1
|
Kathayat D, Huang Y, Denis J, Rudoy B, Schwarz H, Szlechter J. LD-transpeptidase-mediated cell envelope remodeling enables developmental transitions and survival in Coxiella burnetii and Legionella pneumophila. J Bacteriol 2025; 207:e0024724. [PMID: 39846729 DOI: 10.1128/jb.00247-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/25/2024] [Indexed: 01/24/2025] Open
Abstract
Coxiella burnetii and Legionella pneumophila are two phylogenetically related bacterial pathogens that exhibit extreme intrinsic resistance when they enter into a dormancy-like state. This enables both pathogens to survive extended periods in growth-limited environments. Survival is dependent upon their ability to undergo developmental transitions into two phenotypically distinct variants, one specialized for intracellular replication and another for prolonged survival in the environment and host. We currently lack an understanding of the mechanisms that mediate these developmental transitions. Here, we performed peptidoglycan (PG) glycoproteome analysis and showed significant enrichment of PG structures catalyzed by LD-transpeptidases (LDTs) in the survival variants of C. burnetii and L. pneumophila. This is supported by the upregulation of LDTs, resulting in susceptibility to carbapenem antibiotics. Furthermore, deletion of the most upregulated LDT, lpg1386, in L. pneumophila significantly changes PG architecture, survival, and susceptibility to antibiotics. Significantly regulated by RpoS, a stationary-phase sigma factor, LDT-dependent PG remodeling is differentially activated by the host intracellular growth environment compared to axenic culture. In addition, β-barrel tethering, a newly discovered mechanism of LDT-mediated cell envelope stabilization, seems not to be specific to the survival variants. Interestingly, an outer membrane (OM) long-chain fatty acid transporter (Lpg1810) is tethered to PG in L. pneumophila. Collectively, these findings show that LDT-mediated PG remodeling is a major determinant of developmental transitions and survival in C. burnetii and L. pneumophila. Understanding this mechanism might inform new therapeutic approaches for treating chronic infections caused by these pathogens, as well as suggest new methods to decontaminate environmental reservoirs during outbreaks.IMPORTANCECoxiella burnetii and L. pneumophila cause Q Fever and Legionnaire's disease in humans, respectively. There is a lack of effective treatments for fatal chronic infections caused by these pathogens, particularly chronic Q Fever. These bacteria survive long term in nutrient-limited environments by differentiating into phenotypically distinct survival variants. Our study revealed that LDTs, a group of PG remodeling enzymes, play a prominent role in the phenotypic differentiations of these bacteria. We show that LDT-targeting carbapenems are effective against the survival variants, thus demanding the exploration of carbapenems for treating chronic infections caused by these pathogens. We report the tethering of a unique OM fatty acid transporter to PG in L. pneumophila that could indicate a novel function of tethering, that is, the uptake of nutrient substrates. Homologs of this transporter are widely present in the Methylobacteriaceae family of bacteria known to survive in water systems like Legionella, thus suggesting a potentially conserved mechanism of bacterial survival in nutrient-limited environments.
Collapse
Affiliation(s)
- Dipak Kathayat
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, USA
| | - Yujia Huang
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, USA
| | - Joee Denis
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, USA
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - Benjamin Rudoy
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, USA
| | - Hana Schwarz
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, USA
| | - Jacob Szlechter
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, USA
| |
Collapse
|
2
|
Walenkiewicz B, VanNieuwenhze MS. Fluorescent d-amino Acid-Based Approach Enabling Fast and Reliable Measure of Antibiotic Susceptibility in Bacterial Cells. ACS Chem Biol 2025; 20:162-171. [PMID: 39668630 DOI: 10.1021/acschembio.4c00639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The threat of multidrug-resistant bacteria has been increasing steadily in the past century, posing a major health risk (Organización Mundial de la Salud. Directrices Sobre Componentes Básicos Para Los Programas de Prevención y Control de Infecciones a Nivel Nacional y de Establecimientos de Atención de Salud Para Pacientes Agudos; Organización Mundial de la Salud: Ginebra, 2017). Even though every year, 226 million antibiotics are prescribed in the United States alone, 50% of these prescriptions are inappropriate for the patient's condition (CDC. Get Smart about Antibiotics Week; Centers for Disease Control and Prevention. 2016,https://www.cdc.gov/media/dpk/antibiotic-resistance/antibiotics-week-2016/dpk-antibiotics-week-2016.html). The increasing abuse of antibiotics in healthcare as well as agriculture has resulted in the rise of antibiotic resistance at an alarming rate. In a clinical setting, timely and accurate recognition of the pathogen allows for the most effective choice of treatment, highlighting the need for novel, fast, and reliable antibiotic susceptibility testing. Traditional susceptibility testing techniques require costly and complex experimental setups or extended cell incubation periods, delaying a timely treatment response to the infection. Herein, we report that a short-pulse fluorescent d-amino acid (FDAA)-based approach provides insight not only into bacterial antibiotic susceptibility but also into the mechanism of action of the antibiotic. Using the FDAA-labeling signal as a reflection of peptidoglycan (PG) integrity after antibiotic treatment, we observed that drugs targeting PG biosynthesis resulted in a significant decrease in fluorescence, while antimicrobials affecting other cellular targets resulted in no fluorescence changes. Our method was validated and optimized via fluorescence microscopy and spectrofluorometry, shortening the required procedure time to 15 min and providing reliably reproducible results. Significantly, we demonstrate that our protocol can be used to identify β-lactam-resistant bacterial strains, further demonstrating the utility of these valuable molecular tools.
