1
|
Kitano T, Goto S, Wang X, Kamihara T, Sei Y, Kondo Y, Sannomiya T, Uekusa H, Murakami Y. 2.5-dimensional covalent organic frameworks. Nat Commun 2025; 16:280. [PMID: 39747237 DOI: 10.1038/s41467-024-55729-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
Covalently bonded crystalline substances with micropores have broad applications. Covalent organic frameworks (COFs) are representative of such substances. They have so far been classified into two-dimensional (2D) and three-dimensional (3D) COFs. 2D-COFs have planar shapes useful for broad purposes, but obtaining good crystals of 2D-COFs with sizes larger than 10 μm is significantly challenging, whereas yielding 3D-COFs with high crystallinity and larger sizes is easier. Here, we show COFs with 2.5-dimensional (2.5D) skeletons, which are microscopically constructed with 3D bonds but have macroscopically 2D planar shapes. The 2.5D-COFs shown herein achieve large single-crystal sizes above 0.1 mm and ultrahigh-density primary amines regularly allocated on and pointing perpendicular to the covalently-bonded network plane. Owing to the latter nature, the COFs are promising as CO2 adsorbents that can simultaneously achieve high CO2/N2 selectivity and low heat of adsorption, which are usually in a mutually exclusive relationship. 2.5D-COFs are expected to broaden the frontier and application of covalently bonded microporous crystalline systems.
Collapse
Affiliation(s)
- Tomoki Kitano
- Laboratory for Zero-Carbon Energy, Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan
- Department of Mechanical Engineering, Institute of Science Tokyo, Tokyo, Japan
| | - Syunto Goto
- Laboratory for Zero-Carbon Energy, Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan
- Department of Mechanical Engineering, Institute of Science Tokyo, Tokyo, Japan
| | - Xiaohan Wang
- Laboratory for Zero-Carbon Energy, Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan
- Department of Mechanical Engineering, Institute of Science Tokyo, Tokyo, Japan
| | - Takayuki Kamihara
- Facility Station Division, Open Facility Center, Institute of Science Tokyo, Yokohama, Japan
| | - Yoshihisa Sei
- Facility Station Division, Open Facility Center, Institute of Science Tokyo, Yokohama, Japan
| | - Yukihito Kondo
- Department of Materials Science & Engineering, Institute of Science Tokyo, Yokohama, Japan
| | - Takumi Sannomiya
- Department of Materials Science & Engineering, Institute of Science Tokyo, Yokohama, Japan
| | - Hidehiro Uekusa
- Department of Chemistry, Institute of Science Tokyo, Tokyo, Japan
| | - Yoichi Murakami
- Laboratory for Zero-Carbon Energy, Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan.
- Department of Mechanical Engineering, Institute of Science Tokyo, Tokyo, Japan.
- Department of Transdisciplinary Science & Engineering, Institute of Science Tokyo, Tokyo, Japan.
| |
Collapse
|
2
|
Chen C, Cao L, Liu Y, Li Z, Li ZH, Zhou G, Zhang D, Huang X, Wang Y, Li G, Liu L, Yuan YY, Zhang Y, Wang Q, Chen Y, Shi Z, Fang Q, Huang Z, Lai Z, Han Y. Investigating a Seemingly Simple Imine-Linked Covalent Organic Framework Structure. J Am Chem Soc 2024; 146:35504-35512. [PMID: 39665464 DOI: 10.1021/jacs.4c16678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
The structures of covalent organic frameworks (COFs) are typically determined through modeling based on powder X-ray diffraction. However, the intrinsically limited crystallinity of COFs often results in structural determinations of low fidelity. Here, we present real-space imaging of an extensively studied two-dimensional imine-based COF. Contrary to the conventional understanding that this COF features uniform hexagonal pores, our observations reveal the presence of two distinct sets of pores with differences in shape and size. Motivated by this finding, we conducted reciprocal-space characterizations, complemented by solid-state nuclear magnetic resonance spectroscopy and density functional theory calculations, to reevaluate this seemingly simple structure. The collective results allow for the establishment of a new structural model for this landmark COF and its derivatives, differing from the conventional model in both intra- and interlayer configurations. Furthermore, we identified various previously unrecognized defective structures through real-space imaging, which have significant implications for COF applications in separation and catalysis. Our study demonstrates the complexity and heterogeneity of COF structures, while also highlighting the imperative for structural reevaluation using advanced characterization techniques.
Collapse
Affiliation(s)
- Cailing Chen
- Physical Science and Engineering Division (PSE), Advanced Membranes and Porous Materials (AMPM) Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Li Cao
- Physical Science and Engineering Division (PSE), Advanced Membranes and Porous Materials (AMPM) Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Yaozu Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zhihao Li
- School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Center for Electron Microscopy, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, China
| | - Zhen-Hua Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Guojun Zhou
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-10691, Sweden
| | - Daliang Zhang
- Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Xuehai Huang
- School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Center for Electron Microscopy, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, China
| | - Yu Wang
- School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Center for Electron Microscopy, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, China
| | - Guanxing Li
- Physical Science and Engineering Division (PSE), Advanced Membranes and Porous Materials (AMPM) Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Lingmei Liu
- Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - You-You Yuan
- Imaging and Characterization Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Yaping Zhang
- Imaging and Characterization Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Qingxiao Wang
- Imaging and Characterization Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Yiqiang Chen
- Imaging and Characterization Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zhehao Huang
- School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Center for Electron Microscopy, South China University of Technology, Guangzhou 510640, China
- Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Guangzhou 510640, China
| | - Zhiping Lai
- Physical Science and Engineering Division (PSE), Advanced Membranes and Porous Materials (AMPM) Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Yu Han
- School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Center for Electron Microscopy, South China University of Technology, Guangzhou 510640, China
- Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Guangzhou 510640, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
3
|
Liu S, Wei L, Zeng T, Jiang W, Qiu Y, Yao X, Wang Q, Zhao Y, Zhang YB. Single-Crystal Dynamic Covalent Organic Frameworks for Adaptive Guest Alignments. J Am Chem Soc 2024; 146:34053-34063. [PMID: 39614830 DOI: 10.1021/jacs.4c13377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Dynamic 3D covalent organic frameworks (COFs) have shown a concerted structural transformation upon adaptive guest inclusion. However, the origin of the conformational mobility and the host-guest adaptivity remain conjecture of the pedal motions of revolving imine linkages, often without considering the steric hindrance from the interwoven frameworks. Here, we present atomic-level observation of the rotational and translational dynamics in single-crystal COF-300 upon adaptive guest inclusion of various organic molecules, featuring multiple rotamers of covalent linkages and switchable interframework noncovalent interactions. Specifically, we developed a diffusion gradient transimination protocol to facilitate the growth of COF single crystals, enabling a high-resolution X-ray diffraction structural analysis. We uncovered metastable and low-symmetry intermediate phases from contracted to expanded phases during structural evolution. We identified torsion angles in the terephthalaldehyde diimine motifs that switch from anti-periplanar to syn-periplanar/anticlinal conformations. Moreover, the rotational dynamics of the imine linkage were concurrent with the translational dynamics of tetraphenylmethane units, which tend to form the translational quadruple phenyl embrace. Such conformational mobility allows the frameworks to adapt to various guest molecules, such as alcohols, esters, phenols, and diols, featuring double linear, herringbone, zigzag chains, triple helix, and tubular alignments. Quantitative energy analyses revealed that such dynamic structure transformations are not arbitrary but follow specific pathways that resemble protein folding. The work is paving the way to developing robust, dynamic, and crystalline molecular sponges for studying the condensed structure of liquids without the need for further crystallization.
Collapse
Affiliation(s)
- Shan Liu
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Lei Wei
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Tengwu Zeng
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Wentao Jiang
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Yu Qiu
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Xuan Yao
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Qisheng Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academic of Sciences, Shanghai 201210, China
| | - Yingbo Zhao
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Yue-Biao Zhang
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
4
|
Zhang X, Hu J, Liu H, Sun T, Wang Z, Zhao Y, Zhang YB, Huai P, Ma Y, Jiang S. Determining Covalent Organic Framework Structures Using Electron Crystallography and Computational Intelligence. J Am Chem Soc 2024. [PMID: 39621315 DOI: 10.1021/jacs.4c12757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
The structural characterization of new materials often poses immense challenges, especially when obtaining single-crystal structures is difficult, which is a common difficulty with covalent organic frameworks (COFs). Despite this, understanding the atomic structure is crucial as it provides insights into the arrangement and connectivity of organic building blocks, offering the opportunity to establish the correlation of structure-function relationships and unravel material properties. In this study, we present an approach for determining the structures of COFs, an integration of electron crystallography and computational intelligence (COF+). By applying established chemistry knowledge and employing particle swarm optimization (PSO) for trial structure generation, we overcome existing limitations, thus paving the way for advancements in COF structural determination. We have successfully implemented this technique on four representative COFs, each with unique characteristics. These examples underline the accuracy and efficacy of our approach in addressing the challenges tied to COF structural determination. Furthermore, our approach has revealed new structure candidates with different topologies or interpenetrations that are chemically feasible. This discovery demonstrates the capability of our algorithm in constructing trial COF structures without being influenced by topological factors. Our new approach to COF structure determination represents a significant advancement in the field and opens new avenues for exploring the properties and applications of COF materials.
Collapse
Affiliation(s)
- Xiangyu Zhang
- School of Physical Science and Technology & Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Junyi Hu
- School of Physical Science and Technology & Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Huiyu Liu
- School of Physical Science and Technology & Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Tu Sun
- School of Physical Science and Technology & Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Zidi Wang
- School of Physical Science and Technology & Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Yingbo Zhao
- School of Physical Science and Technology & Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Yue-Biao Zhang
- School of Physical Science and Technology & Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Ping Huai
- Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Yanhang Ma
- School of Physical Science and Technology & Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Shan Jiang
- School of Physical Science and Technology & Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
5
|
Shi X, Li H, Chen T, Ren J, Zhao W, Patra BC, Kang C, Zhang Z, Zhao D. Precise Separation of Complex Ultrafine Molecules through Solvating Two-Dimensional Covalent Organic Framework Membranes. Angew Chem Int Ed Engl 2024:e202421661. [PMID: 39623892 DOI: 10.1002/anie.202421661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 11/28/2024] [Indexed: 12/10/2024]
Abstract
Isoporous nanomaterials, with their proven potential for accurate molecular sieving, are of substantial interest in propelling sustainable membrane techniques. Covalent organic frameworks (COFs) are prominent due to their customizable isopores and chemistry. Still, the discrepancy in experimental and theoretical structures poses a challenge to developing COF membranes for molecular separations. Here, we report high-selectivity sieving of complex ultrafine molecules through solvating pore-to-pore-aligned two-dimensional COF membranes. Our structurally oriented membrane shows reversible interlayer expansion with intralayer shift in response to solvent exposure. This dynamic deformation induced by solvents leads to a reduction in the aperture of the membrane's sieving pores, which correlates with the number of COF layers. The resultant membranes yield largely improved molecular selectivity to discriminate binary and trinary complex mixtures, exceeding the conventional COF membranes. The membrane's robustness against solvents and physical aging permits extremely stable microporosity and reliable operation for over 3000 h. This exceptional performance positions our membrane as an alternative to enriching and purifying value-added chemicals, such as active pharmaceutical ingredients.
