1
|
Xu W, Zhong Y, Li X, Lu K. Stabilizing Supersaturation with Extreme Grain Refinement in Spinodal Aluminum Alloys. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303650. [PMID: 37276137 DOI: 10.1002/adma.202303650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/01/2023] [Indexed: 06/07/2023]
Abstract
Supersaturated solid solutions can be formed in alloys from various non-equilibrium processes, but stabilizing the metastable phases against decomposition is challenging, particularly the spinodal decomposition that occurs via chemical fluctuations without energy barriers to nucleation. In this work, it is found that spinodal decomposition in supersaturated Al(Zn) solid solutions can be inhibited with straining-induced extreme grain refinement. For the refined supersaturated grains at the nanoscale, their spinodal decomposition is obviously resisted by the relaxed grain boundaries and reduced lattice defects. As grains are refined below 10 nm the decomposition is completely inhibited, in which atomic diffusion is blocked by the stable Schwarz crystal structure with vacancy-free grains. Extreme grain refinement offers a general approach to stabilize supersaturated phases with broadened compositional windows for property modulation of alloys.
Collapse
Affiliation(s)
- Wei Xu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, China
| | - Yiming Zhong
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China
| | - Xiuyan Li
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, China
| | - K Lu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, China
- Liaoning Academy of Materials, Shenyang, 110004, China
| |
Collapse
|
2
|
Liu C, Mei Y, Yang H, Zhang Q, Zheng K, Zhang P, Ding C. Ratiometric Fluorescent Probe for Real-Time Detection of β-Galactosidase Activity in Lysosomes and Its Application in Drug-Induced Senescence Imaging. Anal Chem 2024. [PMID: 38315820 DOI: 10.1021/acs.analchem.3c05896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Senescence is an important biological process, which leads to the gradual degradation of its physiological function and increases morbidity and mortality. Herein, a novel ratiometric fluorescent probe (P1) was constructed by using benzothiazolyl acetonitrile dye as fluorophore, exhibiting significantly enhanced blue-shifted emission to indicate the activity of β-galactosidase (β-gal), a commonly used biomarker for the detection of senescent cells. After incubation with β-gal, the excimer emission of P1 at 620 nm was weakened, while the emission at 533 nm was significantly enhanced, forming an obvious ratiometric probe with high sensitivity and low detection limit (2.7 mU·mL-1). More importantly, probe P1 can locate lysosomes accurately, allowing us to monitor the emergence of living cell senescence in real time. P1 was successfully used to detect β-gal activity in PC-12 cells, Hep G2 cells, and RAW 264.7 cells. It showed strong green fluorescence signal in senescent cells and red fluorescence signal in normal cells, indicating that it can detect endogenous senescence-related β-gal content in living cells. For in vivo drug-induced senescence imaging, after 5 weeks of injection of D-galactose or hydroxyurea, the mice showed significant fluorescence enhancement in specific channels to indicate the activity of β-gal in vivo. At the same time, the senescence of cell-specific organs and skin tissues at the organ level were also detected, which proved that the drug-induced senescence of brain, skin, and muscle tissues was the most serious. These results supported the important application value of P1 in senescence biomedical research.
Collapse
Affiliation(s)
- Chengmei Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yu Mei
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Haifeng Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Qian Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Ke Zheng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Peng Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Caifeng Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|