Collapse
Affiliation(s)
- Barbara Walenkiewicz
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Michael S VanNieuwenhze
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
3
|
Wang Y, Jiang Z, Zhang K, Tang H, Wang G, Gao J, He G, Liang B, Li L, Yang C, Deng X. Whole-Tumor Clearing and Imaging of Intratumor Microbiota in Three Dimensions with miCDaL Strategy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400694. [PMID: 39378003 PMCID: PMC11600245 DOI: 10.1002/advs.202400694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/16/2024] [Indexed: 11/28/2024]
Abstract
Acquiring detailed spatial information about intratumor microbiota in situ is challenging, which leaves 3D distributions of microbiota within entire tumors largely unexplored. Here, a modified iDISCO-CUBIC tissue clearing and D-amino acid microbiome labeling-based (miCDaL) strategy are proposed, that integrates microbiota in situ labeling, tissue clearing, and whole-mount tissue imaging to enable 3D visualization of indigenous intratumor microbiota. Leveraging whole-mount spatial resolution and centimeter-scale imaging depth, the 3D biogeography of microbiota is successfully charted across various tumors at different developmental stages, providing quantitative spatial insights in relation to host tumors. By incorporating an immunostaining protocol, 3D imaging of the immunologic microenvironment is achieved in both murine and human mammary tumors that is previously assumed to be bacteria-free. Notably, immune infiltrates, including T cells and NK cells, and tertiary lymphoid structures are conspicuously absent in bacteria-colonized regions. This 3D imaging strategy for mapping Indigenous intratumor microbiota offers valuable insights into host-microbiota interactions.
Collapse
Affiliation(s)
- Yuezhou Wang
- State Key Laboratory of Cellular Stress BiologyState‐province Joint Engineering Laboratory of Targeted Drugs from Natural ProductsSchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Zile Jiang
- State Key Laboratory of Cellular Stress BiologyState‐province Joint Engineering Laboratory of Targeted Drugs from Natural ProductsSchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Kai Zhang
- Department of Infectious Diseases and HepatologyXiang'an Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361102China
| | - Huimin Tang
- Cancer Center and Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361102China
| | - Guimei Wang
- Department of PathologyXiang'an Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361102China
| | - Jinshan Gao
- State Key Laboratory of Cellular Stress BiologyState‐province Joint Engineering Laboratory of Targeted Drugs from Natural ProductsSchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Guanghui He
- State Key Laboratory of Cellular Stress BiologyState‐province Joint Engineering Laboratory of Targeted Drugs from Natural ProductsSchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Baoyue Liang
- State Key Laboratory of Cellular Stress BiologyState‐province Joint Engineering Laboratory of Targeted Drugs from Natural ProductsSchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Li Li
- State Key Laboratory of Cellular Stress BiologyState‐province Joint Engineering Laboratory of Targeted Drugs from Natural ProductsSchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentationthe Key Laboratory of Chemical Biology of Fujian ProvinceState Key Laboratory of Physical Chemistry of Solid SurfacesDepartment of Chemical BiologyCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamenFujian361005China
- Institute of Molecular MedicineRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Xianming Deng
- State Key Laboratory of Cellular Stress BiologyState‐province Joint Engineering Laboratory of Targeted Drugs from Natural ProductsSchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
- Department of HematologyThe First Affiliated Hospital of Xiamen UniversityXiamen UniversityXiamenFujian361003China
| |
Collapse
|
4
|
Das SK, Negus D. How do Gram-negative bacteria escape predation by Bdellovibrio bacteriovorus? NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:30. [PMID: 39843563 PMCID: PMC11721376 DOI: 10.1038/s44259-024-00048-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/17/2024] [Indexed: 01/24/2025]
Abstract
Bdellovibrio bacteriovorus is a small predatory bacterium which reproduces by invading and killing Gram-negative bacteria. The natural antimicrobial activity of B. bacteriovorus has garnered interest for the potential to develop this predatory bacterium as a therapeutic agent. Transitioning B. bacteriovorus from 'bench to bedside' will require a complete understanding of all aspects of bacterial predation, including how prey species may escape predation. Here we discuss recent findings relating to how Gram-negative bacteria may escape predation.