Collapse
Affiliation(s)
- Xiansong Shi
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, 117585, Singapore
| | - He Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, 117585, Singapore
| | - Ting Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, 117585, Singapore
| | - Junyu Ren
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, 117585, Singapore
| | - Wei Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, 117585, Singapore
| | - Bidhan Chandra Patra
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, 117585, Singapore
| | - Chengjun Kang
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, 117585, Singapore
| | - Zhaoqiang Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, 117585, Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, 117585, Singapore
| |
Collapse
|
6
|
Sobczak SK, Drwęska J, Gromelska W, Roztocki K, Janiak AM. Multivariate Flexible Metal-Organic Frameworks and Covalent Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402486. [PMID: 39380355 DOI: 10.1002/smll.202402486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/20/2024] [Indexed: 10/10/2024]
Abstract
Precise control of the void environment, achieved through multiple functional groups and enhanced by structural adaptations to guest molecules, stands at the forefront of scientific inquiry. Flexible multivariate open framework materials (OFMs), including covalent organic frameworks and metal-organic frameworks, meet these criteria and are expected to play a crucial role in gas storage and separation, pollutant removal, and catalysis. Nevertheless, there is a notable lack of critical evaluation of achievements in their chemistry and future prospects for their development or implementation. To provide a comprehensive historical context, the initial discussion explores into the realm of "classical" flexible OFMs, where their origin, various modes of flexibility, similarities to proteins, advanced tuning methods, and recent applications are explored. Subsequently, multivariate flexible materials, the methodologies involved in their synthesis, and horizons of their application are focussed. Furthermore, the reader to the concept of spatial distribution is introduced, providing a brief overview of the latest reports that have contributed to its elucidation. In summary, the critical review not only explores the landscape of multivariate flexible materials but also sheds light on the obstacles that the scientific community must overcome to fully unlock the potential of this fascinating field.
Collapse
Affiliation(s)
- Szymon K Sobczak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
| | - Joanna Drwęska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
| | - Wiktoria Gromelska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
| | - Kornel Roztocki
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
| | - Agnieszka M Janiak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
| |
Collapse
|
7
|
Sun K, Qian Y, Li D, Jiang HL. Reticular Materials for Photocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411118. [PMID: 39601158 DOI: 10.1002/adma.202411118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/25/2024] [Indexed: 11/29/2024]
Abstract
Photocatalysis leverages solar energy to overcome the thermodynamic barrier, enabling efficient chemical reactions under mild conditions. It can greatly reduce reliance on traditional energy sources and has attracted significant research interest. Reticular materials, including metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), represent a class of crystalline materials constructed from molecular building blocks linked by coordination and covalent bonds, respectively. Reticular materials function as heterogeneous catalysts, combining well-defined structures and high tailorability akin to homogeneous catalysts. In this review, the regulation of light absorption, charge separation, and surface reactions in the photocatalytic process through precise molecular-level design based on the features of reticular materials is elaborated. Notably, for MOFsmicroenvironment modulation around catalytic sites affects photocatalytic performance is delved, with emphasis on their unique dynamic and flexible microenvironments. For COFs, the inherent excitonic effects due to their fully organic nature is discussed and highlight the strategies to regulate excitonic effects for charge- and/or energy-transfer-mediated photocatalysis. Finally, the current challenges and future directions in this field, aiming to provide a comprehensive understanding of how reticular materials can be optimized for enhanced photocatalysis is discussed.
Collapse
Affiliation(s)
- Kang Sun
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yunyang Qian
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Dandan Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
8
|
Dai N, Qian Y, Wang D, Huang J, Guan X, Lin Z, Yang W, Wang R, Huang J, Zang SQ, Jiang HL. Regulation of Coordinating Anions around Single Co(II) Sites in a Covalent Organic Framework for Boosting CO 2 Photoreduction. PRECISION CHEMISTRY 2024; 2:600-609. [PMID: 39611027 PMCID: PMC11600349 DOI: 10.1021/prechem.4c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 11/30/2024]
Abstract
While photocatalytic CO2 reduction has been intensively investigated, reports on the influence of anions coordinated to catalytic metal sites on CO2 photoreduction remain limited. Herein, different coordinated anions (F-, Cl-, OAc-, and NO3 -) around single Co sites installed on bipyridine-based three-component covalent organic frameworks (COFs) were synthesized, affording TBD-COF-Co-X (X = F, Cl, OAc, and NO3), for photocatalytic CO2 reduction. Notably, the presence of these coordinated anions on the Co sites significantly influences the photocatalytic performance, where TBD-COF-Co-F exhibits superior activity to its counterparts. Combined experimental and theoretical results indicate that the enhanced activity in TBD-COF-Co-F is attributed to its efficient charge transfer, high CO2 adsorption capacity, and low energy barrier for CO2 activation. This study provides a new strategy for boosting COF photocatalysis through coordinated anion regulation around catalytic metal sites.
Collapse
Affiliation(s)
- Nan Dai
- Hefei
National Research Center for Physical Sciences at the Microscale,
Department of Chemistry, University of Science
and Technology of China, Hefei, Anhui 230026, China
- College
of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
- School
of Chemistry and Pharmaceutical Engineering, Hefei Normal University, Hefei, Anhui 230061, China
| | - Yunyang Qian
- Hefei
National Research Center for Physical Sciences at the Microscale,
Department of Chemistry, University of Science
and Technology of China, Hefei, Anhui 230026, China
| | - Denan Wang
- Department of Chemistry and Schiller Institute of Integrated Science
and Society, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jiajia Huang
- Hefei
National Research Center for Physical Sciences at the Microscale,
Department of Chemistry, University of Science
and Technology of China, Hefei, Anhui 230026, China
| | - Xinyu Guan
- Hefei
National Research Center for Physical Sciences at the Microscale,
Department of Chemistry, University of Science
and Technology of China, Hefei, Anhui 230026, China
| | - Zhongyuan Lin
- Hefei
National Research Center for Physical Sciences at the Microscale,
Department of Chemistry, University of Science
and Technology of China, Hefei, Anhui 230026, China
| | - Weijie Yang
- School
of Energy and Power Engineering, North China
Electric Power University, Baoding, Hebei 071003, China
| | - Rui Wang
- College
of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jier Huang
- Department of Chemistry and Schiller Institute of Integrated Science
and Society, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Shuang-Quan Zang
- College
of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Hai-Long Jiang
- Hefei
National Research Center for Physical Sciences at the Microscale,
Department of Chemistry, University of Science
and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
9
|
Lassitter T, Hastings J, Neumann SE, Yaghi OM, Glover TG. Gas Adsorption in Flexible COF-506 and COF-506-Cu. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39561087 DOI: 10.1021/acs.langmuir.4c03534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Flexible covalent-organic frameworks (COFs) display a variety of guest-dependent dynamic behaviors, but because these are an emerging class of materials, very little experimental adsorption data exists. This work examines the adsorption properties of COF-506 and COF-506-Cu utilizing various adsorbates as probe molecules. These materials have small surface areas (<100 m2/g) but still have significant capacity for methanol and isopropanol compared to activated carbon, even though the COF contains approximately 1/10th the surface area of many activated carbons. Isotherms for ethane/ethylene collected up to 1 bar show moderate selectivity for ethylene, but interestingly, this selectivity is reversed when the isotherms are measured up to 5 bar. The change in selectivity occurs because the ethane isotherm has a distinct stepwise increase in capacity near 4 bar. The adsorption data indicate broad generalizations and analogies of COFs to activated carbon should be avoided; that the adsorption capacity COFs may not correlate to surface area; and that high-pressure adsorption isotherms may have steps in the adsorption isotherm where capacity increases significantly.
Collapse
Affiliation(s)
- Thomas Lassitter
- Department of Chemical & Biomolecular Engineering, University of South Alabama, Mobile, Alabama 36688, United States
| | - Jon Hastings
- Department of Chemical & Biomolecular Engineering, University of South Alabama, Mobile, Alabama 36688, United States
| | - S Ephraim Neumann
- Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
| | - Omar M Yaghi
- Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
| | - T Grant Glover
- Department of Chemical & Biomolecular Engineering, University of South Alabama, Mobile, Alabama 36688, United States
| |
Collapse
|
10
|
Sandru M, Prache M, Macron T, Căta L, Ahunbay MG, Hägg MB, Maurin G, Barboiu M. Rubbery organic frameworks (ROFs) toward ultrapermeable CO 2-selective membranes. SCIENCE ADVANCES 2024; 10:eadq5024. [PMID: 39536097 PMCID: PMC11559614 DOI: 10.1126/sciadv.adq5024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
The capture of CO2 is of high interest in our society representing an essential tool to mitigate man-made climate warming. Membrane technology applied for CO2 capture offers several advantages in terms of energy savings, simple operation, and easy scale-up. Glassy membranes are associated with low gas permeability that negatively affect on their industrial implementation. Oppositely, rubbery membranes offer high permeability, but their selectivity is low. Here we report rubbery organic frameworks (ROFs) combining the high permeability of soft matrices with the high sieving selectivity of molecular frameworks. The best performing membranes provide a CO2/N2 selectivity up to 104 with a CO2 permeability up to 1000 Barrer, representing relevant performances for industrial implementation. Water vapors have a positive effect on CO2 permeability, and the CO2/N2 selectivity is higher than in dry conditions, as most of CO2 gas emissions are present in fully humidified gas streams. The synergetic high permeability/selectivity performances are superior to that observed with current state-of-the-art polymeric membranes.
Collapse
Affiliation(s)
- Marius Sandru
- SINTEF Industry, SINTEF AS, NO-7465, Trondheim, Norway
- Department of Chemical Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Marie Prache
- Department of Chemical Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Thomas Macron
- Institut Européen des Membranes, Adaptive Supramolecular, Nanosystems Group, University of Montpellier, ENSCM, CNRS, Place Eugène Bataillon, CC 047, F-34095, Montpellier, France
| | - Lidia Căta
- Babes-Bolyai University, Supramolecular Organic and Organometallic Chemistry Center (SOOMCC), Cluj-Napoca, 11 Arany Janos str., 400028, Cluj-Napoca, Romania
| | - Mehmet Göktuğ Ahunbay
- Institut Charles Gerhardt Montpellier, Univ. Montpellier, CNRS, ENSCM, Place Eugène Bataillon, CC 047, F-34095, Montpellier, France
- Department of Chemical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - May-Britt Hägg
- Department of Chemical Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Guillaume Maurin
- Institut Charles Gerhardt Montpellier, Univ. Montpellier, CNRS, ENSCM, Place Eugène Bataillon, CC 047, F-34095, Montpellier, France
| | - Mihail Barboiu
- Institut Européen des Membranes, Adaptive Supramolecular, Nanosystems Group, University of Montpellier, ENSCM, CNRS, Place Eugène Bataillon, CC 047, F-34095, Montpellier, France
- Babes-Bolyai University, Supramolecular Organic and Organometallic Chemistry Center (SOOMCC), Cluj-Napoca, 11 Arany Janos str., 400028, Cluj-Napoca, Romania
| |
Collapse
|
11
|
Yu J, Yang G, Gao ML, Wang H, Jiang HL. Chiral Ligand-Decorated Rhodium Nanoparticles Incorporated in Covalent Organic Framework for Asymmetric Catalysis. Angew Chem Int Ed Engl 2024; 63:e202412643. [PMID: 39101718 DOI: 10.1002/anie.202412643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/06/2024]
Abstract
While metal nanoparticles (NPs) have demonstrated their great potential in catalysis, introducing chiral microenvironment around metal NPs to achieve efficient conversion and high enantioselectivity remains a long-standing challenge. In this work, tiny Rh NPs, modified by chiral diene ligands (Lx) bearing diverse functional groups, are incorporated into a covalent organic framework (COF) for the asymmetric 1,4-addition reactions between arylboronic acids and nitroalkenes. Though Rh NPs hosted in the COF are inactive, decorating Rh NPs with Lx creates the active Rh-Lx interface and induces high activity. Moreover, chiral microenvironment modulation around Rh NPs by altering the groups on chiral diene ligands greatly optimizes the enantioselectivity (up to 95.6 % ee). Mechanistic investigations indicate that the formation of hydrogen-bonding interaction between Lx and nitroalkenes plays critical roles in the resulting enantioselectivity. This work highlights the significance of chiral microenvironment modulation around metal NPs by chiral ligand decoration for heterogeneous asymmetric catalysis.
