Guan DD, Wang SY, Zheng H, Liu C, Fu L, Jia JF. Multiple In-Gap States Induced by Topological Surface States in the Superconducting Topological Crystalline Insulator Heterostructure Sn_{1-x}Pb_{x}Te-Pb. PHYSICAL REVIEW LETTERS 2020; 125:136802. [PMID: 33034492 DOI: 10.1103/physrevlett.125.136802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Superconducting topological crystalline insulators (TCIs) have been proposed to be a new type of topological superconductor where multiple Majorana zero modes may coexist under the protection of lattice symmetries. The bulk superconductivity of TCIs has been realized, but it is quite challenging to detect the superconductivity of topological surface states inside their bulk superconducting gaps. Here, we report high-resolution scanning tunneling spectroscopy measurements on lateral Sn_{1-x}Pb_{x}Te-Pb heterostructures using superconducting tips. Both the bulk superconducting gap and the multiple in-gap states with energy differences of ∼0.3 meV can be clearly resolved on TCI Sn_{1-x}Pb_{x}Te at 0.38 K. Quasiparticle interference measurements further confirm the in-gap states are gapless. Our work demonstrates that the unique topological superconductivity of a TCI can be directly distinguished in the density of states, which helps to further investigate the multiple Dirac and Majorana fermions inside the superconducting gap.
Collapse
Affiliation(s)
- Hao Yang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yao-Yi Li
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Teng-Teng Liu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dan-Dan Guan
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shi-Yong Wang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Zheng
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Canhua Liu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liang Fu
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jin-Feng Jia
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|