Collapse
Affiliation(s)
- Sourav Kumar Das
- Department of Biosciences, Nottingham Trent University, Nottingham, UK
| | - David Negus
- Department of Biosciences, Nottingham Trent University, Nottingham, UK.
| |
Collapse
|
5
|
Alvarez L, Hernandez SB, Torrens G, Weaver AI, Dörr T, Cava F. Control of bacterial cell wall autolysins by peptidoglycan crosslinking mode. Nat Commun 2024; 15:7937. [PMID: 39261529 PMCID: PMC11390936 DOI: 10.1038/s41467-024-52325-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024] Open
Abstract
To withstand their internal turgor pressure and external threats, most bacteria have a protective peptidoglycan (PG) cell wall. The growth of this PG polymer relies on autolysins, enzymes that create space within the structure. Despite extensive research, the regulatory mechanisms governing these PG-degrading enzymes remain poorly understood. Here, we unveil a novel and widespread control mechanism of lytic transglycosylases (LTs), a type of autolysin responsible for breaking down PG glycan chains. Specifically, we show that LD-crosslinks within the PG sacculus act as an inhibitor of LT activity. Moreover, we demonstrate that this regulation controls the release of immunogenic PG fragments and provides resistance against predatory LTs of both bacterial and viral origin. Our findings address a critical gap in understanding the physiological role of the LD-crosslinking mode in PG homeostasis, highlighting how bacteria can enhance their resilience against environmental threats, including phage attacks, through a single structural PG modification.
Collapse
Affiliation(s)
- Laura Alvarez
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Sara B Hernandez
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | - Gabriel Torrens
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Anna I Weaver
- Department of Microbiology, Cornell University, Ithaca, New York, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Tobias Dörr
- Department of Microbiology, Cornell University, Ithaca, New York, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, USA
| | - Felipe Cava
- Department of Molecular Biology, Umeå University, Umeå, Sweden.
- Umeå Center for Microbial Research (UCMR), Umeå University, Umeå, Sweden.
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden.
- Science for Life Laboratory (SciLifeLab), Umeå University, Umeå, Sweden.
| |
Collapse
|
6
|
Li C, Wang ZX, Xiao H, Wu FG. Intestinal Delivery of Probiotics: Materials, Strategies, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310174. [PMID: 38245861 DOI: 10.1002/adma.202310174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/04/2024] [Indexed: 01/22/2024]
Abstract
Probiotics with diverse and crucial properties and functions have attracted broad interest from many researchers, who adopt intestinal delivery of probiotics to modulate the gut microbiota. However, the major problems faced for the therapeutic applications of probiotics are the viability and colonization of probiotics during their processing, oral intake, and subsequent delivery to the gut. The challenges of simple oral delivery (stability, controllability, targeting, etc.) have greatly limited the use of probiotics in clinical therapies. Nanotechnology can endow the probiotics to be delivered to the intestine with improved survival rate and increased resistance to the adverse environment. Additionally, the progress in synthetic biology has created new opportunities for efficiently and purposefully designing and manipulating the probiotics. In this article, a brief overview of the types of probiotics for intestinal delivery, the current progress of different probiotic encapsulation strategies, including the chemical, physical, and genetic strategies and their combinations, and the emerging single-cell encapsulation strategies using nanocoating methods, is presented. The action mechanisms of probiotics that are responsible for eliciting beneficial effects are also briefly discussed. Finally, the therapeutic applications of engineered probiotics are discussed, and the future trends toward developing engineered probiotics with advanced features and improved health benefits are proposed.
Collapse
Affiliation(s)
- Chengcheng Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Zi-Xi Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
7
|
Martins D, Nerber HN, Roughton CG, Fasquelle A, Barwinska-Sendra A, Vollmer D, Gray J, Vollmer W, Sorg JA, Salgado PS, Henriques AO, Serrano M. Cleavage of an engulfment peptidoglycan hydrolase by a sporulation signature protease in Clostridioides difficile. Mol Microbiol 2024; 122:213-229. [PMID: 38922761 PMCID: PMC11309906 DOI: 10.1111/mmi.15291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
In the model organism Bacillus subtilis, a signaling protease produced in the forespore, SpoIVB, is essential for the activation of the sigma factor σK, which is produced in the mother cell as an inactive pro-protein, pro-σK. SpoIVB has a second function essential to sporulation, most likely during cortex synthesis. The cortex is composed of peptidoglycan (PG) and is essential for the spore's heat resistance and dormancy. Surprisingly, the genome of the intestinal pathogen Clostridioides difficile, in which σK is produced without a pro-sequence, encodes two SpoIVB paralogs, SpoIVB1 and SpoIVB2. Here, we show that spoIVB1 is dispensable for sporulation, while a spoIVB2 in-frame deletion mutant fails to produce heat-resistant spores. The spoIVB2 mutant enters sporulation, undergoes asymmetric division, and completes engulfment of the forespore by the mother cell but fails to synthesize the spore cortex. We show that SpoIIP, a PG hydrolase and part of the engulfasome, the machinery essential for engulfment, is cleaved by SpoIVB2 into an inactive form. Within the engulfasome, the SpoIIP amidase activity generates the substrates for the SpoIID lytic transglycosylase. Thus, following engulfment completion, the cleavage and inactivation of SpoIIP by SpoIVB2 curtails the engulfasome hydrolytic activity, at a time when synthesis of the spore cortex peptidoglycan begins. SpoIVB2 is also required for normal late gene expression in the forespore by a currently unknown mechanism. Together, these observations suggest a role for SpoIVB2 in coordinating late morphological and gene expression events between the forespore and the mother cell.
