1
|
Lv M, Zhang X, Li B, Huang B, Zheng Z. Single-Particle Fluorescence Spectroscopy for Elucidating Charge Transfer and Catalytic Mechanisms on Nanophotocatalysts. ACS NANO 2024; 18:30247-30268. [PMID: 39444203 DOI: 10.1021/acsnano.4c10702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Photocatalysis is a cost-effective approach to producing renewable energy. A thorough comprehension of carrier separation at the micronano level is crucial for enhancing the photochemical conversion capabilities of photocatalysts. However, the heterogeneity of photocatalyst nanoparticles and complex charge migration processes limit the profound understanding of photocatalytic reaction mechanisms. By establishing the precise interrelationship between microscopic properties and photophysical behaviors of photocatalysts, single-particle fluorescence spectroscopy can elucidate the carrier separation and catalytic mechanism of the photocatalysts in situ, which provides perspectives for improving the photocatalytic efficiency. This Review primarily focuses on the basic principles and advantages of single-particle fluorescence spectroscopy and its progress in the study of plasmonic and semiconductor photocatalysis, especially emphasizing its importance in understanding the charge separation and photocatalytic reaction mechanism, which offers scientific guidance for designing efficient photocatalytic systems. Finally, we summarize and forecast the future development prospects of single-particle fluorescence spectroscopy technology, especially the insights into its technological upgrading.
Collapse
Affiliation(s)
- Min Lv
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Xiangxiang Zhang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Bei Li
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
2
|
Siegel M, Liu L, Pfaffenberger Z, Kisley L. Quantitative Advantages of Corrosion Sensing Using Fluorescence, Microscopy, and Single-Molecule Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56481-56496. [PMID: 39390778 DOI: 10.1021/acsami.4c07800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The corrosion of metals and alloys is a fundamental issue in modern society. Understanding the mechanisms that cause and prevent corrosion is integral to saving millions of dollars each year and to ensure the safe use of infrastructure subject to the hazardous degrading effects of corrosion. Despite this, corrosion detection techniques have lacked precise, quantitative information, with industries taking a top-down, macroscale approach to analyzing corrosion with tests that span months to years and yield qualitative information. Fluorescence, a well-established optical method, can fill the niche of early-stage, quantitative corrosion detection and can be employed for both bulk and localized testing over time. The latter, fluorescence microscopy, can be pushed to greater levels of detail with single-molecule microscopy, achieving nanometer spatial and subsecond temporal resolutions of corrosion that allow for the extraction of dynamic information and kinetics. This review will present how fluorescence microscopy can provide researchers with a molecular view into the chemical mechanisms of corrosion at interfaces and allow for faster, quantitative studies of how to detect and prevent corrosion.
Collapse
Affiliation(s)
- Mark Siegel
- Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106-7079, United States
| | - Lianlian Liu
- Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106-7079, United States
| | - Zechariah Pfaffenberger
- Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106-7079, United States
| | - Lydia Kisley
- Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106-7079, United States
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106-7079, United States
| |
Collapse
|
3
|
He T, Zhao Y, Benetti D, Moss B, Tian L, Selim S, Li R, Fan F, Li Q, Wang X, Li C, Durrant JR. Facet-Engineered BiVO 4 Photocatalysts for Water Oxidation: Lifetime Gain Versus Energetic Loss. J Am Chem Soc 2024; 146:27080-27089. [PMID: 39305258 PMCID: PMC11450740 DOI: 10.1021/jacs.4c09219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 10/03/2024]
Abstract
A limiting factor to the efficiency of water Oxygen Evolution Reaction (OER) in metal oxide nanoparticle photocatalysts is the rapid recombination of holes and electrons. Facet-engineering can effectively improve charge separation and, consequently, OER efficiency. However, the kinetics behind this improvement remain poorly understood. This study utilizes photoinduced absorption spectroscopy to investigate the charge yield and kinetics in facet-engineered BiVO4 (F-BiVO4) compared to a non-faceted sample (NF-BiVO4) under operando conditions. A significant influence of preillumination on hole accumulation is observed, linked to the saturation and, thus, passivation of deep and inactive hole traps on the BiVO4 surface. In DI-water, F-BiVO4 shows a 10-fold increase in charge accumulation (∼5 mΔOD) compared to NF-BiVO4 (∼0.5 mΔOD), indicating improved charge separation and stabilization. With the addition of Fe(NO3)3, an efficient electron acceptor, F-BiVO4 demonstrates a 30-fold increase in the accumulation of long-lived holes (∼45 mΔOD), compared to NF-BiVO4 (∼1.5 mΔOD) and an increased half-time, from 2 to 10 s. Based on a simple kinetic model, this increase in hole accumulation suggests that facet-engineering causes at least a 50-100 meV increase in band bending in BiVO4 particles, thereby stabilizing surface holes. This energetic stabilization/loss results in a retardation of OER relative to NF-BiVO4. This slower catalysis is, however, offset by the observed increase in density and lifetime of photoaccumulated holes. Overall, this work quantifies how surface faceting can impact the kinetics of long-lived charge accumulation on metal oxide photocatalysts, highlighting the trade-off between lifetime gain and energetic loss critical to optimizing photocatalytic efficiency.
Collapse
Affiliation(s)
- Tianhao He
- Department
of Chemistry, Centre for Processable Electronics, Imperial College London, London W12 0BZ, U.K.
| | - Yue Zhao
- State
Key Laboratory of Catalysis, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian National
Laboratory for Clean Energy, Dalian 116023, China
| | - Daniele Benetti
- Department
of Chemistry, Centre for Processable Electronics, Imperial College London, London W12 0BZ, U.K.
| | - Benjamin Moss
- Department
of Chemistry, Centre for Processable Electronics, Imperial College London, London W12 0BZ, U.K.
| | - Lei Tian
- Department
of Chemistry, Centre for Processable Electronics, Imperial College London, London W12 0BZ, U.K.
| | - Shababa Selim
- Department
of Chemistry, Centre for Processable Electronics, Imperial College London, London W12 0BZ, U.K.