Collapse
Affiliation(s)
- Jiangtao Yu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Ge Yang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Ming-Liang Gao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - He Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
12
|
Wang X, Liu H, Sun M, Gao F, Feng X, Xu M, Fan W, Sun D. Functionalization of Covalent Organic Frameworks with Cyclopentadienyl Cobalt for C 2H 2/CO 2 Separation. Angew Chem Int Ed Engl 2024:e202420801. [PMID: 39498958 DOI: 10.1002/anie.202420801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/07/2024]
Abstract
Emerging covalent organic frameworks (COFs) have received great attention for their unique features, but the limited building blocks restrict their structural diversity and performance exploration. Reticular chemistry provides guidance for the structural expansion and performance regulation of COFs. Herein, we constructed two novel two-dimensional (2D) COFs functionalized with cyclopentadienyl cobalt, denoted as UPC-COF-1 and UPC-COF-2, via [4+2] imine condensation with diamine building blocks of different length. Theoretical simulations combined with experimental results reveal that UPC-COF-1 with shorter building blocks, narrower pore sizes, and stronger host-guest interactions has better C2H2/CO2 separation performance. In addition, UPC-COF-1 can maintain separation stability in the presence of water vapor and methane impurities. This work provides a new evidence for the performance regulation of isoreticular COFs with modular and tunable building blocks.
Collapse
Affiliation(s)
- Xiaokang Wang
- School of Materials Science and Engineering, China University of Petroleum, East China, Qingdao Shandong, 266580, China
| | - Hongyan Liu
- School of Materials Science and Engineering, China University of Petroleum, East China, Qingdao Shandong, 266580, China
| | - Meng Sun
- School of Materials Science and Engineering, China University of Petroleum, East China, Qingdao Shandong, 266580, China
| | - Fei Gao
- School of Materials Science and Engineering, China University of Petroleum, East China, Qingdao Shandong, 266580, China
| | - Xueying Feng
- School of Materials Science and Engineering, China University of Petroleum, East China, Qingdao Shandong, 266580, China
| | - Mingming Xu
- School of Materials Science and Engineering, China University of Petroleum, East China, Qingdao Shandong, 266580, China
| | - Weidong Fan
- School of Materials Science and Engineering, China University of Petroleum, East China, Qingdao Shandong, 266580, China
| | - Daofeng Sun
- School of Materials Science and Engineering, China University of Petroleum, East China, Qingdao Shandong, 266580, China
| |
Collapse
|
13
|
Zhang B, Liu X, Bodesheim D, Li W, Clausner A, Liu J, Jost B, Dianat A, Dong R, Feng X, Cuniberti G, Liao Z, Zschech E. Fracture Behavior of a 2D Imine-Based Polymer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407017. [PMID: 39264281 PMCID: PMC11558127 DOI: 10.1002/advs.202407017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/27/2024] [Indexed: 09/13/2024]
Abstract
2D polymers have emerged as a highly promising category of nanomaterials, owing to their exceptional properties. However, the understanding of their fracture behavior and failure mechanisms remains still limited, posing challenges to their durability in practical applications. This work presents an in-depth study of the fracture kinetics of a 2D polyimine film, utilizing in situ tensile testing within a transmission electron microscope (TEM). Employing meticulously optimized transferring and patterning techniques, an elastic strain of ≈6.5% is achieved, corresponding to an elastic modulus of (8.6 ± 2.5) GPa of polycrystalline 2D polyimine thin films. In step-by-step fractures, multiple cracking events uncover the initiation and development of side crack near the main crack tip which toughens the 2D film. Simultaneously captured strain evolution through digital image correlation (DIC) analysis and observation on the crack edge confirm the occurrence of transgranular fracture patterns apart from intergranular fracture. A preferred cleavage orientation in transgranular fracture is attributed to the difference in directional flexibility along distinct orientations, which is substantiated by density functional-based tight binding (DFTB) calculations. These findings construct a comprehensive understanding of intrinsic mechanical properties and fracture behavior of an imine-linked polymer and provide insights and implications for the rational design of 2D polymers.
Collapse
Affiliation(s)
- Bowen Zhang
- Fraunhofer Institute for Ceramic Technologies and System (IKTS)Maria‐Reiche‐Straße 201109DresdenGermany
- Faculty of Electrical and Computer EngineeringTechnical University of Dresden01062DresdenGermany
| | - Xiaohui Liu
- Faculty of Chemistry and Food ChemistryTechnical University of Dresden01062DresdenGermany
| | - David Bodesheim
- Institute for Materials Science and Max Bergmann Center for BiomaterialsTechnical University of Dresden01062DresdenGermany
| | - Wei Li
- College of Chemistry and Chemical EngineeringLanzhou UniversityLanzhou730000P. R. China
| | - André Clausner
- Fraunhofer Institute for Ceramic Technologies and System (IKTS)Maria‐Reiche‐Straße 201109DresdenGermany
| | - Jinxin Liu
- Faculty of Chemistry and Food ChemistryTechnical University of Dresden01062DresdenGermany
| | - Birgit Jost
- Fraunhofer Institute for Ceramic Technologies and System (IKTS)Maria‐Reiche‐Straße 201109DresdenGermany
| | - Arezoo Dianat
- Institute for Materials Science and Max Bergmann Center for BiomaterialsTechnical University of Dresden01062DresdenGermany
| | - Renhao Dong
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of EducationSchool of Chemistry and Chemical EngineeringShandong UniversityJinan250100P. R. China
| | - Xinliang Feng
- Faculty of Chemistry and Food ChemistryTechnical University of Dresden01062DresdenGermany
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center for BiomaterialsTechnical University of Dresden01062DresdenGermany
- Dresden Center for Computational Materials Science (DCMS)Technical University of Dresden01062DresdenGermany
| | - Zhongquan Liao
- Fraunhofer Institute for Ceramic Technologies and System (IKTS)Maria‐Reiche‐Straße 201109DresdenGermany
| | - Ehrenfried Zschech
- Faculty of Electrical and Computer EngineeringTechnical University of Dresden01062DresdenGermany
| |
Collapse
|
14
|
Zadehnazari A, Khosropour A, Zarei A, Khazdooz L, Amirjalayer S, Auras F, Abbaspourrad A. Viologen-Derived Covalent Organic Frameworks: Advancing PFAS Removal Technology with High Adsorption Capacity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405176. [PMID: 39115339 DOI: 10.1002/smll.202405176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/21/2024] [Indexed: 11/21/2024]
Abstract
The escalating presence of per- and polyfluoroalkyl substances (PFAS) in drinking water poses urgent public health concerns, necessitating effective removal. This study presents a groundbreaking approach, using viologen to synthesize covalent organic framework nanospheres: MELEM-COF and MEL-COF. Characterized by highly crystalline features, these nanospheres exhibit exceptional affinity for diverse anionic PFAS compounds, achieving simultaneous removal of multiple contaminants within 30 min. Investigating six anionic PFAS compounds, MEL- and MELEM-COFs achieved 90.0-99.0% removal efficiency. The integrated analysis unveils the synergistic contributions of COF morphology and functional properties to PFAS adsorption. Notably, MELEM-COF, with cationic surfaces, exploits electrostatic and dipole interactions, with a 2500 mg g-1 adsorption capacity-surpassing all reported COFs to date. MELEM-COF exhibits rapid exchange kinetics, reaching equilibrium within 30 min. These findings deepen the understanding of COF materials and promise avenues for refining COF-based adsorption strategies.
Collapse
Affiliation(s)
- Amin Zadehnazari
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| | - Ahmadreza Khosropour
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| | - Amin Zarei
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| | - Leila Khazdooz
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| | - Saeed Amirjalayer
- Institute for Solid State Theory, Center for Nanotechnology and Center for Multiscale Theory and Computation, University of Münster, Wilhelm-Klemm-Straße 10, 48149, Münster, Germany
| | - Florian Auras
- Faculty of Chemistry and Food Chemistry, TUD Dresden University of Technology, 01217, Dresden, Germany
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| |
Collapse
|
15
|
Pratasouskaya A, Bon V, Müller A, Kaskel S, Auras F. Dynamic Two-Dimensional Covalent Organic Frameworks with Large Solvent-Induced Lattice Expansion. J Am Chem Soc 2024; 146:29491-29495. [PMID: 39404348 DOI: 10.1021/jacs.4c08918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Dynamic covalent organic frameworks (COFs) can switch reversibly between crystalline phases with different unit cell parameters and porosities upon physisorption of guest molecules. While impressive changes in unit cell volumes have been realized for three-dimensional frameworks, the solvent-induced volume changes of two-dimensional (2D) COFs have remained comparably small. We have now developed a series of 2D COFs where we systematically varied the length of the interconnecting bridge units. The optimized materials achieve solvent-induced expansions of up to 85% relative to the volume of the solvent-free contracted COFs. These structural changes are fully reversible and the frameworks fully retain their high degree of crystalline order. This study introduces a versatile design strategy for dynamic 2D COFs, which could enable future applications of these materials in gas separation and sensing.
Collapse
Affiliation(s)
- Anastasiya Pratasouskaya
- Faculty of Chemistry and Food Chemistry, TUD Dresden University of Technology, 01217 Dresden, Germany
| | - Volodymyr Bon
- Department of Inorganic Chemistry, TUD Dresden University of Technology, 01062 Dresden, Germany
| | - Alina Müller
- Faculty of Chemistry and Food Chemistry, TUD Dresden University of Technology, 01217 Dresden, Germany
| | - Stefan Kaskel
- Department of Inorganic Chemistry, TUD Dresden University of Technology, 01062 Dresden, Germany
| | - Florian Auras
- Faculty of Chemistry and Food Chemistry, TUD Dresden University of Technology, 01217 Dresden, Germany
| |
Collapse
|
16
|
Yu B, Tao Y, Yao X, Jin Y, Liu S, Xu T, Wang H, Wu H, Zhou W, Zhou X, Ding X, Wang X, Xiao X, Zhang YB, Jiang J. Single-Crystalline 3D Covalent Organic Frameworks with Exceptionally High Specific Surface Areas and Gas Storage Capacities. J Am Chem Soc 2024; 146:28932-28940. [PMID: 39392614 DOI: 10.1021/jacs.4c09680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Single-crystalline covalent organic frameworks (COFs) are highly desirable toward understanding their pore chemistry and functions. Herein, two 50-100 μm single-crystalline three-dimensional (3D) COFs, TAM-TFPB-COF and TAPB-TFS-COF, were prepared from the condensation of 4,4',4″,4‴-methanetetrayltetraaniline (TAM) with 3,3',5,5'-tetrakis(4-formylphenyl)bimesityl (TFPB) and 3,3',5,5'-tetrakis(4-aminophenyl)bimesityl (TAPB) with 4,4',4″,4‴-silanetetrayltetrabenzaldehyde (TFS), respectively, in 1,4-dioxane under the catalysis of acetic acid. Single-crystal 3D electron diffraction reveals the triply interpenetrated dia-b networks of TAM-TFPB-COF with atom resolution, while the isostructure of TAPB-TFS-COF was disclosed by synchrotron single-crystal X-ray diffraction and synchrotron powder X-ray diffraction with Le Bail refinements. The nitrogen sorption measurements at 77 K disclose the microporosity nature of both activated COFs with their exceptionally high Brunauer-Emmett-Teller surface areas of 3533 and 4107 m2 g-1, representing the thus far record high specific surface area among imine-bonded COFs. This enables the activated COFs to exhibit also the record high methane uptake capacities up to 28.9 wt % (570 cm3 g-1) at 25 °C and 200 bar among all COFs reported thus far. This work not only presents the structures of two single-crystalline COFs with exceptional microporosity but also provides an example of atom engineering to adjust permanent microporous structures for methane storage.