Collapse
Affiliation(s)
- Diogo Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, 2780-157 Oeiras, Portugal
| | - Hailee N. Nerber
- Texas A&M University, College Station, TX, Biology Department, Texas, USA
| | - Charlotte G. Roughton
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Amaury Fasquelle
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, 2780-157 Oeiras, Portugal
| | - Anna Barwinska-Sendra
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Daniela Vollmer
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Joe Gray
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Waldemar Vollmer
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Australia
| | - Joseph A. Sorg
- Texas A&M University, College Station, TX, Biology Department, Texas, USA
| | - Paula S. Salgado
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Adriano O. Henriques
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, 2780-157 Oeiras, Portugal
| | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, 2780-157 Oeiras, Portugal
| |
Collapse
|
8
|
Dorrazehi GM, Winkle M, Desmet M, Stroobant V, Tanriver G, Degand H, Evrard D, Desguin B, Morsomme P, Biboy J, Gray J, Mitusińska K, Góra A, Vollmer W, Soumillion P. PBP-A, a cyanobacterial DD-peptidase with high specificity for amidated muropeptides, exhibits pH-dependent promiscuous activity harmful to Escherichia coli. Sci Rep 2024; 14:13999. [PMID: 38890528 PMCID: PMC11189452 DOI: 10.1038/s41598-024-64806-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
Penicillin binding proteins (PBPs) are involved in biosynthesis, remodeling and recycling of peptidoglycan (PG) in bacteria. PBP-A from Thermosynechococcus elongatus belongs to a cyanobacterial family of enzymes sharing close structural and phylogenetic proximity to class A β-lactamases. With the long-term aim of converting PBP-A into a β-lactamase by directed evolution, we simulated what may happen when an organism like Escherichia coli acquires such a new PBP and observed growth defect associated with the enzyme activity. To further explore the molecular origins of this harmful effect, we decided to characterize deeper the activity of PBP-A both in vitro and in vivo. We found that PBP-A is an enzyme endowed with DD-carboxypeptidase and DD-endopeptidase activities, featuring high specificity towards muropeptides amidated on the D-iso-glutamyl residue. We also show that a low promiscuous activity on non-amidated peptidoglycan deteriorates E. coli's envelope, which is much higher under acidic conditions where substrate discrimination is mitigated. Besides expanding our knowledge of the biochemical activity of PBP-A, this work also highlights that promiscuity may depend on environmental conditions and how it may hinder rather than promote enzyme evolution in nature or in the laboratory.
Collapse
Affiliation(s)
- Gol Mohammad Dorrazehi
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Place Croix du Sud 4-5, 1348, Louvain-la-Neuve, Belgium
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Matthias Winkle
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
- Benchmark Animal Health Ltd, 1 Pioneer Building, Edinburgh Technopole, Milton Bridge, Penicuik, EH26 0GB, UK
| | - Martin Desmet
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Place Croix du Sud 4-5, 1348, Louvain-la-Neuve, Belgium
| | - Vincent Stroobant
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, UCLouvain, Brussels, Belgium
| | - Gamze Tanriver
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, 44-100, Gliwice, Poland
| | - Hervé Degand
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Place Croix du Sud 4-5, 1348, Louvain-la-Neuve, Belgium
| | - Damien Evrard
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Place Croix du Sud 4-5, 1348, Louvain-la-Neuve, Belgium
| | - Benoît Desguin
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Place Croix du Sud 4-5, 1348, Louvain-la-Neuve, Belgium
| | - Pierre Morsomme
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Place Croix du Sud 4-5, 1348, Louvain-la-Neuve, Belgium
| | - Jacob Biboy
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - Joe Gray
- Biosciences Institute, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - Karolina Mitusińska
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, 44-100, Gliwice, Poland
| | - Artur Góra
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, 44-100, Gliwice, Poland
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - Patrice Soumillion
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Place Croix du Sud 4-5, 1348, Louvain-la-Neuve, Belgium.