| | - Rengui Li
- State
Key Laboratory of Catalysis, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian National
Laboratory for Clean Energy, Dalian 116023, China
| | - Fengtao Fan
- State
Key Laboratory of Catalysis, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian National
Laboratory for Clean Energy, Dalian 116023, China
| | - Qian Li
- State
Key Laboratory of Catalysis, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian National
Laboratory for Clean Energy, Dalian 116023, China
| | - Xiuli Wang
- State
Key Laboratory of Catalysis, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian National
Laboratory for Clean Energy, Dalian 116023, China
| | - Can Li
- State
Key Laboratory of Catalysis, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian National
Laboratory for Clean Energy, Dalian 116023, China
| | - James R. Durrant
- Department
of Chemistry, Centre for Processable Electronics, Imperial College London, London W12 0BZ, U.K.
| |
Collapse
|
4
|
Wen L, Chen H, Hao R. Wide-field imaging of active site distribution on semiconducting transition metal dichalcogenide nanosheets in electrocatalytic and photoelectrocatalytic processes. Chem Sci 2024:d4sc03640a. [PMID: 39323520 PMCID: PMC11421030 DOI: 10.1039/d4sc03640a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024] Open
Abstract
Semiconducting transition metal dichalcogenide (TMD) nanosheets are promising materials for electrocatalysis and photoelectrocatalysis. However, the existing analytical approaches are inadequate at comprehensively describing the operation of narrow-bandgap semiconductors in these two processes. Furthermore, the distribution of the reactive sites on the electrode surface and the dynamic movement of carriers within these semiconductors during the reactions remain ambiguous. To plug these knowledge gaps, an in situ widefield imaging technique was devised in this study to investigate the electron distribution in different types of TMDs; notably, the method permits high-spatiotemporal-resolution analyses of electron-induced metal-ion reduction reactions in both electrocatalysis and photoelectrocatalysis. The findings revealed a unique complementary distribution of the active sites on WSe2 nanosheets during the two different cathodic processes. Our facile imaging approach can provide insightful information on the heterogeneous structure-property relationship at the electrochemical interfaces, facilitating the rational design of high-performance electrocatalytic/photoelectrocatalytic materials.
Collapse
Affiliation(s)
- Lisi Wen
- Department of Chemistry, Southern University of Science and Technology 518055 Shenzhen China
- Research Center for Chemical Biology and Omics Analysis, Southern University of Science and Technology 518055 Shenzhen China
- Shenzhen Key Laboratory of Functional Proteomics, Southern University of Science and Technology 518055 Shenzhen China
| | - Houkai Chen
- Department of Chemistry, Southern University of Science and Technology 518055 Shenzhen China
- Research Center for Chemical Biology and Omics Analysis, Southern University of Science and Technology 518055 Shenzhen China
- Shenzhen Key Laboratory of Functional Proteomics, Southern University of Science and Technology 518055 Shenzhen China
| | - Rui Hao
- Department of Chemistry, Southern University of Science and Technology 518055 Shenzhen China
- Research Center for Chemical Biology and Omics Analysis, Southern University of Science and Technology 518055 Shenzhen China
- Shenzhen Key Laboratory of Functional Proteomics, Southern University of Science and Technology 518055 Shenzhen China
| |
Collapse
|
5
|
Chen R, Ni C, Zhu J, Fan F, Li C. Surface photovoltage microscopy for mapping charge separation on photocatalyst particles. Nat Protoc 2024; 19:2250-2282. [PMID: 38654135 DOI: 10.1038/s41596-024-00992-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 02/22/2024] [Indexed: 04/25/2024]
Abstract
Solar-driven photocatalytic reactions offer a promising route to clean and sustainable energy, and the spatial separation of photogenerated charges on the photocatalyst surface is the key to determining photocatalytic efficiency. However, probing the charge-separation properties of photocatalysts is a formidable challenge because of the spatially heterogeneous microstructures, complicated charge-separation mechanisms and lack of sensitivity for detecting the low density of separated photogenerated charges. Recently, we developed surface photovoltage microscopy (SPVM) with high spatial and energy resolution that enables the direct mapping of surface-charge distributions and quantitative assessment of the charge-separation properties of photocatalysts at the nanoscale, potentially providing unprecedented insights into photocatalytic charge-separation processes. Here, this protocol presents detailed procedures that enable researchers to construct the SPVM instruments by integrating Kelvin probe force microscopy with an illumination system and the modulated surface photovoltage (SPV) approach. It then describes in detail how to perform SPVM measurements on actual photocatalyst particles, including sample preparation, tuning of the microscope, adjustment of the illuminated light path, acquisition of SPVM images and measurements of spatially resolved modulated SPV signals. Moreover, the protocol also includes sophisticated data analysis that can guide non-experts in understanding the microscopic charge-separation mechanisms. The measurements are ordinarily performed on photocatalysts with a conducting substrate in gases or vacuum and can be completed in 15 h.
Collapse
Affiliation(s)
- Ruotian Chen
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Chenwei Ni
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian Zhu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Fengtao Fan
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Can Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Ou Y, Wang B, Xu N, Song Q, Liu T, Xu H, Wang F, Li S, Wang Y. Tandem Electric-Fields Prolong Energetic Hot Electrons Lifetime for Ultra-Fast and Stable NO 2 Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403215. [PMID: 38706406 DOI: 10.1002/adma.202403215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/22/2024] [Indexed: 05/07/2024]
Abstract
Prolonging energetic hot electrons lifetimes and surface activity in the reactive site can overcome the slow kinetics and unfavorable thermodynamics of photo-activated gas sensors. However, bulk and surface recombination limit the simultaneous optimization of both kinetics and thermodynamics. Here tandem electric fields are deployed at (111)/(100)Au-CeO2 to ensure a sufficient driving force for carrier transfer and elucidate the mechanism of the relationship between charge transport and gas-sensing performance. The asymmetric structure of the (111)/(100)CeO2 facet junction provides interior electric fields, which facilitates electron transfer from the (100)face to the (111)face. This separation of reduction and oxidation reaction sites across different crystal faces helps inhibit surface recombination. The increased electron concentration at the (111)face intensifies the interface electric field, which promotes electron transfer to the Au site. The local electric field generated by the surface plasmon resonance effect promotes the generation of high-energy energy hot-electrons, which maintains charge concentration in the interface field by injecting into (111)/(100)CeO2, thereby provide thermodynamic contributions and inhibit bulk recombination. The tandem electric fields enable the (111)/(100)Au-CeO2 to rapidly detect 5 ppm of NO2 at room temperature with stability maintained within 20 s.