Collapse
Affiliation(s)
- Baoqiu Yu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yu Tao
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Xuan Yao
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Yucheng Jin
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shan Liu
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Tongtong Xu
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Hailong Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hui Wu
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102, United States
| | - Wei Zhou
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102, United States
| | - Xin Zhou
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xu Ding
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiao Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Yue-Biao Zhang
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Jianzhuang Jiang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
17
|
Tian X, Cao L, Zhang K, Zhang R, Li X, Yin C, Wang S. Molecular Weaving Towards Flexible Covalent Organic Framework Membranes for Efficient Gas Separations. Angew Chem Int Ed Engl 2024:e202416864. [PMID: 39377209 DOI: 10.1002/anie.202416864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/28/2024] [Accepted: 10/08/2024] [Indexed: 10/09/2024]
Abstract
Covalent organic frameworks (COFs) exhibit considerable potential in gas separations owing to their remarkable stability and tunable pore structures. Nevertheless, their application as gas separation membranes is hindered by limited size-sieving capabilities and poor processability. In this study, we propose a novel molecular weaving strategy that combines hydroxyl polymers and 2D TpPa-SO3H COF nanosheets, achieving high gas separation efficiency. Driven by the strong electrostatic interactions, the hydroxyl chains thread through the COF pores, effectively weaving and assembling the composites to achieve exceptional flexibility and high mechanical strength. The penetrated chains also reduce the effective pore size of COFs, and combined with the "secondary confinement effect" stemming from abundant CO2 sorption sites in the channels, the PVA@TpPa-SO3H membrane demonstrates a remarkable H2 permeance of 1267.3 GPU and an H2/CO2 selectivity of 43, surpassing the 2008 Robson upper bound limit. This facile strategy holds promise for the manufacture of large-area COF-based membranes for small-sized gas separations.
Collapse
Affiliation(s)
- Xiaohe Tian
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- State Key Laboratory of Petroleum Pollution Control, Beijing, 102206, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511340, China
| | - Li Cao
- Division of Physical Science and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Keming Zhang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- State Key Laboratory of Petroleum Pollution Control, Beijing, 102206, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511340, China
| | - Rui Zhang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- State Key Laboratory of Petroleum Pollution Control, Beijing, 102206, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511340, China
| | - Xueqin Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Chongshan Yin
- Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, School of Physics and Electronic Science, Changsha University of Science and Technology, Changsha, 410114, China
| | - Shaofei Wang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- State Key Laboratory of Petroleum Pollution Control, Beijing, 102206, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511340, China
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang, 832003, China
| |
Collapse
|
18
|
Sun Q, Du J, Song Z, Yao A, Liu L, Ma J, Cao D, He W, Hassan SU, Guan J, Liu J. Oriented 1D Metal-Organic Frameworks for Selective Chemisorption by a Substitution-Insertion Mechanism. NANO LETTERS 2024. [PMID: 39356732 DOI: 10.1021/acs.nanolett.4c02921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Chemisorption on organometallic-based adsorbents is crucial for the controlled separation and purification of targeted systems. Herein, oriented 1D NH2-CuBDC·H2O metal-organic frameworks (MOFs) featuring accessible CuII sites are successfully fabricated by bottom-up interfacial polymerization. The prepared MOFs, as deliberately self-assembled secondary particles, exhibit a visually detectable coordination-responsive characteristic induced by the nucleophilic substitution and competitive coordination of guest molecules. As a versatile phase-change chemosorbent, the MOFs exhibit unprecedented NH3 capture (18.83 mmol g-1 at 298 K) and bioethanol dehydration performance (enriching ethanol from 99% to 99.99% within 10 min by direct adsorption separation of liquid mixtures of ethanol and water). Furthermore, the raw materials for preparing the 1D MOFs are inexpensive and readily available, and the facile regeneration with water washing at room temperature effectively minimizes the energy consumption and cost of recycling, enabling it to be the most valuable adsorbent for the removal and separation of target substances.
Collapse
Affiliation(s)
- Qian Sun
- Department of Environmental Science and Engineering University of Science and Technology of China, Hefei, Anhui 230052, China
| | - Jingcheng Du
- Department of Environmental Science and Engineering University of Science and Technology of China, Hefei, Anhui 230052, China
| | - Ziye Song
- Department of Environmental Science and Engineering University of Science and Technology of China, Hefei, Anhui 230052, China
| | - Ayan Yao
- Department of Environmental Science and Engineering University of Science and Technology of China, Hefei, Anhui 230052, China
| | - Linghao Liu
- Department of Environmental Science and Engineering University of Science and Technology of China, Hefei, Anhui 230052, China
| | - Ji Ma
- Department of Environmental Science and Engineering University of Science and Technology of China, Hefei, Anhui 230052, China
| | - Dong Cao
- Department of Environmental Science and Engineering University of Science and Technology of China, Hefei, Anhui 230052, China
| | - Wen He
- Department of Environmental Science and Engineering University of Science and Technology of China, Hefei, Anhui 230052, China
| | - Shabi Ul Hassan
- Department of Environmental Science and Engineering University of Science and Technology of China, Hefei, Anhui 230052, China
| | - Jian Guan
- Department of Environmental Science and Engineering University of Science and Technology of China, Hefei, Anhui 230052, China
| | - Jiangtao Liu
- Department of Environmental Science and Engineering University of Science and Technology of China, Hefei, Anhui 230052, China
| |
Collapse
|
19
|
Di Z, Qi Y, Yu XX, Li HR, Zuo MX, Ren TT, Li CP, Zhao Y. Facile and scale-up syntheses of high-performance enzyme@meso-HOF biocatalysts. Chem Sci 2024:d4sc04619f. [PMID: 39355226 PMCID: PMC11440381 DOI: 10.1039/d4sc04619f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024] Open
Abstract
Facile immobilization is essential for the wide application of enzymes in large-scale catalytic processes. However, exploration of suitable enzyme supports poses an unmet challenge, particularly in the context of scale-up biocatalyst fabrication. In this study, we present facile and scale-up syntheses of high-performance enzyme biocatalysts via in situ encapsulation of cytochrome c (Cyt-c) as mono-enzyme and glucose oxidase (GOx)-horseradish peroxidase (HRP) as dual-enzyme cascade (GOx&HRP) systems, respectively, into a stable mesoporous hydrogen-bonded organic framework (meso-HOF) matrix. In situ encapsulation reactions occur under ambient conditions, and facilitate scale up (∼3 g per reaction) of enzyme@meso-HOF within a very short period (5-10 min). The resultant biocatalysts not only exhibit high enzyme loading (37.9 wt% for mono-enzyme and 22.8 wt% for dual-enzyme) with minimal leaching, but also demonstrate high catalytic activity, superior reusability, and durability. This study represents an example of scale-up fabrication of enzyme@meso-HOF biocatalysts on the gram level and highlights superior meso-HOFs as suitable host matrices for biomolecular entities.
Collapse
Affiliation(s)
- Zhengyi Di
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University Tianjin 300387 China
| | - Yu Qi
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University Tianjin 300387 China
| | - Xin-Xin Yu
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University Tianjin 300387 China
| | - Hai-Ruo Li
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University Tianjin 300387 China
| | - Meng-Xuan Zuo
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University Tianjin 300387 China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Tian-Tian Ren
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University Tianjin 300387 China
| | - Cheng-Peng Li
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University Tianjin 300387 China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| |
Collapse
|
20
|
Lu M, Zhang SB, Li RH, Dong LZ, Yang MY, Huang P, Liu YF, Li ZH, Zhang H, Zhang M, Li SL, Lan YQ. 3D Covalent Organic Frameworks with 16-Connectivity for Photocatalytic C(sp 3)-C(sp 2) Cross-Coupling. J Am Chem Soc 2024; 146:25832-25840. [PMID: 39231362 DOI: 10.1021/jacs.4c08951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The connectivity (valency) of building blocks for constructing 3D covalent organic frameworks (COFs) has long been limited to 4, 6, 8, and 12. Developing a higher connectivity remains a great challenge in the field of COF structural design. Herein, this work reports a hierarchical expansion strategy for making 16-connected building blocks to construct 3D COFs with sqc topology. The [16 + 2] construction achieved by condensation between a 16-connected carbazolyl dicyanobenzene-based building block (CzTPN) and linear diamino linkers (BD or Bpy) affords two 3D COFs (named CzBD COF and CzBpy COF). Furthermore, attributed to the well-organized donor-acceptor (D-A) heterojunction, the Ni chelated CzBpy COF (Ni@CzBpy COF) exhibits excellent performance for photoredox/Ni dual catalytic C(sp3)-C(sp2) cross-coupling of alkyltrifluoroborates with aryl halides, achieving a maximum 98% conversion and 94% yield for various substrates. This work developed the first case of high-connectivity COFs bearing 16-connected units, which is the highest connectivity reported until now, and achieved efficient photocatalysis applications, thus greatly enriching the possibilities of COFs.
Collapse
Affiliation(s)
- Meng Lu
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou 510006, P.R. China
| | - Shuai-Bing Zhang
- School of Chemistry and Environment Engineering, Changchun University of Science and Technology, Changchun 130022, P.R. China
| | - Run-Han Li
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou 510006, P.R. China
| | - Long-Zhang Dong
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou 510006, P.R. China
| | - Ming-Yi Yang
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou 510006, P.R. China
| | - Pei Huang
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou 510006, P.R. China
| | - Yu-Fei Liu
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou 510006, P.R. China
| | - Ze-Hui Li
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou 510006, P.R. China
| | - Han Zhang
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou 510006, P.R. China
| | - Mi Zhang
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou 510006, P.R. China
| | - Shun-Li Li
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou 510006, P.R. China
| | - Ya-Qian Lan
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou 510006, P.R. China
| |
Collapse
|
21
|
Auras F, Ascherl L, Bon V, Vornholt SM, Krause S, Döblinger M, Bessinger D, Reuter S, Chapman KW, Kaskel S, Friend RH, Bein T. Dynamic two-dimensional covalent organic frameworks. Nat Chem 2024; 16:1373-1380. [PMID: 38702406 DOI: 10.1038/s41557-024-01527-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 04/02/2024] [Indexed: 05/06/2024]
Abstract
Porous covalent organic frameworks (COFs) enable the realization of functional materials with molecular precision. Past research has typically focused on generating rigid frameworks where structural and optoelectronic properties are static. Here we report dynamic two-dimensional (2D) COFs that can open and close their pores upon uptake or removal of guests while retaining their crystalline long-range order. Constructing dynamic, yet crystalline and robust frameworks requires a well-controlled degree of flexibility. We have achieved this through a 'wine rack' design where rigid π-stacked columns of perylene diimides are interconnected by non-stacked, flexible bridges. The resulting COFs show stepwise phase transformations between their respective contracted-pore and open-pore conformations with up to 40% increase in unit-cell volume. This variable geometry provides a handle for introducing stimuli-responsive optoelectronic properties. We illustrate this by demonstrating switchable optical absorption and emission characteristics, which approximate 'null-aggregates' with monomer-like behaviour in the contracted COFs. This work provides a design strategy for dynamic 2D COFs that are potentially useful for realizing stimuli-responsive materials.