| |
Collapse
|
9
|
Santin YG, Sogues A, Bourigault Y, Remaut HK, Laloux G. Lifecycle of a predatory bacterium vampirizing its prey through the cell envelope and S-layer. Nat Commun 2024; 15:3590. [PMID: 38678033 PMCID: PMC11055950 DOI: 10.1038/s41467-024-48042-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/16/2024] [Indexed: 04/29/2024] Open
Abstract
Predatory bacteria feed upon other bacteria in various environments. Bdellovibrio exovorus is an obligate epibiotic predator that attaches on the prey cell surface, where it grows and proliferates. Although the mechanisms allowing feeding through the prey cell envelope are unknown, it has been proposed that the prey's proteinaceous S-layer may act as a defensive structure against predation. Here, we use time-lapse and cryo-electron microscopy to image the lifecycle of B. exovorus feeding on Caulobacter crescentus. We show that B. exovorus proliferates by non-binary division, primarily generating three daughter cells. Moreover, the predator feeds on C. crescentus regardless of the presence of an S-layer, challenging its assumed protective role against predators. Finally, we show that apparently secure junctions are established between prey and predator outer membranes.
Collapse
Affiliation(s)
- Yoann G Santin
- de Duve Institute, UCLouvain, 75 avenue Hippocrate, 1200, Brussels, Belgium
| | - Adrià Sogues
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Yvann Bourigault
- de Duve Institute, UCLouvain, 75 avenue Hippocrate, 1200, Brussels, Belgium
| | - Han K Remaut
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Géraldine Laloux
- de Duve Institute, UCLouvain, 75 avenue Hippocrate, 1200, Brussels, Belgium.
| |
Collapse
|
10
|
Zheng Y, Zhu X, Jiang M, Cao F, You Q, Chen X. Development and Applications of D-Amino Acid Derivatives-based Metabolic Labeling of Bacterial Peptidoglycan. Angew Chem Int Ed Engl 2024; 63:e202319400. [PMID: 38284300 DOI: 10.1002/anie.202319400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 01/30/2024]
Abstract
Peptidoglycan, an essential component within the cell walls of virtually all bacteria, is composed of glycan strands linked by stem peptides that contain D-amino acids. The peptidoglycan biosynthesis machinery exhibits high tolerance to various D-amino acid derivatives. D-amino acid derivatives with different functionalities can thus be specifically incorporated into and label the peptidoglycan of bacteria, but not the host mammalian cells. This metabolic labeling strategy is highly selective, highly biocompatible, and broadly applicable, which has been utilized in various fields. This review introduces the metabolic labeling strategies of peptidoglycan by using D-amino acid derivatives, including one-step and two-step strategies. In addition, we emphasize the various applications of D-amino acid derivative-based metabolic labeling, including bacterial peptidoglycan visualization (existence, biosynthesis, and dynamics, etc.), bacterial visualization (including bacterial imaging and visualization of growth and division, metabolic activity, antibiotic susceptibility, etc.), pathogenic bacteria-targeted diagnostics and treatment (positron emission tomography (PET) imaging, photodynamic therapy, photothermal therapy, gas therapy, immunotherapy, etc.), and live bacteria-based therapy. Finally, a summary of this metabolic labeling and an outlook is provided.
Collapse
Affiliation(s)
- Yongfang Zheng
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou, 350007, P.R. China
| | - Xinyu Zhu
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou, 350007, P.R. China
| | - Mingyi Jiang
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou, 350007, P.R. China
| | - Fangfang Cao
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Qing You
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| |
Collapse
|
11
|
Remy O, Santin YG, Jonckheere V, Tesseur C, Kaljević J, Van Damme P, Laloux G. Distinct dynamics and proximity networks of hub proteins at the prey-invading cell pole in a predatory bacterium. J Bacteriol 2024; 206:e0001424. [PMID: 38470120 PMCID: PMC11025332 DOI: 10.1128/jb.00014-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 03/13/2024] Open
Abstract