Collapse
Affiliation(s)
- Yucheng Ou
- Science and Technology on Advanced Ceramic Fiber and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, China
| | - Bing Wang
- Science and Technology on Advanced Ceramic Fiber and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, China
| | - Nana Xu
- Science and Technology on Advanced Ceramic Fiber and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, China
| | - Quzhi Song
- Science and Technology on Advanced Ceramic Fiber and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, China
| | - Tao Liu
- Science and Technology on Advanced Ceramic Fiber and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, China
| | - Hui Xu
- Science and Technology on Advanced Ceramic Fiber and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, China
| | - Fuwen Wang
- Science and Technology on Advanced Ceramic Fiber and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, China
| | - Siwei Li
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China
| | - Yingde Wang
- Science and Technology on Advanced Ceramic Fiber and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, China
| |
Collapse
|
7
|
Mesa CA, Sachs M, Pastor E, Gauriot N, Merryweather AJ, Gomez-Gonzalez MA, Ignatyev K, Giménez S, Rao A, Durrant JR, Pandya R. Correlating activities and defects in (photo)electrocatalysts using in-situ multi-modal microscopic imaging. Nat Commun 2024; 15:3908. [PMID: 38724495 PMCID: PMC11082147 DOI: 10.1038/s41467-024-47870-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Photo(electro)catalysts use sunlight to drive chemical reactions such as water splitting. A major factor limiting photocatalyst development is physicochemical heterogeneity which leads to spatially dependent reactivity. To link structure and function in such systems, simultaneous probing of the electrochemical environment at microscopic length scales and a broad range of timescales (ns to s) is required. Here, we address this challenge by developing and applying in-situ (optical) microscopies to map and correlate local electrochemical activity, with hole lifetimes, oxygen vacancy concentrations and photoelectrode crystal structure. Using this multi-modal approach, we study prototypical hematite (α-Fe2O3) photoelectrodes. We demonstrate that regions of α-Fe2O3, adjacent to microstructural cracks have a better photoelectrochemical response and reduced back electron recombination due to an optimal oxygen vacancy concentration, with the film thickness and extended light exposure also influencing local activity. Our work highlights the importance of microscopic mapping to understand activity, in even seemingly homogeneous photoelectrodes.
Collapse
Affiliation(s)
- Camilo A Mesa
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, United Kingdom
- Institute of Advanced Materials (INAM) Universitat Jaume I, 12006, Castelló, Spain
- Sociedad de Doctores e Investigadores de Colombia, Grupo de Investigación y Desarrollo en Ciencia Tecnología e Innovación - BioGRID, Bogotá, 111011, Colombia
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, Barcelona Institute of Science and Technology, UAB Campus, 08193, Bellaterra, Barcelona, Spain
| | - Michael Sachs
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, United Kingdom
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Stanford, CA, USA
| | - Ernest Pastor
- Institute of Advanced Materials (INAM) Universitat Jaume I, 12006, Castelló, Spain
- CNRS, Univ Rennes, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000, Rennes, France
| | - Nicolas Gauriot
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, UK
| | - Alice J Merryweather
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, UK
| | - Miguel A Gomez-Gonzalez
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, United Kingdom
| | - Konstantin Ignatyev
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, United Kingdom
| | - Sixto Giménez
- Institute of Advanced Materials (INAM) Universitat Jaume I, 12006, Castelló, Spain
| | - Akshay Rao
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, UK
| | - James R Durrant
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, United Kingdom
- Department of Materials Science and Engineering, Swansea University, Swansea, SA2 7AX, United Kingdom
| | - Raj Pandya
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, UK.
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 rue Lhomond, 75005, Paris, France.
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom.
| |
Collapse
|
8
|
Zhang Y, Wu X, Wang ZH, Peng Y, Liu Y, Yang S, Sun C, Xu X, Zhang X, Kang J, Wei SH, Liu PF, Dai S, Yang HG. Crystal Facet Engineering on SrTiO 3 Enhances Photocatalytic Overall Water Splitting. J Am Chem Soc 2024; 146:6618-6627. [PMID: 38349322 DOI: 10.1021/jacs.3c12062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Single-crystal semiconductor-based photocatalysts exposing unique crystallographic facets show promising applications in energy and environmental technologies; however, crystal facet engineering through solid-state synthesis for photocatalytic overall water splitting is still challenging. Herein, we develop a novel crystal facet engineering strategy through solid-state recrystallization to synthesize uniform SrTiO3 single crystals exposing tailored {111} facets. The presynthesized low-crystalline SrTiO3 precursors enable the formation of well-defined single crystals through kinetically improved crystal structure transformation during solid-state recrystallization process. By employing subtle Al3+ ions as surface morphology modulators, the crystal surface orientation can be precisely tuned to a controlled percentage of {111} facets. The photocatalytic overall water splitting activity increases with the exposure percentage of {111} facets. Owing to the outstanding crystallinity and favorable anisotropic surface structure, the SrTiO3 single crystals with 36.6% of {111} facets lead to a 3-fold enhancement of photocatalytic hydrogen evolution rates up to 1.55 mmol·h-1 in a stoichiometric ratio of 2:1 than thermodynamically stable SrTiO3 enclosed with isotropic {100} facets.