Collapse
Affiliation(s)
- Florian Auras
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
- Faculty of Chemistry and Food Chemistry, TUD Dresden University of Technology, Dresden, Germany.
| | - Laura Ascherl
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Munich, Germany
| | - Volodymyr Bon
- Department of Inorganic Chemistry, TUD Dresden University of Technology, Dresden, Germany
| | - Simon M Vornholt
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Simon Krause
- Department of Inorganic Chemistry, TUD Dresden University of Technology, Dresden, Germany
- Nanochemistry Department, Max-Planck-Institute for Solid State Research, Stuttgart, Germany
| | - Markus Döblinger
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Munich, Germany
| | - Derya Bessinger
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Munich, Germany
| | - Stephan Reuter
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Munich, Germany
| | - Karena W Chapman
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Stefan Kaskel
- Department of Inorganic Chemistry, TUD Dresden University of Technology, Dresden, Germany
| | | | - Thomas Bein
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Munich, Germany.
| |
Collapse
|
22
|
Bourda L, Bhandary S, Ito S, Göb CR, Van Der Voort P, Van Hecke K. Analysis of COF-300 synthesis: probing degradation processes and 3D electron diffraction structure. IUCRJ 2024; 11:510-518. [PMID: 38727171 PMCID: PMC11220877 DOI: 10.1107/s2052252524003713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/23/2024] [Indexed: 07/04/2024]
Abstract
Although COF-300 is often used as an example to study the synthesis and structure of (3D) covalent organic frameworks (COFs), knowledge of the underlying synthetic processes is still fragmented. Here, an optimized synthetic procedure based on a combination of linker protection and modulation was applied. Using this approach, the influence of time and temperature on the synthesis of COF-300 was studied. Synthesis times that were too short produced materials with limited crystallinity and porosity, lacking the typical pore flexibility associated with COF-300. On the other hand, synthesis times that were too long could be characterized by loss of crystallinity and pore order by degradation of the tetrakis(4-aminophenyl)methane (TAM) linker used. The presence of the degradation product was confirmed by visual inspection, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). As TAM is by far the most popular linker for the synthesis of 3D COFs, this degradation process might be one of the reasons why the development of 3D COFs is still lagging compared with 2D COFs. However, COF crystals obtained via an optimized procedure could be structurally probed using 3D electron diffraction (3DED). The 3DED analysis resulted in a full structure determination of COF-300 at atomic resolution with satisfying data parameters. Comparison of our 3DED-derived structural model with previously reported single-crystal X-ray diffraction data for this material, as well as parameters derived from the Cambridge Structural Database, demonstrates the high accuracy of the 3DED method for structure determination. This validation might accelerate the exploitation of 3DED as a structure determination technique for COFs and other porous materials.
Collapse
Affiliation(s)
- Laurens Bourda
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281–S3, 9000Ghent, Belgium
- COMOC – Center for Ordered Materials, Organometallics and Catalysis – Department of ChemistryGhent UniversityKrijgslaan 281–S39000GhentBelgium
| | - Subhrajyoti Bhandary
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281–S3, 9000Ghent, Belgium
| | - Sho Ito
- Rigaku Corporation, Haijima, Tokyo, Japan
| | | | - Pascal Van Der Voort
- COMOC – Center for Ordered Materials, Organometallics and Catalysis – Department of ChemistryGhent UniversityKrijgslaan 281–S39000GhentBelgium
| | - Kristof Van Hecke
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281–S3, 9000Ghent, Belgium
| |
Collapse
|
23
|
Wei Y, Zhong C, Sun Y, Ma S, Ni M, Wu X, Yan Y, Yang L, Khodov IA, Ge J, Li Y, Lin D, Wang Y, Bao Q, Zhang H, Wang S, Song J, Lin J, Xie L, Huang W. C-H-activated Csp 2-Csp 3 diastereoselective gridization enables ultraviolet-emitting stereo-molecular nanohydrocarbons with mulitple H···H interactions. Nat Commun 2024; 15:5438. [PMID: 38937440 PMCID: PMC11211434 DOI: 10.1038/s41467-024-48130-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 04/22/2024] [Indexed: 06/29/2024] Open
Abstract
Gridization is an emerging molecular integration technology that enables the creation of multifunctional organic semiconductors through precise linkages. While Friedel-Crafts gridization of fluorenols is potent, direct linkage among fluorene molecules poses a challenge. Herein, we report an achiral Pd-PPh3-cataylized diastereoselective (>99:1 d.r.) gridization based on the C-H-activation of fluorene to give dimeric and trimeric windmill-type nanogrids (DWGs and TWGs). These non-conjugated stereo-nanogrids showcase intramolecular multiple H…H interactions with a low field shift to 8.51 ppm and circularly polarized luminescence with high luminescent dissymmetry factors (|gPL | = 0.012). Significantly, the nondoped organic light-emitting diodes (OLEDs) utilizing cis-trans-TWG1 emitter present an ultraviolet electroluminescent peak at ~386 nm (CIE: 0.17, 0.04) with a maximum external quantum efficiency of 4.17%, marking the highest record among nondoped ultraviolet OLEDs based on hydrocarbon compounds and the pioneering ultraviolet OLEDs based on macrocycles. These nanohydrocarbon offer potential nanoscafflolds for ultraviolet light-emitting optoelectronic applications.
Collapse
Affiliation(s)
- Ying Wei
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Chunxiao Zhong
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Yue Sun
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Shuwei Ma
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Mingjian Ni
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Xiangping Wu
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Yongxia Yan
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Lei Yang
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Ilya A Khodov
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Akademicheskaya str. 1, Ivanovo, 153045, Russian Federation
| | - Jiaoyang Ge
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Yang Li
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Dongqing Lin
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Yongxia Wang
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Qiujing Bao
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - He Zhang
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Shasha Wang
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Juan Song
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Jinyi Lin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China.
| | - Linghai Xie
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China.
- School of Flexible Electronics (SoFE) and Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou, 450046, China.
| | - Wei Huang
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China.
- School of Flexible Electronics (SoFE) and Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou, 450046, China.
| |
Collapse
|
24
|
Wang X, Xie H, Sengupta D, Sha F, Otake KI, Chen Y, Idrees KB, Kirlikovali KO, Son FA, Wang M, Ren J, Notestein JM, Kitagawa S, Farha OK. Precise Modulation of CO 2 Sorption in Ti 8Ce 2-Oxo Clusters: Elucidating Lewis Acidity of the Ce Metal Sites and Structural Flexibility. J Am Chem Soc 2024; 146:15130-15142. [PMID: 38795041 DOI: 10.1021/jacs.4c01092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2024]
Abstract
Investigating the structure-property correlation in porous materials is a fundamental and consistent focus in various scientific domains, especially within sorption research. Metal oxide clusters with capping ligands, characterized by intrinsic cavities formed through specific solid-state packing, demonstrate significant potential as versatile platforms for sorption investigations due to their precisely tunable atomic structures and inherent long-range order. This study presents a series of Ti8Ce2-oxo clusters with subtle variations in coordinated linkers and explores their sorption behavior. Notably, Ti8Ce2-BA (BA denotes benzoic acid) manifests a distinctive two-step profile during the CO2 adsorption, accompanied by a hysteresis loop. This observation marks a new instance within the metal oxide cluster field. Of intrigue, the presence of unsaturated Ce(IV) sites was found to be correlated with the stepped sorption property. Moreover, the introduction of an electrophilic fluorine atom, positioned ortho or para to the benzoic acid, facilitated precise control over gate pressure and stepped sorption quantities. Advanced in situ techniques systematically unraveled the underlying mechanism behind this unique sorption behavior. The findings elucidate that robust Lewis base-acid interactions are established between the CO2 molecules and Ce ions, consequently altering the conformation of coordinated linkers. Conversely, the F atoms primarily contribute to gate pressure variation by influencing the Lewis acidity of the Ce sites. This research advances the understanding in fabricating metal-oxo clusters with structural flexibility and provides profound insights into their host-guest interaction motifs. These insights hold substantial promise across diverse fields and offer valuable guidance for future adsorbent designs grounded in fundamental theories of structure-property relationships.
Collapse
Affiliation(s)
- Xingjie Wang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Haomiao Xie
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Debabrata Sengupta
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Fanrui Sha
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ken-Ichi Otake
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yongwei Chen
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Karam B Idrees
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kent O Kirlikovali
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Florencia A Son
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Meng Wang
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Junli Ren
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Justin M Notestein
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Omar K Farha
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
25
|
Wang X, Jin Y, Zheng T, Li N, Han Y, Yu B, Wang K, Qi D, Wang T, Jiang J. Crystalline nanosheets of three-dimensional supramolecular frameworks with uniform thickness and high stability. Chem Sci 2024; 15:7586-7595. [PMID: 38784730 PMCID: PMC11110140 DOI: 10.1039/d4sc00656a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/14/2024] [Indexed: 05/25/2024] Open
Abstract
Fabricating three dimensional (3D) supramolecular frameworks (SMFs) into stable crystalline nanosheets remains a great challenge due to the homogeneous and weak inter-building block interactions along 3D directions. Herein, crystalline nanosheets of a 3D SMF with a uniform thickness of 4.8 ± 0.1 nm immobilized with Pt nanocrystals on the surface (Q[8]/Pt NSs) were fabricated via the solid-liquid reaction between cucurbit[8]uril/H2PtCl6 single crystals and hydrazine hydrate with the help of gas and heat yielded during the reaction process. A series of experiments and theoretical calculations reveal the ultrahigh stability of Q[8]/Pt NSs due to the high density hydrogen bonding interaction among neighboring Q[8] molecules. This in turn endows Q[8]/Pt NSs with excellent photocatalytic and continuous thermocatalytic CO oxidation performance, representing the thus-far reported best Pt nano-material-based catalysts.
Collapse
Affiliation(s)
- Xinxin Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Tianyu Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Ning Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Yuesheng Han
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Baoqiu Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Kang Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Dongdong Qi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Tianyu Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
26
|
Guo R, Zha Z, Wang J, Wang Z, Guiver MD, Zhao S. Aminal-Linked Covalent Organic Framework Membranes Achieve Superior Ion Selectivity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308904. [PMID: 38098304 DOI: 10.1002/smll.202308904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/07/2023] [Indexed: 05/30/2024]
Abstract
High-salinity wastewater treatment is perceived as a global water resource recycling challenge that must be addressed to achieve zero discharge. Monovalent/divalent salt separation using membrane technology provides a promising strategy for sulfate removal from chlor-alkali brine. However, existing desalination membranes often show low water permeance and insufficient ion selectivity. Herein, an aminal-linked covalent organic framework (COF) membrane featuring a regular long-range pore size of 7 Å and achieving superior ion selectivity is reported, in which a uniform COF layer with subnanosized channels is assembled by the chemical splicing of 1,4-phthalaldehyde (TPA)-piperazine (PZ) COF through an amidation reaction with trimesoyl chloride (TMC). The chemically spliced TPA-PZ (sTPA-PZ) membrane maintains an inherent pore structure and exhibits a water permeance of 13.1 L m-2 h-1 bar-1, a Na2SO4 rejection of 99.1%, and a Cl-/SO4 2- separation factor of 66 for mixed-salt separation, which outperforms all state-of-the-art COF-based membranes reported. Furthermore, the single-stage treatment of NaCl/Na2SO4 mixed-salt separation achieves a high NaCl purity of above 95% and a recovery rate of ≈60%, offering great potential for industrial application in monovalent/divalent salt separation and wastewater resource utilization. Therefore, the aminal-linked COF membrane developed in this work provides a new research avenue for designing smart/advanced membrane materials for angstrom-scale separations.