In bacteria, cell poles function as subcellular compartments where proteins localize during specific lifecycle stages, orchestrated by polar "hub" proteins. Whereas most described bacteria inherit an "old" pole from the mother cell and a "new" pole from cell division, generating cell asymmetry at birth, non-binary division poses challenges for establishing cell polarity, particularly for daughter cells inheriting only new poles. We investigated polarity dynamics in the obligate predatory bacterium Bdellovibrio bacteriovorus, proliferating through filamentous growth followed by non-binary division within prey bacteria. Monitoring the subcellular localization of two proteins known as polar hubs in other species, RomR and DivIVA, revealed RomR as an early polarity marker in B. bacteriovorus. RomR already marks the future anterior poles of the progeny during the predator's growth phase, during a precise period closely following the onset of divisome assembly and the end of chromosome segregation. In contrast to RomR's stable unipolar localization in the progeny, DivIVA exhibits a dynamic pole-to-pole localization. This behavior changes shortly before the division of the elongated predator cell, where DivIVA accumulates at all septa and both poles. In vivo protein interaction networks for DivIVA and RomR, mapped through endogenous miniTurbo-based proximity labeling, further underscore their distinct roles in cell polarization and reinforce the importance of the anterior "invasive" cell pole in prey-predator interactions. Our work also emphasizes the precise spatiotemporal order of cellular processes underlying B. bacteriovorus proliferation, offering insights into the subcellular organization of bacteria with filamentous growth and non-binary division.IMPORTANCEIn bacteria, cell poles are crucial areas where "hub" proteins orchestrate lifecycle events through interactions with multiple partners at specific times. While most bacteria exhibit one "old" and one "new" pole, inherited from the previous division event, setting polar identity poses challenges in bacteria with non-binary division. This study explores polar proteins in the predatory bacterium Bdellovibrio bacteriovorus, which undergoes filamentous growth followed by non-binary division inside another bacterium. Our research reveals distinct localization dynamics of the polar proteins RomR and DivIVA, highlighting RomR as an early "hub" marking polar identity in the filamentous mother cell. Using miniTurbo-based proximity labeling, we uncovered their unique protein networks. Overall, our work provides new insights into the cell polarity in non-binary dividing bacteria.
Collapse
Affiliation(s)
- Ophélie Remy
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Yoann G. Santin
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Veronique Jonckheere
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Coralie Tesseur
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Jovana Kaljević
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Petra Van Damme
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Géraldine Laloux
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
12
|
Tyson J, Radford P, Lambert C, Till R, Huwiler SG, Lovering AL, Elizabeth Sockett R. Prey killing without invasion by Bdellovibrio bacteriovorus defective for a MIDAS-family adhesin. Nat Commun 2024; 15:3078. [PMID: 38594280 PMCID: PMC11003981 DOI: 10.1038/s41467-024-47412-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/27/2024] [Indexed: 04/11/2024] Open
Abstract
The bacterium Bdellovibrio bacteriovorus is a predator of other Gram-negative bacteria. The predator invades the prey's periplasm and modifies the prey's cell wall, forming a rounded killed prey, or bdelloplast, containing a live B. bacteriovorus. Redundancy in adhesive processes makes invasive mutants rare. Here, we identify a MIDAS adhesin family protein, Bd0875, that is expressed at the predator-prey invasive junction and is important for successful invasion of prey. A mutant strain lacking bd0875 is still able to form round, dead bdelloplasts; however, 10% of the bdelloplasts do not contain B. bacteriovorus, indicative of an invasion defect. Bd0875 activity requires the conserved MIDAS motif, which is linked to catch-and-release activity of MIDAS proteins in other organisms. A proteomic analysis shows that the uninvaded bdelloplasts contain B. bacteriovorus proteins, which are likely secreted into the prey by the Δbd0875 predator during an abortive invasion period. Thus, secretion of proteins into the prey seems to be sufficient for prey killing, even in the absence of a live predator inside the prey periplasm.
Collapse
Affiliation(s)
- Jess Tyson
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
- Chain Biotechnology Ltd, MediCity, D6 Thane Road, Nottingham, NG90 6BH, UK
| | - Paul Radford
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Carey Lambert
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
- Biodiscovery Institute, University of Nottingham, Coates Road, Nottingham, NG7 2RD, UK
| | - Rob Till
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
- Biodiscovery Institute, University of Nottingham, Coates Road, Nottingham, NG7 2RD, UK
| | - Simona G Huwiler
- Department of Plant & Microbial Biology, University of Zurich, CH-, 8057, Zurich, Switzerland
| | - Andrew L Lovering
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | - R Elizabeth Sockett
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK.