Collapse
Affiliation(s)
- Yang Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuefeng Wu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhi-Hao Wang
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Yu Peng
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuanwei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuang Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chenghua Sun
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn 3122, Australia
| | - Xiaoxiang Xu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xie Zhang
- Beijing Computational Science Research Center, Beijing 100193, China
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jun Kang
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Su-Huai Wei
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Peng Fei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hua Gui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
9
|
Li Y, Ye W, Yu H, He Y. In Situ Multicolor Imaging of Photocatalytic Degradation Process of Permanganate on Single Bismuth-Based Metal-Organic Frameworks. Inorg Chem 2024; 63:3221-3228. [PMID: 38315105 DOI: 10.1021/acs.inorgchem.3c03248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Bismuth-based metal-organic frameworks (Bi-MOFs) have emerged as important photocatalysts for pollutant degradation applications. Understanding the photocatalytic degradation mechanism is key to achieving technological advantage. Herein, we apply dark-field optical microscopy (DFM) to realize in situ multicolor imaging of the photocatalytic degradation process of permanganate (MnO4-) on single CAU-17 Bi-MOFs. Three reaction kinetic processes such as surface adsorption, photocatalytic reduction, and disproportionation are revealed by combining the time-lapsed DFM images with optical absorption spectra, indicating that the photocatalytic reduction of purple MnO4- first produces beige red MnO42- through a one-electron pathway, and then MnO42- disproportionates into yellow MnO2 on CAU-17. Meanwhile, we observe that the deposition of MnO2 cocatalysts enhances the surface adsorption reaction and the photocatalytic reduction of MnO4- to MnO42-. Unexpectedly, it is found that isopropanol as a typical hole scavenger can stabilize MnO42-, avoiding disproportionation and causing the alteration of the photocatalytic reaction pathway from a one-electron avenue to a three-electron (1 + 2) process for producing MnO2 on CAU-17. This research opens up the possibility of comprehensively tracking and understanding the photocatalytic degradation reaction at the single MOF particle level.
Collapse
Affiliation(s)
- Yanhao Li
- National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, School of Nuclear Science & Technology, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Wenyou Ye
- National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, School of Nuclear Science & Technology, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Haili Yu
- National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, School of Nuclear Science & Technology, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Yi He
- National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, School of Nuclear Science & Technology, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| |
Collapse
|
10
|
Li P, Zhang J, Hayashi H, Yue J, Li W, Yang C, Sun C, Shi J, Huberman-Shlaes J, Hibino N, Tian B. Monolithic silicon for high spatiotemporal translational photostimulation. Nature 2024; 626:990-998. [PMID: 38383782 DOI: 10.1038/s41586-024-07016-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 01/02/2024] [Indexed: 02/23/2024]
Abstract
Electrode-based electrical stimulation underpins several clinical bioelectronic devices, including deep-brain stimulators1,2 and cardiac pacemakers3. However, leadless multisite stimulation is constrained by the technical difficulties and spatial-access limitations of electrode arrays. Optogenetics offers optically controlled random access with high spatiotemporal capabilities, but clinical translation poses challenges4-6. Here we show tunable spatiotemporal photostimulation of cardiac systems using a non-genetic platform based on semiconductor-enabled biomodulation interfaces. Through spatiotemporal profiling of photoelectrochemical currents, we assess the magnitude, precision, accuracy and resolution of photostimulation in four leadless silicon-based monolithic photoelectrochemical devices. We demonstrate the optoelectronic capabilities of the devices through optical overdrive pacing of cultured cardiomyocytes (CMs) targeting several regions and spatial extents, isolated rat hearts in a Langendorff apparatus, in vivo rat hearts in an ischaemia model and an in vivo mouse heart model with transthoracic optical pacing. We also perform the first, to our knowledge, optical override pacing and multisite pacing of a pig heart in vivo. Our systems are readily adaptable for minimally invasive clinical procedures using our custom endoscopic delivery device, with which we demonstrate closed-thoracic operations and endoscopic optical stimulation. Our results indicate the clinical potential of the leadless, lightweight and multisite photostimulation platform as a pacemaker in cardiac resynchronization therapy (CRT), in which lead-placement complications are common.
Collapse
Affiliation(s)
- Pengju Li
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Jing Zhang
- The James Franck Institute, The University of Chicago, Chicago, IL, USA
| | - Hidenori Hayashi
- Section of Cardiac Surgery, Department of Surgery, The University of Chicago, Chicago, IL, USA
| | - Jiping Yue
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Wen Li
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Chuanwang Yang
- The James Franck Institute, The University of Chicago, Chicago, IL, USA
| | - Changxu Sun
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Jiuyun Shi
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | | | - Narutoshi Hibino
- Section of Cardiac Surgery, Department of Surgery, The University of Chicago, Chicago, IL, USA.
| | - Bozhi Tian
- The James Franck Institute, The University of Chicago, Chicago, IL, USA.
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
11
|
Su S, Siretanu I, van den Ende D, Mei B, Mul G, Mugele F. Nanometer-Resolved Operando Photo-Response of Faceted BiVO 4 Semiconductor Nanoparticles. J Am Chem Soc 2024; 146:2248-2256. [PMID: 38214667 PMCID: PMC10811660 DOI: 10.1021/jacs.3c12666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Photo(electro)catalysis with semiconducting nanoparticles (NPs) is an attractive approach to convert abundant but intermittent renewable electricity into stable chemical fuels. However, our understanding of the microscopic processes governing the performance of the materials has been hampered by the lack of operando characterization techniques with sufficient lateral resolution. Here, we demonstrate that the local surface potentials of NPs of bismuth vanadate (BiVO4) and their response to illumination differ between adjacent facets and depend strongly on the pH of the ambient electrolyte. The isoelectric points of the dominant {010} basal plane and the adjacent {110} side facets differ by 1.5 pH units. Upon illumination, both facets accumulate positive charges and display a maximum surface photoresponse of +55 mV, much stronger than reported in the literature for the surface photo voltage of BiVO4 NPs in air. High resolution images reveal the presence of numerous surface defects ranging from vacancies of a few atoms, to single unit cell steps, to microfacets of variable orientation and degree of disorder. These defects typically carry a highly localized negative surface charge density and display an opposite photoresponse compared to the adjacent facets. Strategies to model and optimize the performance of photocatalyst NPs, therefore, require an understanding of the distribution of surface defects, including the interaction with ambient electrolyte.