Collapse
Affiliation(s)
- Rui Guo
- School of Chemical Engineering and Technology, Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhiyuan Zha
- School of Chemical Engineering and Technology, Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Jixiao Wang
- School of Chemical Engineering and Technology, Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhi Wang
- School of Chemical Engineering and Technology, Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Michael D Guiver
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, China
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300072, China
| | - Song Zhao
- School of Chemical Engineering and Technology, Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
27
|
Liu S, Huang Y, Wan J, Zheng JJ, Krishna R, Li Y, Ge K, Tang J, Duan J. Fine-regulation of gradient gate-opening in nanoporous crystals for sieving separation of ternary C3 hydrocarbons. Chem Sci 2024; 15:6583-6588. [PMID: 38699248 PMCID: PMC11062114 DOI: 10.1039/d3sc05489f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/17/2024] [Indexed: 05/05/2024] Open
Abstract
The adsorptive separation of ternary propyne (C3H4)/propylene (C3H6)/propane (C3H8) mixtures is of significant importance due to its energy efficiency. However, achieving this process using an adsorbent has not yet been accomplished. To tackle such a challenge, herein, we present a novel approach of fine-regulation of the gradient of gate-opening in soft nanoporous crystals. Through node substitution, an exclusive gate-opening to C3H4 (17.1 kPa) in NTU-65-FeZr has been tailored into a sequential response of C3H4 (1.6 kPa), C3H6 (19.4 kPa), and finally C3H8 (57.2 kPa) in NTU-65-CoTi, of which the gradient framework changes have been validated by in situ powder X-ray diffractions and modeling calculations. Such a significant breakthrough enables NTU-65-CoTi to sieve the ternary mixtures of C3H4/C3H6/C3H8 under ambient conditions, particularly, highly pure C3H8 (99.9%) and C3H6 (99.5%) can be obtained from the vacuum PSA scheme. In addition, the fully reversible structural change ensures no loss in performance during the cycling dynamic separations. Moving forward, regulating gradient gate-opening can be conveniently extended to other families of soft nanoporous crystals, making it a powerful tool to optimize these materials for more complex applications.
Collapse
Affiliation(s)
- Shuang Liu
- Henan Engineering Research Center for Green Synthesis of Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University Shangqiu 476000 China
| | - Yuhang Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Jingmeng Wan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Jia-Jia Zheng
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences Beijing 100190 China
| | - Rajamani Krishna
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Yi Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Kai Ge
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Jie Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Jingui Duan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University Nanjing 211816 China
| |
Collapse
|
28
|
Qian Y, Jiang HL. Structural Regulation of Covalent Organic Frameworks for Catalysis. Acc Chem Res 2024; 57:1214-1226. [PMID: 38552221 DOI: 10.1021/acs.accounts.4c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
ConspectusChemical reactions can be promoted at lower temperatures and pressures, thereby reducing the energy input, by introducing suitable catalysts. Despite its significance, the quest for efficient and stable catalysts remains a significant challenge. In this context, addressing the efficiency of catalysts stands out as a paramount concern. However, the challenges posed by the vague structure and limited tailorability of traditional catalysts would make it highly desirable to fabricate optimized catalysts based on the understanding of structure-activity relationships. Covalent organic frameworks (COFs), a subclass of fully designed crystalline materials formed by the polymerization of organic building blocks through covalent bonds have garnered widespread attention in catalysis. The precise and customizable structures of COFs, coupled with attributes such as high surface area and facile functional modification, make COFs attractive molecular platforms for catalytic applications. These inherent advantages position COFs as ideal catalysts, facilitating the elucidation of structure-performance relationships and thereby further improving the catalysis. Nevertheless, there is a lack of systematic emphasis on and summary of structural regulation at the atomic/molecular level for COF catalysis. Consequently, there is a growing need to summarize this research field and provide deep insights into COF-based catalysis to promote its further development.In this Account, we will summarize recent advances in structural regulation achieved in COF-based catalysts, placing an emphasis on the molecular design of the structures for enhanced catalysis. Considering the unique components and structural advantages of COFs, we present the fundamental principles for the rational design of structural regulation in COF-based catalysis. This Account starts by presenting an overview of catalysis and explaining why COFs are promising catalysts. Then, we introduce the molecular design principle for COF catalysis. Next, we present the following three aspects of the specific strategies for structural regulation of COF-based catalysts: (1) By designing different functional groups and integrating metal species into the organic unit, the activity and/or selectivity can be finely modulated. (2) Regulating the linkage facilitates charge transfer and/or modulates the electronic structure of catalytic metal sites, and accordingly, the intrinsic activity/selectivity can be further improved. (3) By means of pore wall/space engineering, the microenvironment surrounding catalytic metal sites can be modulated to optimize performance. Finally, the current challenges and future developments in the structural regulation of COF-based catalysts are discussed in detail. This Account provides insight into the structural regulation of COF-based catalysts at the atomic/molecular level toward improving their performance, which would provide significant inspiration for the design and structural regulation of other heterogeneous catalysts.
Collapse
Affiliation(s)
- Yunyang Qian
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| |
Collapse
|
29
|
Liu X, Wang Z, Zhang Y, Yang N, Gui B, Sun J, Wang C. Gas-Triggered Gate-Opening in a Flexible Three-Dimensional Covalent Organic Framework. J Am Chem Soc 2024. [PMID: 38615324 DOI: 10.1021/jacs.4c01331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The development of novel soft porous crystals (SPCs) that can be transformed from nonporous to porous crystals is significant because of their promising applications in gas storage and separation. Herein, we systematically investigated for the first time the gas-triggered gate-opening behavior of three-dimensional covalent organic frameworks (3D COFs) with flexible building blocks. FCOF-5, a 3D COF containing C-O single bonds in the backbone, exhibits a unique "S-shaped" isotherm for various gases, such as CO2, C2, and C3 hydrocarbons. According to in situ characterization, FCOF-5 undergoes a pressure-induced closed-to-open structural transition due to the rotation of flexible C-O single bonds in the framework. Furthermore, the gated hysteretic sorption property of FCOF-5 can enable its use as an absorbent for the efficient removal of C3H4 from C3H4/C3H6 mixtures. Therefore, 3D COFs synthesized from flexible building blocks represent a new type of SPC with gate-opening characteristics. This study will strongly inspire us to design other 3D COF-based SPCs for interesting applications in the future.
Collapse
Affiliation(s)
- Xiaoling Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Zhifang Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ya Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Na Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Bo Gui
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Junliang Sun
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Cheng Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
30
|
Su LH, Qian HL, Yang C, Wang C, Wang Z, Yan XP. Integrating molecular imprinting into flexible covalent organic frameworks for selective recognition and efficient extraction of aflatoxins. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133755. [PMID: 38359765 DOI: 10.1016/j.jhazmat.2024.133755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
Covalent organic frameworks (COFs) are promising adsorbents for extraction, but their selectivity for molecular recognition remains a challenging issue due to the very limited structural design with rigid structure. Herein, we report an elegant strategy for the design and synthesis of molecularly imprinted flexible COFs (MI-FCOFs) via one-pot reaction between the flexible building block of 2,4,6-tris(4-formylphenoxy)- 1,3,5-triazine and linear 4-phenylenediamine for selective extraction of aflatoxins. The flexible chain structure enabled the developed MI-FCOF to adjust the shape and conformation of frameworks to suit the template molecule, giving high selectivity for aflatoxins recognition. Moreover, MI-FCOF with abundant imprinted sites and function groups exhibited an exceptional adsorption capacity of 258.4 mg g-1 for dummy template which is 3 times that of no-imprinted FCOF (NI-FCOF). Coupling MI-FCOF based solid-phase extraction with high-performance liquid chromatography gave low detection limits of 0.003-0.09 ng mL-1 and good precision with relative standard deviations ≤ 6.7% for the determination of aflatoxins. Recoveries for the spiked rice, corn, wheat and peanut samples were in the range of 85.4%- 105.4%. The high selectivity of the developed MI-FCOF allows matrix-free determination of AFTs in food samples. This work offers a new way to the design of MI-FCOF for selective molecular recognition.
Collapse
Affiliation(s)
- Li-Hong Su
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hai-Long Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Cheng Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
31
|
Zhang ZC, Wang PL, Sun YF, Yang T, Ding SY, Wang W. Rational Synthesis of Functionalized Covalent Organic Frameworks via Four-Component Reaction. J Am Chem Soc 2024; 146:4822-4829. [PMID: 38329466 DOI: 10.1021/jacs.3c13172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The construction of function-oriented covalent organic frameworks (COFs) remains a challenge as it requires simultaneous consideration of diversified structures, robust linkage, and tailorable functionalities. Herein, we report the rational synthesis of functionalized COFs via a four-component reaction strategy. Through the four-component Debus-Radziszewski reaction, 11 N-substituted imidazole-based COFs with diversified structures were facilely constructed from readily available building blocks. By forming the N-substituted imidazole linkage, these synthesized COFs displayed ultrastability toward strong acids and base. Moreover, the four components reaction allows the rational synthesis of COFs with tailorable functionalities. As an example, the phosphonate-functionalized COF (LZU-530) was rationally constructed for the efficient adsorption of uranium(VI). The uranium(VI) uptake of LZU-530 reaches up to 95 mg·g-1 in 2 M HNO3, which is the highest uptake of the existing organic porous materials under such harsh conditions. Our results highlight the use of multicomponent reaction for the rational synthesis of robust and functionalized COFs toward targeted applications.
Collapse
Affiliation(s)
- Zhi-Cong Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Peng-Lai Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yi-Fan Sun
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Tong Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, Gansu 730000, China
| | - San-Yuan Ding
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Wei Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
32
|
Liu X, Ding X, Zheng T, Jin Y, Wang H, Yang X, Yu B, Jiang J. Single Cobalt Ion-Immobilized Covalent Organic Framework for Lithium-Sulfur Batteries with Enhanced Rate Capabilities. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4741-4750. [PMID: 38239127 DOI: 10.1021/acsami.3c16319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Covalent organic frameworks (COFs) are notable for their remarkable structure, function designability, and tailorability, as well as stability, and the introduction of "open metal sites" ensures the efficient binding of small molecules and activation of substrates for heterogeneous catalysis and energy storage. Herein, we use the postsynthetic metal sites to catalyze polysulfide conversion and to boost the binding affinity to active matter for lithium-sulfur batteries (LSBs). A dual-pore COF, USTB-27, with hxl topology has been successfully assembled from the imine chemical reaction between 2,3,8,9,14,15-hexa(4-formylphenyl)diquinoxalino [2,3-a:2',3'-c]phenazine and [2,2'-bipyridine]-5,5'-diamine. The chelating nitrogen sites of both modules are able to postsynthetically functionalize with single cobalt sites to generate USTB-27-Co. The discharge capacity of the sulfur-loaded S@USTB-27-Co composite in a LSB is 1063, 945, 836, 765, 696, and 644 mA h g-1 at current densities of 0.1, 0.2, 0.5, 1.0, 2.0, and 5.0 C, respectively, much superior to that of non-cobalt-functionalized species S@USTB-27. Following the increased current densities, the rate performance of S@USTB-27-Co is much better than that of S@USTB-27. In particular, the capacity retention at 5.0 C has a magnificent increase from 19% for the latter species to 61% for the former one. Moreover, S@USTB-27-Co exhibits a higher specific capacity of 543 mA h g-1 than that of S@USTB-27 (402 mA h g-1) at a current density of 1.0 C after electrochemical cycling for 500 runs. This work illustrates the "open metal sites" strategy to engineer the active chemical component conversion in COF channels as well as their binding strength for specific applications.