| |
Collapse
|
13
|
Sorlin A, López-Álvarez M, Biboy J, Gray J, Rabbitt SJ, Rahim JU, Lee SH, Bobba KN, Blecha J, Parker MF, Flavell RR, Engel J, Ohliger M, Vollmer W, Wilson DM. Peptidoglycan-Targeted [ 18F]3,3,3-Trifluoro-d-alanine Tracer for Imaging Bacterial Infection. JACS AU 2024; 4:1039-1047. [PMID: 38559735 PMCID: PMC10976610 DOI: 10.1021/jacsau.3c00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 04/04/2024]
Abstract
Imaging is increasingly used to detect and monitor bacterial infection. Both anatomic (X-rays, computed tomography, ultrasound, and MRI) and nuclear medicine ([111In]-WBC SPECT, [18F]FDG PET) techniques are used in clinical practice but lack specificity for the causative microorganisms themselves. To meet this challenge, many groups have developed imaging methods that target pathogen-specific metabolism, including PET tracers integrated into the bacterial cell wall. We have previously reported the d-amino acid derived PET radiotracers d-methyl-[11C]-methionine, d-[3-11C]-alanine, and d-[3-11C]-alanine-d-alanine, which showed robust bacterial accumulation in vitro and in vivo. Given the clinical importance of radionuclide half-life, in the current study, we developed [18F]3,3,3-trifluoro-d-alanine (d-[18F]-CF3-ala), a fluorine-18 labeled tracer. We tested the hypothesis that d-[18F]-CF3-ala would be incorporated into bacterial peptidoglycan given its structural similarity to d-alanine itself. NMR analysis showed that the fluorine-19 parent amino acid d-[19F]-CF3-ala was stable in human and mouse serum. d-[19F]-CF3-ala was also a poor substrate for d-amino acid oxidase, the enzyme largely responsible for mammalian d-amino acid metabolism and a likely contributor to background signals using d-amino acid derived PET tracers. In addition, d-[19F]-CF3-ala showed robust incorporation into Escherichia coli peptidoglycan, as detected by HPLC/mass spectrometry. Based on these promising results, we developed a radiosynthesis of d-[18F]-CF3-ala via displacement of a bromo-precursor with [18F]fluoride followed by chiral stationary phase HPLC. Unexpectedly, the accumulation of d-[18F]-CF3-ala by bacteria in vitro was highest for Gram-negative pathogens in particular E. coli. In a murine model of acute bacterial infection, d-[18F]-CF3-ala could distinguish live from heat-killed E. coli, with low background signals. These results indicate the viability of [18F]-modified d-amino acids for infection imaging and indicate that improved specificity for bacterial metabolism can improve tracer performance.
Collapse
Affiliation(s)
- Alexandre
M. Sorlin
- Department
of Radiology, Biomedical Imaging University
of California, San Francisco, San Francisco, California 94158, United States
| | - Marina López-Álvarez
- Department
of Radiology, Biomedical Imaging University
of California, San Francisco, San Francisco, California 94158, United States
| | - Jacob Biboy
- The
Centre for Bacterial Cell Biology, Newcastle
University Newcastle, Newcastle
upon Tyne NE2 4AX, United Kingdom
| | - Joe Gray
- The
Centre for Bacterial Cell Biology, Newcastle
University Newcastle, Newcastle
upon Tyne NE2 4AX, United Kingdom
| | - Sarah J. Rabbitt
- Department
of Radiology, Biomedical Imaging University
of California, San Francisco, San Francisco, California 94158, United States
| | - Junaid Ur Rahim
- Department
of Radiology, Biomedical Imaging University
of California, San Francisco, San Francisco, California 94158, United States
| | - Sang Hee Lee
- Department
of Radiology, Biomedical Imaging University
of California, San Francisco, San Francisco, California 94158, United States
| | - Kondapa Naidu Bobba
- Department
of Radiology, Biomedical Imaging University
of California, San Francisco, San Francisco, California 94158, United States
| | - Joseph Blecha
- Department
of Radiology, Biomedical Imaging University
of California, San Francisco, San Francisco, California 94158, United States
| | - Mathew F.L. Parker
- Department
of Radiology, Biomedical Imaging University
of California, San Francisco, San Francisco, California 94158, United States
- Department
of Psychiatry, Renaissance School of Medicine
at Stony Brook University, Stony Brook, New York 11794, United States
| | - Robert R. Flavell
- Department
of Radiology, Biomedical Imaging University
of California, San Francisco, San Francisco, California 94158, United States
- UCSF
Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94158, United States
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, San
Francisco, California 94158, United States
| | - Joanne Engel
- Department
of Medicine, University of California, San
Francisco, San Francisco, California 94158, United States
- Department
of Microbiology and Immunology, University
of California, San Francisco, San
Francisco, California 94158, United States
| | - Michael Ohliger
- Department
of Radiology, Biomedical Imaging University
of California, San Francisco, San Francisco, California 94158, United States
- Department
of Radiology, Zuckerberg San Francisco General
Hospital, San Francisco, California 94110, United States
| | - Waldemar Vollmer
- The
Centre for Bacterial Cell Biology, Newcastle
University Newcastle, Newcastle
upon Tyne NE2 4AX, United Kingdom
- Institute
for Molecular Bioscience, The University
of Queensland, Brisbane 4072, Australia
| | - David M. Wilson
- Department
of Radiology, Biomedical Imaging University
of California, San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
14
|
Zheng Y, Jiang M, Zhu X, Chen Y, Feng L, Zhu H. Metabolic labeling-mediated visualization, capture, and inactivation of Gram-positive bacteria via biotin-streptavidin interactions. Chem Commun (Camb) 2024. [PMID: 38477080 DOI: 10.1039/d4cc00517a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
We introduce a biotinylated D-amino acid probe capable of metabolically incorporating into bacterial PG. Leveraging the robust affinity between biotin and streptavidin, the probe has demonstrated efficacy in imaging, capture, and targeted inactivation of Gram-positive bacteria through synergistic pairings with commercially available streptavidin-modified fluorescent dyes and nanomaterials. The versatility of the probe is underscored by its compatibility with a variety of commercially available streptavidin-modified reagents. This adaptability allows the probe to be applied across diverse scenarios by integrating with these commercial reagents.