Collapse
Affiliation(s)
- Shaoqiang Su
- Physics
of Complex Fluids Group and MESA+ Institute, Faculty of Science and
Technology, University of Twente, P.O. Box 217, Enschede 7500 AE, The
Netherlands
| | - Igor Siretanu
- Physics
of Complex Fluids Group and MESA+ Institute, Faculty of Science and
Technology, University of Twente, P.O. Box 217, Enschede 7500 AE, The
Netherlands
| | - Dirk van den Ende
- Physics
of Complex Fluids Group and MESA+ Institute, Faculty of Science and
Technology, University of Twente, P.O. Box 217, Enschede 7500 AE, The
Netherlands
| | - Bastian Mei
- Photocatalytic
Synthesis Group and MESA+ Institute, Faculty of Science and Technology, University of Twente, P.O. Box 217, Enschede 7500 AE, The Netherlands
| | - Guido Mul
- Photocatalytic
Synthesis Group and MESA+ Institute, Faculty of Science and Technology, University of Twente, P.O. Box 217, Enschede 7500 AE, The Netherlands
| | - Frieder Mugele
- Physics
of Complex Fluids Group and MESA+ Institute, Faculty of Science and
Technology, University of Twente, P.O. Box 217, Enschede 7500 AE, The
Netherlands
| |
Collapse
|
12
|
Zhang Z, Dong J, Yang Y, Zhou Y, Chen Y, Xu Y, Feng J. Direct probing of single-molecule chemiluminescent reaction dynamics under catalytic conditions in solution. Nat Commun 2023; 14:7993. [PMID: 38042861 PMCID: PMC10693624 DOI: 10.1038/s41467-023-43640-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 11/15/2023] [Indexed: 12/04/2023] Open
Abstract
Chemical reaction kinetics can be evaluated by probing dynamic changes of chemical substrates or physical phenomena accompanied during the reaction process. Chemiluminescence, a light emitting exoenergetic process, involves random reaction positions and kinetics in solution that are typically characterized by ensemble measurements with nonnegligible average effects. Chemiluminescent reaction dynamics at the single-molecule level remains elusive. Here we report direct imaging of single-molecule chemiluminescent reactions in solution and probing of their reaction dynamics under catalytic conditions. Double-substrate Michaelis-Menten type of catalytic kinetics is found to govern the single-molecule reaction dynamics in solution, and a heterogeneity is found among different catalyst particles and different catalytic sites on a single particle. We further show that single-molecule chemiluminescence imaging can be used to evaluate the thermodynamics of the catalytic system, resolving activation energy at the single-particle level. Our work provides fundamental insights into chemiluminescent reactions and offers an efficient approach for evaluating catalysts.
Collapse
Affiliation(s)
- Ziqing Zhang
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, 310058, Hangzhou, China
| | - Jinrun Dong
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, 310058, Hangzhou, China
| | - Yibo Yang
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, 310058, Hangzhou, China
| | - Yuan Zhou
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, 310058, Hangzhou, China
| | - Yuang Chen
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, 310058, Hangzhou, China
| | - Yang Xu
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, 310058, Hangzhou, China
| | - Jiandong Feng
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, 310058, Hangzhou, China.
- Research Center for Quantum Sensing, Research Institute of Intelligent Sensing, Zhejiang Lab, 311121, Hangzhou, China.
| |
Collapse
|
13
|
Shen M, Rackers WH, Sadtler B. Getting the Most Out of Fluorogenic Probes: Challenges and Opportunities in Using Single-Molecule Fluorescence to Image Electro- and Photocatalysis. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:692-715. [PMID: 38037609 PMCID: PMC10685636 DOI: 10.1021/cbmi.3c00075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 12/02/2023]
Abstract
Single-molecule fluorescence microscopy enables the direct observation of individual reaction events at the surface of a catalyst. It has become a powerful tool to image in real time both intra- and interparticle heterogeneity among different nanoscale catalyst particles. Single-molecule fluorescence microscopy of heterogeneous catalysts relies on the detection of chemically activated fluorogenic probes that are converted from a nonfluorescent state into a highly fluorescent state through a reaction mediated at the catalyst surface. This review article describes challenges and opportunities in using such fluorogenic probes as proxies to develop structure-activity relationships in nanoscale electrocatalysts and photocatalysts. We compare single-molecule fluorescence microscopy to other microscopies for imaging catalysis in situ to highlight the distinct advantages and limitations of this technique. We describe correlative imaging between super-resolution activity maps obtained from multiple fluorogenic probes to understand the chemical origins behind spatial variations in activity that are frequently observed for nanoscale catalysts. Fluorogenic probes, originally developed for biological imaging, are introduced that can detect products such as carbon monoxide, nitrite, and ammonia, which are generated by electro- and photocatalysts for fuel production and environmental remediation. We conclude by describing how single-molecule imaging can provide mechanistic insights for a broader scope of catalytic systems, such as single-atom catalysts.
Collapse
Affiliation(s)
- Meikun Shen
- Department
of Chemistry and Biochemistry, University
of Oregon, Eugene, Oregon 97403, United States
| | - William H. Rackers
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Bryce Sadtler
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
- Institute
of Materials Science & Engineering, Washington University, St. Louis, Missouri 63130, United States
| |
Collapse
|
14
|
Askarova G, Hesari M, Barman K, Mirkin MV. Visualizing Overall Water Splitting on Single Microcrystals of Phosphorus-Doped BiVO 4 by Photo-SECM. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47168-47176. [PMID: 37754848 DOI: 10.1021/acsami.3c13099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Particulate bismuth vanadate (BiVO4) has attracted considerable interest as a promising photo(electro)catalyst for visible-light-driven water oxidation; however, overall water splitting (OWS) has been difficult to attain because its conduction band is too positive for efficient hydrogen evolution. Using photoscanning electrochemical microscopy (photo-SECM) with a chemically modified nanotip, we visualized for the first time the OWS at a single truncated bipyramidal microcrystal of phosphorus-doped BiVO4. The tip simultaneously served as a light guide to illuminate the photocatalyst and an electrochemical nanoprobe to observe and quantitatively measure local oxygen and hydrogen fluxes. The obtained current patterns for both O2 and H2 agree well with the accumulation of photogenerated electrons and holes on {010} basal and {110} lateral facets, respectively. The developed experimental approach is an important step toward nanoelectrochemical mapping of the activity of photocatalyst particles at the subfacet level.