Collapse
Affiliation(s)
- Xiaolin Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Xu Ding
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Tianyu Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiya Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Baoqiu Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
33
|
Zeng T, Ling Y, Jiang W, Yao X, Tao Y, Liu S, Liu H, Yang T, Wen W, Jiang S, Zhao Y, Ma Y, Zhang YB. Atomic observation and structural evolution of covalent organic framework rotamers. Proc Natl Acad Sci U S A 2024; 121:e2320237121. [PMID: 38252821 PMCID: PMC10835055 DOI: 10.1073/pnas.2320237121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Dynamic 3D covalent organic frameworks (COFs) have shown concerted structural transformation and adaptive gas adsorption due to the conformational diversity of organic linkers. However, the isolation and observation of COF rotamers constitute undergoing challenges due to their comparable free energy and subtle rotational energy barrier. Here, we report the atomic-level observation and structural evolution of COF rotamers by cryo-3D electron diffraction and synchrotron powder X-ray diffraction. Specifically, we optimize the crystallinity and morphology of COF-320 to manifest its coherent dynamic responses upon adaptive inclusion of guest molecules. We observe a significant crystal expansion of 29 vol% upon hydration and a giant swelling with volume change up to 78 vol% upon solvation. We record the structural evolution from a non-porous contracted phase to two narrow-pore intermediate phases and the fully opened expanded phase using n-butane as a stabilizing probe at ambient conditions. We uncover the rotational freedom of biphenylene giving rise to significant conformational changes on the diimine motifs from synclinal to syn-periplanar and anticlinal rotamers. We illustrate the 10-fold increment of pore volumes and 100% enhancement of methane uptake capacity of COF-320 at 100 bar and 298 K. The present findings shed light on the design of smarter organic porous materials to maximize host-guest interaction and boost gas uptake capacity through progressive structural transformation.
Collapse
Affiliation(s)
- Tengwu Zeng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Yang Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai201210, China
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai201210, China
| | - Wentao Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Xuan Yao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Yu Tao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Shan Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Huiyu Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Tieying Yang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai201210, China
| | - Wen Wen
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai201210, China
| | - Shan Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai201210, China
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai201210, China
| | - Yingbo Zhao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai201210, China
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai201210, China
| | - Yanhang Ma
- School of Physical Science and Technology, ShanghaiTech University, Shanghai201210, China
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai201210, China
| | - Yue-Biao Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai201210, China
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai201210, China
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai201210, China
| |
Collapse
|
34
|
Zha X, Xu G, Khan NA, Yan Z, Zuo M, Xiong Y, Liu Y, You H, Wu Y, Liu K, Li M, Wang D. Sculpting Mesoscopic Helical Chirality into Covalent Organic Framework Nanotubes from Entirely Achiral Building Blocks. Angew Chem Int Ed Engl 2024; 63:e202316385. [PMID: 38010600 DOI: 10.1002/anie.202316385] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 11/29/2023]
Abstract
The diversification of chirality in covalent organic frameworks (COFs) holds immense promise for expanding their properties and functionality. Herein, we introduce an innovative approach for imparting helical chirality to COFs and fabricating a family of chiral COF nanotubes with mesoscopic helicity from entirely achiral building blocks for the first time. We present an effective 2,3-diaminopyridine-mediated supramolecular templating method, which facilitates the prefabrication of helical imine-linked polymer nanotubes using unprecedented achiral symmetric monomers. Through meticulous optimization of crystallization conditions, these helical polymer nanotubes are adeptly converted into imine-linked COF nanotubes boasting impressive surface areas, while well preserving their helical morphology and chiroptical properties. Furthermore, these helical imine-linked polymers or COFs could be subtly transformed into corresponding more stable and functional helical β-ketoenamine-linked and hydrazone-linked COF nanotubes with transferred circular dichroism via monomer exchange. Notably, despite the involvement of covalent bonding breakage and reorganization, these exchange processes overcome thermodynamic disadvantages, allowing mesoscopic helical chirality to be perfectly preserved. This research highlights the potential of mesoscopic helicity in conferring COFs with favourable chiral properties, providing novel insights into the development of multifunctional COFs in the field of chiral materials chemistry.
Collapse
Affiliation(s)
- Xinlin Zha
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, China
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Guilin Xu
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, China
| | - Niaz Ali Khan
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, China
| | - Zhong Yan
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, China
| | - Mengjuan Zuo
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, China
| | - Yi Xiong
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, China
| | - Ying Liu
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, China
| | - Haining You
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, China
| | - Yi Wu
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, China
| | - Ke Liu
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, China
| | - Mufang Li
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, China
| | - Dong Wang
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, China
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
35
|
Yang Y, Lin E, Wang S, Wang T, Wang Z, Zhang Z. Single-Crystal One-Dimensional Porous Ladder Covalent Polymers. J Am Chem Soc 2024; 146:782-790. [PMID: 38165084 DOI: 10.1021/jacs.3c10812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The synthesis of single-crystal, one-dimensional (1D) polymers is of great importance but a formidable challenge. Herein, we report the synthesis of single-crystal 1D ladder polymers in solution by dynamic covalent chemistry. The three-dimensional electron diffraction technique was used to rigorously solve the structure of the crystalline polymers, unveiling that each polymer chain is connected by double covalent bridges and all polymer chains are packed in a staggered and interlaced manner by π-π stacking and hydrogen bonding interactions, making the crystalline polymers highly robust in both thermal and chemical stability. The synthesized single-crystal polymers possess permanent micropores and can efficiently remove CO2 from the C2H2/CO2 mixture to obtain high-purity C2H2, validated by dynamic breakthrough experiments. This work demonstrates the first example of constructing single-crystal 1D porous ladder polymers with double covalent bridges in solution for efficient C2H2/CO2 separation.
Collapse
Affiliation(s)
- Yi Yang
- State Key Laboratory of Medicine Chemistry Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - En Lin
- State Key Laboratory of Medicine Chemistry Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Sa Wang
- State Key Laboratory of Medicine Chemistry Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ting Wang
- State Key Laboratory of Medicine Chemistry Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhifang Wang
- State Key Laboratory of Medicine Chemistry Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhenjie Zhang
- State Key Laboratory of Medicine Chemistry Biology, College of Chemistry, Nankai University, Tianjin 300071, China
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China
- Frontiers Science Center for New Organic Matter, Tianjin 300071, China
- Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China
| |
Collapse
|
36
|
Yang L, Chen Z, Cao Q, Liao H, Gao J, Zhang L, Wei W, Li H, Lu J. Structural Regulation of Photocatalyst to Optimize Hydroxyl Radical Production Pathways for Highly Efficient Photocatalytic Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306758. [PMID: 37865887 DOI: 10.1002/adma.202306758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/29/2023] [Indexed: 10/23/2023]
Abstract
Ring-opening of phenol in wastewater is the pivotal step in photocatalytic degradation. The highly selective generation of catalytical active species (•OH) to facilitate this process presents a significant scientific challenge. Therefore, a novel approach for designing photocatalysts with single-atom containment in metal-covalent organic frameworks (M-COFs) is proposed. The selection of imine-linked COFs containing abundant N and O-chelate sites provides a solid foundation for anchoring metal atom. These dispersed metal atom possess rapid accumulation and transfer capabilities for photogenerated electrons, while the periodic π-conjugated structure in 2D-COFs establishes an effective platform. Additionally, the Lewis acid properties of imine bonds in COFs can enhance the adsorption capacity toward gases with Lewis base properties, such as O2 and N2 . It is demonstrated that the Pd2+ @Tp-TAPT, designed based on this concept, exhibits efficient oxygen adsorption and follows the reaction pathway of O2 →•O2 - →H2 O2 →•OH with high selectivity, thereby achieving completely degradation of refractory phenol through photocatalysis within 10 min. It is anticipated that the selective generation of catalytic active species via advanced material design concepts will serve as a significant reference for achieving precise material catalysis in the future.
Collapse
Affiliation(s)
- Liujun Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhengxi Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Qiang Cao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Huarong Liao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jin Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Long Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Wanyu Wei
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Hua Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
- National Center of International Research on Intelligent New Nanomaterials and Detection Technologies in Environmental Protection, Suzhou, Jiangsu, 215123, China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
- National Center of International Research on Intelligent New Nanomaterials and Detection Technologies in Environmental Protection, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
37
|
Zhong Y, Dong W, Ren S, Li L. Oligo(phenylenevinylene)-Based Covalent Organic Frameworks with Kagome Lattice for Boosting Photocatalytic Hydrogen Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308251. [PMID: 37781857 DOI: 10.1002/adma.202308251] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Covalent organic frameworks (COFs) have shown great advantages as photocatalysts for hydrogen evolution. However, the effect of linkage geometry and type of linkage on the extent of π-electron conjugation in the plane of the framework and photocatalytic properties of COFs remains a significant challenge. Herein, two Kagome (kgm) topologic oligo(phenylenevinylene)-based COFs are designed and synthesized for boosting photocatalytic hydrogen evolution via a "two in one" strategy. Under visible light irradiation, COF-954 with 5 wt% Pt as cocatalyst exhibits high hydrogen evolution rate (HER) of 137.23 mmol g-1 h-1 , outperforming most reported COF-based photocatalysts. More importantly, even in natural seawater, COF-954 shows an average HER of 191.70 mmol g-1 h-1 under ultraviolet-visible (UV-vis) light irradiation. Additionally, the water-drainage experiments indoors and outdoors demonstrate that 25 and 8 mL hydrogen gas could be produced in 80 min under UV-vis light and natural sunlight, respectively, corresponding to a high HER of 167.41 and 53.57 mmol h-1 g-1 . This work not only demonstrates an effective design strategy toward highly efficient COF-based photocatalysts, but also shows the great potential of using the COF-based photocatalysts for photocatalytic hydrogen evolution.
Collapse
Affiliation(s)
- Yuelin Zhong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Wenbo Dong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Shijie Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Longyu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
38
|
Yu B, Li W, Wang X, Li JH, Lin RB, Wang H, Ding X, Jin Y, Yang X, Wu H, Zhou W, Zhang J, Jiang J. Observation of Interpenetrated Topology Isomerism for Covalent Organic Frameworks with Atom-Resolution Single Crystal Structures. J Am Chem Soc 2023; 145:25332-25340. [PMID: 37944150 DOI: 10.1021/jacs.3c09001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Rational control and understanding of isomerism are of significance but still remain a great challenge in reticular frameworks, in particular, for covalent organic frameworks (COFs) due to the complicated synthesis and energy factors. Herein, reaction of 3,3',5,5'-tetra(4-formylphenyl)-2,2',6,6'-tetramethoxy-1,1'-biphenyl (TFTB) with 3,3',5,5'-tetrakis(4-aminophenyl)bimesityl (TAPB) under different reaction conditions affords single crystals of two 3D COF isomers, namely, USTB-20-dia and USTB-20-qtz. Their structures with resolutions up to 0.9-1.1 Å have been directly solved by three-dimensional electron diffraction (3D ED) and synchrotron single crystal X-ray diffraction, respectively. USTB-20-dia and USTB-20-qtz show rare 2 × 2-fold interpenetrated dia-b nets and 3-fold interpenetrated qtz-b frameworks. Comparative studies of the crystal structures of these COFs and theoretical simulation results indicate the crucial role of the flexible molecular configurations of building blocks in the present interpenetrated topology isomerism. This work not only presents the rare COF isomers but also gains an understanding of the formation of framework isomerism from both single crystal structures and theoretical simulation perspectives.