Collapse
Affiliation(s)
- Gaukhar Askarova
- Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States
- The Graduate Center of CUNY, New York, New York 10016, United States
| | - Mahdi Hesari
- Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States
| | - Koushik Barman
- Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States
| | - Michael V Mirkin
- Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States
- Advanced Science Research Center at The Graduate Center, CUNY, New York, New York 10031, United States
| |
Collapse
|
15
|
Fu B, Mao X, Park Y, Zhao Z, Yan T, Jung W, Francis DH, Li W, Pian B, Salimijazi F, Suri M, Hanrath T, Barstow B, Chen P. Single-cell multimodal imaging uncovers energy conversion pathways in biohybrids. Nat Chem 2023; 15:1400-1407. [PMID: 37500951 DOI: 10.1038/s41557-023-01285-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 06/28/2023] [Indexed: 07/29/2023]
Abstract
Microbe-semiconductor biohybrids, which integrate microbial enzymatic synthesis with the light-harvesting capabilities of inorganic semiconductors, have emerged as promising solar-to-chemical conversion systems. Improving the electron transport at the nano-bio interface and inside cells is important for boosting conversion efficiencies, yet the underlying mechanism is challenging to study by bulk measurements owing to the heterogeneities of both constituents. Here we develop a generalizable, quantitative multimodal microscopy platform that combines multi-channel optical imaging and photocurrent mapping to probe such biohybrids down to single- to sub-cell/particle levels. We uncover and differentiate the critical roles of different hydrogenases in the lithoautotrophic bacterium Ralstonia eutropha for bioplastic formation, discover this bacterium's surprisingly large nanoampere-level electron-uptake capability, and dissect the cross-membrane electron-transport pathways. This imaging platform, and the associated analytical framework, can uncover electron-transport mechanisms in various types of biohybrid, and potentially offers a means to use and engineer R. eutropha for efficient chemical production coupled with photocatalytic materials.
Collapse
Affiliation(s)
- Bing Fu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xianwen Mao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
- Department of Materials Science and Engineering, Institute of Functional Intelligent Materials, and Centre for Advanced 2D Materials, National University of Singapore, Singapore, Singapore
| | - Youngchan Park
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Zhiheng Zhao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Tianlei Yan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Won Jung
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Danielle H Francis
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
- Friends School of Baltimore, Baltimore, MD, USA
| | - Wenjie Li
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Brooke Pian
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Farshid Salimijazi
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Mokshin Suri
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Tobias Hanrath
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Buz Barstow
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Peng Chen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
16
|
Bao W, Wang R, Liu H, Qian C, Liu H, Yu F, Guo C, Li J, Sun K. Photoelectrochemical Engineering for Light-Assisted Rechargeable Metal Batteries: Mechanism, Development, and Future. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2303745. [PMID: 37616514 DOI: 10.1002/smll.202303745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/14/2023] [Indexed: 08/26/2023]
Abstract
Rechargeable battery devices with high energy density are highly demanded by our modern society. The use of metal anodes is extremely attractive for future rechargeable battery devices. However, the notorious metal dendritic and instability of solid electrolyte interface issues pose a series of challenges for metal anodes. Recently, considering the indigestible dynamical behavior of metal anodes, photoelectrochemical engineering of light-assisted metal anodes have been rapidly developed since they efficiently utilize the integration and synergy of oriented crystal engineering and photocatalysis engineering, which provided a potential way to unlock the interface electrochemical mechanism and deposition reaction kinetics of metal anodes. This review starts with the fundamentals of photoelectrochemical engineering and follows with the state-of-art advance of photoelectrochemical engineering for light-assisted rechargeable metal batteries where photoelectrode materials, working principles, types, and practical applications are explained. The last section summarizes the major challenges and some invigorating perspectives for future research on light-assisted rechargeable metal batteries.
Collapse
Affiliation(s)
- Weizhai Bao
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Ronghao Wang
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Hongmin Liu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Chengfei Qian
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - He Liu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Feng Yu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Cong Guo
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Jingfa Li
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Kaiwen Sun
- Australian Centre for Advanced Photovoltaics, School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, 2052, Australia
| |
Collapse
|
17
|
Askarova G, Xiao C, Barman K, Wang X, Zhang L, Osterloh FE, Mirkin MV. Photo-scanning Electrochemical Microscopy Observation of Overall Water Splitting at a Single Aluminum-Doped Strontium Titanium Oxide Microcrystal. J Am Chem Soc 2023; 145:6526-6534. [PMID: 36892623 DOI: 10.1021/jacs.3c00663] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Particulate photocatalysts for the overall water splitting (OWS) reaction offer promise as devices for hydrogen fuel generation. Even though such photocatalysts have been studied for nearly 5 decades, much of the understanding of their function is derived from observations of catalyst ensembles and macroscopic photoelectrodes. This is because the sub-micrometer size of most OWS photocatalysts makes spatially resolved measurements of their local reactivity very difficult. Here, we employ photo-scanning electrochemical microscopy (photo-SECM) to quantitatively measure hydrogen and oxygen evolution at individual OWS photocatalyst particles for the first time. Micrometer-sized Al-doped SrTiO3/Rh2-yCryO3 photocatalyst particles were immobilized on a glass substrate and interrogated with a chemically modified SECM nanotip. The tip simultaneously served as a light guide to illuminate the photocatalyst and as an electrochemical nanoprobe to observe oxygen and hydrogen fluxes from the OWS. Local O2 and H2 fluxes obtained from chopped light experiments and photo-SECM approach curves using a COMSOL Multiphysics finite-element model confirmed stoichiometric H2/O2 evolution of 9.3/4.6 μmol cm-2 h-1 with no observable lag during chopped illumination cycles. Additionally, photoelectrochemical experiments on a single microcrystal attached to a nanoelectrode tip revealed a strong light intensity dependence of the OWS reaction. These results provide the first confirmation of OWS at single micrometer-sized photocatalyst particles. The developed experimental approach is an important step toward assessing the activity of photocatalyst particles at the nanometer scale.
Collapse
Affiliation(s)
- Gaukhar Askarova
- Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States
- The Graduate Center of CUNY, New York, New York 10016, United States
| | - Chengcan Xiao
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Koushik Barman
- Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States
| | - Xiang Wang
- Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States
- The Graduate Center of CUNY, New York, New York 10016, United States
| | - Lihua Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Frank E Osterloh
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Michael V Mirkin
- Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States
- Advanced Science Research Center at The Graduate Center, CUNY, New York, New York 10031, United States
| |
Collapse
|
18
|
Zhang Y, Liu Y, Zhang T, Gong X, Wang Z, Liu Y, Wang P, Cheng H, Dai Y, Huang B, Zheng Z. In Situ Monitoring of the Spatial Distribution of Oxygen Vacancies and Enhanced Photocatalytic Performance at the Single-Particle Level. NANO LETTERS 2023; 23:1244-1251. [PMID: 36757119 DOI: 10.1021/acs.nanolett.2c04313] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Oxygen vacancies (OVs) on specific sites/facets can strengthen the interaction between reactants and oxide surfaces, facilitating interfacial charge transfer. However, precise monitoring of the spatial distribution of OVs remains a grand challenge. We report here that a single-particle spectroscopy technique addresses this challenge by establishing a positive correlation relationship between defects and bound exciton luminescence across different facets. Taking monoclinic BiVO4 as an example, on the basis of theoretical guidance, by in situ tracking the PL lifetimes and PL spectra of different facets on single particles before and after hydrogen treatment, we provide evidence that the PL emission originates from the OV state and determine that OVs is more inclined to be generated at the {010} facets. This anisotropic defect engineering significantly prolongs the lifetime of carriers and accelerates the activation of molecular oxygen. These findings not only verify preference rules of OVs in metal oxides but also provide a time-space-resolved monitoring method.
Collapse
Affiliation(s)
- Yujia Zhang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
| | - Yan Liu
- Center for Optics Research and Engineering, Shandong University, Qingdao, 266237, People's Republic of Chin
| | - Ting Zhang
- School of Physics, Shandong University, Jinan 250100, People's Republic of China
| | - Xueqin Gong
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
| | - Zeyan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
| | - Peng Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
| | - Hefeng Cheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
| | - Ying Dai
- School of Physics, Shandong University, Jinan 250100, People's Republic of China
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
19
|
Affiliation(s)
- Jinrun Dong
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jiandong Feng
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
20
|
Cui Y, Guo P, Wang F, Dang P, Wang C, Jing P, Pu Y, Tao X. Self-Doping Based Facet Junctions and Oxygen Vacancies in Ferroelectric Bi 3Ti xNb 2-xO 9 Nanosheets for Boosting Photocatalytic Degradation and Antibacterial Activity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51819-51834. [PMID: 36349934 DOI: 10.1021/acsami.2c12026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Constructing facet junction in semiconductor photocatalysts has been demonstrated as an effective method to promote charge-carrier separation and suppress carrier recombination. Herein, we proposed a novel but facile self-doping strategy to regulate the crystal facet exposure ratio in ferroelectric Bi3TixNb2-xO9 single-crystalline nanosheets, thereby optimizing its facet junction effect. Through tuning the atomic ratio of Ti and Nb, the exposure ratio of {001} and {110} crystal planes in Bi3TixNb2-xO9 nanosheets can be delicately modulated, and more {110} facets were exposed with the increase of the Ti/Nb atomic ratio as evidenced by the X-ray diffraction and scanning electron microscopy results. A facet junction between {110} and {001} crystal planes was verified based on the density functional theory calculation and photodeposition experiment results. Photogenerated electrons tend to accumulate in {110}, while holes gathered in {001} crystal planes. Owing to the optimal facet junction effect, the sample of Ti1.05 shows the most efficient charge-carrier separation and transportation compared to Ti0.95 and Ti1.00 as supported by the photoluminescence, surface photovoltage, photoelectrochemistry, and electron paramagnetic resonance (EPR) results. In addition, the oxygen vacancy arising from the inequivalent substitution of Nb5+ by Ti4+ as proved by X-ray photoelectron spectroscopy and EPR results and the enhanced ferroelectricity supported by P-E loops can also assist charge-carrier separation and migration. Benefiting from these properties, Ti1.05 outperformed Ti0.95 and Ti1.00 in the photodegradation of organic dye and antibiotic molecules. Meanwhile, the excellent antibacterial activity of Ti1.05 under visible light was also demonstrated by the Escherichia coli sterilization experiment. This work not only presents a novel pathway to adjust the facet junction but also provides new deep insights into the crystal facet engineering in ferroelectrics as photocatalysts.
Collapse
Affiliation(s)
- Yongfei Cui
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science &Technology, Xi'an710021, Shaanxi, P. R. China
| | - Peng Guo
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science &Technology, Xi'an710021, Shaanxi, P. R. China
| | - Fenghui Wang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science &Technology, Xi'an710021, Shaanxi, P. R. China
| | - Peipei Dang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science &Technology, Xi'an710021, Shaanxi, P. R. China
| | - Cuicui Wang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science &Technology, Xi'an710021, Shaanxi, P. R. China
| | - Panpan Jing
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science &Technology, Xi'an710021, Shaanxi, P. R. China
| | - Yongping Pu
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science &Technology, Xi'an710021, Shaanxi, P. R. China
| | - Xiaoma Tao
- School of Physics and Technology, Guangxi University, Nanning530004, Guangxi, P. R. China
| |
Collapse
|
21
|
Ahn Y, Park M, Seo D. Observation of reactions in single molecules/nanoparticles using light microscopy. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yongdeok Ahn
- Department of Chemistry and Physics DGIST Daegu Republic of Korea
| | - Minsoo Park
- Department of Chemistry and Physics DGIST Daegu Republic of Korea
| | - Daeha Seo
- Department of Chemistry and Physics DGIST Daegu Republic of Korea
| |
Collapse
|
22
|
Chen R, Ren Z, Liang Y, Zhang G, Dittrich T, Liu R, Liu Y, Zhao Y, Pang S, An H, Ni C, Zhou P, Han K, Fan F, Li C. Spatiotemporal imaging of charge transfer in photocatalyst particles. Nature 2022; 610:296-301. [PMID: 36224420 DOI: 10.1038/s41586-022-05183-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/02/2022] [Indexed: 11/09/2022]
Abstract
The water-splitting reaction using photocatalyst particles is a promising route for solar fuel production1-4. Photo-induced charge transfer from a photocatalyst to catalytic surface sites is key in ensuring photocatalytic efficiency5; however, it is challenging to understand this process, which spans a wide spatiotemporal range from nanometres to micrometres and from femtoseconds to seconds6-8. Although the steady-state charge distribution on single photocatalyst particles has been mapped by microscopic techniques9-11, and the charge transfer dynamics in photocatalyst aggregations have been revealed by time-resolved spectroscopy12,13, spatiotemporally evolving charge transfer processes in single photocatalyst particles cannot be tracked, and their exact mechanism is unknown. Here we perform spatiotemporally resolved surface photovoltage measurements on cuprous oxide photocatalyst particles to map holistic charge transfer processes on the femtosecond to second timescale at the single-particle level. We find that photogenerated electrons are transferred to the catalytic surface quasi-ballistically through inter-facet hot electron transfer on a subpicosecond timescale, whereas photogenerated holes are transferred to a spatially separated surface and stabilized through selective trapping on a microsecond timescale. We demonstrate that these ultrafast-hot-electron-transfer and anisotropic-trapping regimes, which challenge the classical perception of a drift-diffusion model, contribute to the efficient charge separation in photocatalysis and improve photocatalytic performance. We anticipate that our findings will be used to illustrate the universality of other photoelectronic devices and facilitate the rational design of photocatalysts.