Collapse
Affiliation(s)
- Baoqiu Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Wenliang Li
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P.R. China
| | - Xiao Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Jing-Hong Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Rui-Biao Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Xu Ding
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Xiya Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Hui Wu
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102, United States
| | - Wei Zhou
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102, United States
| | - Jingping Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P.R. China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| |
Collapse
|
39
|
Li X, Mathur A, Liu A, Liu Y. Electrifying Carbon Capture by Developing Nanomaterials at the Interface of Molecular and Process Engineering. Acc Chem Res 2023; 56:2763-2775. [PMID: 37751238 DOI: 10.1021/acs.accounts.3c00321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
ConspectusCarbon capture is an indispensable step toward closing the anthropogenic carbon cycle. However, the large-scale implementation of conventional thermochemical carbon capture technologies is hindered by their low energy efficiency, limited sorbent stability, and complexity in infrastructure integration. A mechanistically different alternative, commonly known as electrochemically mediated carbon capture (EMCC), has garnered increasing research traction over the past few years and relies on electrochemical stimuli instead of thermal or pressure swings for the capture and release of carbon dioxide (CO2). Compared to conventional methods, EMCC can be operated under mild conditions driven by intermittent renewable energy sources and has a flexible design to meet the multiscale demands of carbon capture, offering a potentially sustainable, energy-efficient, and cost-effective solution to CO2 concentration from dilute mixtures or the ambient environment.Nanomaterials have played a crucial role in carbon capture research. For instance, nanoporous materials can provide increased free volumes, surface areas, and active sites for carbon capture through physical or chemical adsorption from the gaseous phase. In contrast, EMCC relies on chemical absorption via acid-base interactions using solubilized CO2 in electrolytes. Therefore, most EMCC sorbents and mediators explored so far have been developed as molecules rather than nanomaterials. In recent years, our team has been focusing on electrifying the carbon capture processes at the molecular, materials, and process levels. We seek to address the most pressing issues associated with EMCC, either in fixed-bed or flow systems, that prevent their practical use. These issues include parasitic reactions with molecular oxygen, insufficient electrode capacity utilization, sorbent crossover, etc. To address these problems, there is an urgent need to develop rationally designed nanomaterials at the interface of molecular electrochemistry and device engineering. This Account provides an overview of recent progress on developing new chemistries and engineering batch/continuous processes for EMCC. We discuss the limitations of current EMCC technology and emphasize why nanomaterials are critical for electrifying carbon capture. First, we introduce the design principles for EMCC sorbents based on redox-active organic CO2 carriers and discuss metrics for their performance evaluation. Second, we showcase how molecular design can tackle problems of sorbent solubility, oxygen stability, and electrolyte compatibility in EMCC. Third, we discuss the early results of nanomaterials as solid sorbents in fixed-bed systems, nonswelling membranes for flow systems, and high-surface-area gas-liquid contactors. Finally, building on the foundation we established through our prior work, we offer perspectives on future directions for nanomaterials to help address the challenges in EMCC.
Collapse
Affiliation(s)
- Xing Li
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Anmol Mathur
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Andong Liu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Yayuan Liu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
40
|
Li H, Dilipkumar A, Abubakar S, Zhao D. Covalent organic frameworks for CO 2 capture: from laboratory curiosity to industry implementation. Chem Soc Rev 2023; 52:6294-6329. [PMID: 37591809 DOI: 10.1039/d2cs00465h] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
CO2 concentration in the atmosphere has increased by about 40% since the 1960s. Among various technologies available for carbon capture, adsorption and membrane processes have been receiving tremendous attention due to their potential to capture CO2 at low costs. The kernel for such processes is the sorbent and membrane materials, and tremendous progress has been made in designing and fabricating novel porous materials for carbon capture. Covalent organic frameworks (COFs), a class of porous crystalline materials, are promising sorbents for CO2 capture due to their high surface area, low density, controllable pore size and structure, and preferable stabilities. However, the absence of synergistic developments between materials and engineering processes hinders achieving the qualitative leap for net-zero emissions. Considering the lack of a timely review on the combination of state-of-the-art COFs and engineering processes, in this Tutorial Review, we emphasize the developments of COFs for meeting the challenges of carbon capture and disclose the strategies of fabricating COFs for realizing industrial implementation. Moreover, this review presents a detailed and basic description of the engineering processes and industrial status of carbon capture. It highlights the importance of machine learning in integrating simulations of molecular and engineering levels. We aim to stimulate both academia and industry communities for joined efforts in bringing COFs to practical carbon capture.
Collapse
Affiliation(s)
- He Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | - Akhil Dilipkumar
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | - Saifudin Abubakar
- ExxonMobil Asia Pacific Pte. Ltd., 1 HarbourFront Place, #06-00 HarbourFront Tower 1, 098633, Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
41
|
Cheng Y, Xin J, Xiao L, Wang X, Zhou X, Li D, Gui B, Sun J, Wang C. A Fluorescent Three-Dimensional Covalent Organic Framework Formed by the Entanglement of Two-Dimensional Sheets. J Am Chem Soc 2023; 145:18737-18741. [PMID: 37584696 DOI: 10.1021/jacs.3c06159] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Herein, we report the introduction of steric hindrance in molecular building blocks to prevent π···π stacking, thus allowing two-dimensional (2D) covalent organic sheets to form three-dimensional (3D) covalent organic frameworks (COFs) through entanglement. Starting from the rationally designed precursors containing a bulky anthracene unit in the vertical direction, a highly crystalline COF (3D-An-COF) was successfully synthesized. Very interestingly, 3D-An-COF was determined as an entangled 2D square net (sql) structure, and the high-resolution data (1.1 Å) obtained by the continuous rotation electron diffraction technique allowed us to directly locate all non-hydrogen atoms. Structurally, the presence of an anthracene group outside the C2h symmetry plane strongly reduces the π···π interactions and promotes the formation of square entanglements. In addition, 3D-An-COF is fluorescent and can be used as a sensor to detect the trace amount of antibiotics in water. This study provides a new strategy for the structural diversification of 3D COFs and will certainly motivate us to construct more entangled COFs for interesting applications in the future.
Collapse
Affiliation(s)
- Yuanpeng Cheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Junjie Xin
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Libang Xiao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xuejiao Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xu Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Danyang Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Bo Gui
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Junliang Sun
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Cheng Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
42
|
Yu L, Wang Y, Sun Y, Tang Y, Xiao Y, Wu G, Peng S, Zhou X. Nanoporous Crystalline Materials for the Recognition and Applications of Nucleic Acids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305171. [PMID: 37616525 DOI: 10.1002/adma.202305171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/12/2023] [Indexed: 08/26/2023]
Abstract
Nucleic acid plays a crucial role in countless biological processes. Hence, there is great interest in its detection and analysis in various fields from chemistry, biology, to medicine. Nanoporous crystalline materials exhibit enormous potential as an effective platform for nucleic acid recognition and application. These materials have highly ordered and uniform pore structures, as well as adjustable surface chemistry and pore size, making them good carriers for nucleic acid extraction, detection, and delivery. In this review, the latest developments in nanoporous crystalline materials, including metal organic frameworks (MOFs), covalent organic frameworks (COFs), and supramolecular organic frameworks (SOFs) for nucleic acid recognition and applications are discussed. Different strategies for functionalizing these materials are explored to specifically identify nucleic acid targets. Their applications in selective separation and detection of nucleic acids are highlighted. They can also be used as DNA/RNA sensors, gene delivery agents, host DNAzymes, and in DNA-based computing. Other applications include catalysis, data storage, and biomimetics. The development of novel nanoporous crystalline materials with enhanced biocompatibility has opened up new avenues in the fields of nucleic acid analysis and therapy, paving the way for the development of sensitive, selective, and cost-effective diagnostic and therapeutic tools with widespread applications.
Collapse
Affiliation(s)
- Long Yu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yuhao Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Yuqing Sun
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Yongling Tang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Yuxiu Xiao
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Gaosong Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Shuang Peng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
43
|
Bai Y, Miao J, Bian X, Wang Q, Gao W, Xue Y, Yang G, Zhu P, Yu J. In situ growth of a cobalt porphyrin-based covalent organic framework on multi-walled carbon nanotubes for ultrasensitive real-time monitoring of living cell-released nitric oxide. Analyst 2023; 148:4219-4226. [PMID: 37540136 DOI: 10.1039/d3an00947e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Nitric oxide (NO), as a critical transcellular messenger, participates in a variety of physiological and pathological processes. However, its real-time detection still faces challenges due to its short half-life and trace amounts. Here, MWCNTs@COF-366-Co was prepared by in situ growth of a cobalt porphyrin-based covalent organic framework (COF-366-Co) on multi-walled carbon nanotubes (MWCNTs), and a unique biosensing platform for ultrasensitive real-time NO determination was established. Remarkably, MWCNTs@COF-366-Co contains plenty of atomically arranged M-N4 active sites for electrocatalysis, which provides more efficient electron transfer pathways and resolves the random arrangement issue of active sites. COF-366-Co with a high surface area contains a large number of exposed active M-N4 sites, providing faster NO transport/diffusion and more efficient electron transfer pathways. Due to the synergy of atomic-level periodic structural features of COF-366-Co and high conductivity of MWCNTs, the MWCNTs@COF-366-Co electrochemical biosensor exhibited excellent NO determination performance in a wide range from 0.09 to 400 μM, with high sensitivity (8.9 μA μM-1 cm-2) and a low limit of detection (16 nM). Moreover, the biosensor has been successfully used to sensitively monitor NO molecules released from human umbilical vein endothelial cells (HUVECs). This research not only designed a multifunctional intelligent biosensor platform, but also provided a broad prospect for continuous dynamic monitoring of the activity of living cells and their released metabolites.
Collapse
Affiliation(s)
- Yujiao Bai
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, P. R. China
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Jiansong Miao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Xiaodi Bian
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Qian Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Wenqing Gao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, P. R. China
| | - Yu Xue
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, P. R. China
| | - Guihua Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, P. R. China
| | - Peihua Zhu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, P. R. China
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| |
Collapse
|
44
|
Lei X, Wang P, Mi M, Zhang Y, Chen A, Cai L, Wang T, Huang R, Wang Y, Chen Y, Li FS. Band splitting and enhanced charge density wave modulation in Mn-implanted CsV 3Sb 5. NANOSCALE ADVANCES 2023; 5:2785-2793. [PMID: 37205292 PMCID: PMC10186988 DOI: 10.1039/d3na00216k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/17/2023] [Indexed: 05/21/2023]
Abstract
Kagome metal CsV3Sb5 has attracted unprecedented attention due to the charge density wave (CDW), Z2 topological surface states and unconventional superconductivity. However, how the paramagnetic bulk CsV3Sb5 interacts with magnetic doping is rarely explored. Here we report a Mn-doped CsV3Sb5 single crystal successfully achieved by ion implantation, which exhibits obvious band splitting and enhanced CDW modulation via angle-resolved photoemission spectroscopy (ARPES). The band splitting is anisotropic and occurs in the entire Brillouin region. We observed a Dirac cone gap at the K point but it closed at 135 K ± 5 K, much higher than the bulk value of ∼94 K, suggesting enhanced CDW modulation. According to the facts of the transferred spectral weight to the Fermi level and weak antiferromagnetic order at low temperature, we ascribe the enhanced CDW to the polariton excitation and Kondo shielding effect. Our study not only offers a simple method to realize deep doping in bulk materials, but also provides an ideal platform to explore the coupling between exotic quantum states in CsV3Sb5.
Collapse
Affiliation(s)
- Xiaoxu Lei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China Hefei 230026 China
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 China
| | - Pengdong Wang
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 China
| | - Mengjuan Mi
- School of Microelectronics, Shandong Technology Center of Nanodevices and Integration, State Key Laboratory of Crystal Materials, Shandong University Jinan 250100 China
| | - Yan Zhang
- CAS Key Laboratory of Nanophotonic Materials and Devices, Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 China
| | - Aixi Chen
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 China
| | - Liwu Cai
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 China
- Nano Science and Technology Institute, University of Science and Technology of China Suzhou 215123 China
| | - Ting Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China Hefei 230026 China
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 China
| | - Rong Huang
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 China
| | - Yilin Wang
- School of Microelectronics, Shandong Technology Center of Nanodevices and Integration, State Key Laboratory of Crystal Materials, Shandong University Jinan 250100 China
| | - Yiyao Chen
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 China
| | - Fang-Sen Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China Hefei 230026 China
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 China
| |
Collapse
|