Collapse
Affiliation(s)
- Ruotian Chen
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Zefeng Ren
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yu Liang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guanhua Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Thomas Dittrich
- Helmholtz-Center Berlin for Materials and Energy GmbH, Berlin, Germany
| | - Runze Liu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, China
| | - Yang Liu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, China
| | - Yue Zhao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Shan Pang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Hongyu An
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Chenwei Ni
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Panwang Zhou
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, China
| | - Keli Han
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, China
| | - Fengtao Fan
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Can Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China. .,University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
23
|
Xiao Y, Xu W. Single-molecule fluorescence imaging for probing nanocatalytic process. Chem 2022. [DOI: 10.1016/j.chempr.2022.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Abstract
Understanding the structure-activity relationship at electrochemical interfaces is crucial in improving the performance of practical electrochemical devices, ranging from fuel cells, electrolyzers, and batteries to electrochemical sensors. However, functional electrochemical interfaces are often complex and contain various surface structures, creating heterogeneity in electrochemical activity. In this Perspective, we highlight the role of heterogeneity in electrochemistry, especially in the context of electrocatalysis. Current methods for revealing the heterogeneity at electrochemical interfaces, including nanoelectrochemistry tools and single-entity approaches, are discussed. Lastly, we provide perspectives on what one can learn by studying heterogeneity and how one can use heterogeneity to design more efficient electrochemical devices.
Collapse
Affiliation(s)
- C Hyun Ryu
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hyein Lee
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Heekwon Lee
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hang Ren
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
25
|
Zhou X, Zhang J, Wang X, Tan T, Fang R, Chen S, Dong F. Efficient NO removal and photocatalysis mechanism over Bi-metal@Bi 2O 2[BO 2(OH)] with oxygen vacancies. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129271. [PMID: 35739786 DOI: 10.1016/j.jhazmat.2022.129271] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/20/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Photocatalysis technology prevails as a feasible option for air pollution control, in which high-efficiency charge separation and effective pollutant activation are the crucial issues. Here, this work designed Bi-metal@ Bi2O2[BO2(OH)] with oxygen vacancies (OVs) catalyst for photocatalytic oxidation of NO under visible light, to shed light on the above two processes. Experimental characterizations and density functional theory (DFT) calculations reveal that a unique electron transfer covalent loop([Bi2O2]2+ → Bi-metal → O2-)can be formed during the reaction to guide the directional transfer of carriers, significantly improving the charge separation efficiency and the yield of active oxygen species. Simultaneously, the defect levels served by OVs also play a part. During the NO purification process, in-situ DRIFTS assisted with DFT calculations reveal that Bi metals could be functioned as electron donors to activate NO molecules and form NO-, a key intermediate. This induces a new reaction path of NO → NO- → NO3- to achieve the harmless conversion of NO, effectively restraining the generation of noxious intermediates (NO2, N2O4). It is expected that this study would inspire the design of more artful photocatalysts for effective charge transfer and safe pollutants purification.
Collapse
Affiliation(s)
- Xi Zhou
- College of Environment and Resources, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, China
| | - Jin Zhang
- College of Environment and Resources, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, China
| | - Xuemei Wang
- College of Environment and Resources, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, China
| | - Tianqi Tan
- College of Environment and Resources, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, China
| | - Ruimei Fang
- College of Environment and Resources, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, China
| | - Si Chen
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, China.
| | - Fan Dong
- College of Environment and Resources, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, China; Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, China; State Centre for International Cooperation on Designer Low Carbon and Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
26
|
Lv S, Liu D, Sun Y, Li M, Zhou Y, Song C, Wang D. Graphene oxide coupled high-index facets CdZnS with rich sulfur vacancies for synergistic boosting visible-light-catalytic hydrogen evolution in natural seawater: Experimental and DFT study. J Colloid Interface Sci 2022; 623:34-43. [PMID: 35561574 DOI: 10.1016/j.jcis.2022.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/13/2022] [Accepted: 05/02/2022] [Indexed: 12/26/2022]
Abstract
Constructing photocatalysts with high activity and anti-photocorrosion is a key to harvesting hydrogen energy from seawater efficiently. Herein, graphene oxide closely coupled high-index facets CdZnS with rich sulfur vacancies (Vs-CZS@GO) has been successfully synthesized via one-pot sulfidation accompanied pyrolysis. DFT calculation confirmed the delicate surface/interface/defect engineering endowed high-index facets Vs-CZS@GO with a lower ΔGH* value and significant charge transfer behavior for efficient H2-generation. The synergistic effect of sulfur vacancy, high-index facets, and tightly coupling interface not only enhanced intrinsic active sites and carrier separation efficiencies, but also greatly promoted H2 evolution rate and stability. Consequently, Vs-CZS@GO displayed a significantly high H2-generation rate of 23.2 mmol∙g-1∙h-1 in natural seawater under visible-light irradiation, which is up to 82% of that in pure water. This work provides deeply insight into the synergistic regulation of electronic structure for exposed high-index facets photocatalysts via defect engineering and interface engineering for synergistic boosting visible-light-to-H2 evolution.
Collapse
Affiliation(s)
- Shuhua Lv
- College of Materials Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, Shandong, PR China
| | - Dongzheng Liu
- Key Lab of Inorganic Synthesis and Applied Chemistry, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yuanyuan Sun
- College of Materials Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, Shandong, PR China
| | - Mingxuan Li
- Key Lab of Inorganic Synthesis and Applied Chemistry, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yanhong Zhou
- Key Lab of Inorganic Synthesis and Applied Chemistry, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Caixia Song
- College of Materials Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, Shandong, PR China.
| | - Debao Wang
- Key Lab of Inorganic Synthesis and Applied Chemistry, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|