Collapse
Affiliation(s)
- Yongfang Zheng
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China.
| | - Mingyi Jiang
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China.
| | - Xinyu Zhu
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China.
| | - Yuyuan Chen
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China.
| | - Lisha Feng
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China.
| | - Hu Zhu
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China.
| |
Collapse
|
15
|
Li N, Cai QM, Hu NY, Jiang SL, Chen FQ, Hu QQ, Yang F, He CZ. Pyrosequencing analysis of bacterial community changes in dental unit waterlines after chlorogenic acid treatment. Front Cell Infect Microbiol 2024; 14:1303099. [PMID: 38299116 PMCID: PMC10828043 DOI: 10.3389/fcimb.2024.1303099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
Introduction The contamination of dental unit waterlines (DUWLs) poses a significant risk of cross-infection in dentistry. Although chemical disinfectants have been effective in reducing number of bacteria, they do have limitations. Methods This study aimed to investigate the potential of chlorogenic acid, a natural substance with broadspectrum antibacterial properties, for treating DUWLs. Over a period of three months, we analyzed the microbial communities in 149 DUWLs samples collected from 5 dental units using high-throughput pyrophosphate sequencing. Results The results revealed that chlorogenic acid treatment had a significant impact on the microbial community profile in the DUWLs, with the most significant changes occurring within the first 15 days and stabilization observed in the last 30 days. The predominant genera detected in the samples were Bacteroides, Lactobacillus, Streptococcus, Methylobacterium, and Phreatobacter. Additionally, the relative abundance of certain beneficial bacteria, such as Alloprevotella, Roseburia, and Blautia, increased, while the presence of opportunistic pathogens like Mycobacteria significantly decreased. The functional prediction analysis using the KEGG database indicated a decrease in the pathogenicity of the bacterial community in the DUWLs following chlorogenic acid treatment. Discussion This study introduces a novel approach for the prevention and treatment of infections associated with dental care.
Collapse
Affiliation(s)
- Na Li
- Department of Stomatology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Nursing School, Nanchang University, Nanchang, China
| | - Qin-Ming Cai
- The First Affiliated Hospital of Nanchang University, School of Public Health, Nanchang University, Nanchang, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ni-Ya Hu
- The First Affiliated Hospital of Nanchang University, School of Public Health, Nanchang University, Nanchang, China
| | - Shu-ling Jiang
- Department of Stomatology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Nursing School, Nanchang University, Nanchang, China
| | - Fu-Qing Chen
- Department of Stomatology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qiao-Qiao Hu
- Department of Stomatology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Fen Yang
- Department of Stomatology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Chao-Zhu He
- Nursing School, Nanchang University, Nanchang, China
| |
Collapse
|
16
|
Lin Y, Liang X, Li Z, Gong T, Ren B, Li Y, Peng X. Omics for deciphering oral microecology. Int J Oral Sci 2024; 16:2. [PMID: 38195684 PMCID: PMC10776764 DOI: 10.1038/s41368-023-00264-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/03/2023] [Accepted: 11/27/2023] [Indexed: 01/11/2024] Open
Abstract
The human oral microbiome harbors one of the most diverse microbial communities in the human body, playing critical roles in oral and systemic health. Recent technological innovations are propelling the characterization and manipulation of oral microbiota. High-throughput sequencing enables comprehensive taxonomic and functional profiling of oral microbiomes. New long-read platforms improve genome assembly from complex samples. Single-cell genomics provides insights into uncultured taxa. Advanced imaging modalities including fluorescence, mass spectrometry, and Raman spectroscopy have enabled the visualization of the spatial organization and interactions of oral microbes with increasing resolution. Fluorescence techniques link phylogenetic identity with localization. Mass spectrometry imaging reveals metabolic niches and activities while Raman spectroscopy generates rapid biomolecular fingerprints for classification. Culturomics facilitates the isolation and cultivation of novel fastidious oral taxa using high-throughput approaches. Ongoing integration of these technologies holds the promise of transforming our understanding of oral microbiome assembly, gene expression, metabolites, microenvironments, virulence mechanisms, and microbe-host interfaces in the context of health and disease. However, significant knowledge gaps persist regarding community origins, developmental trajectories, homeostasis versus dysbiosis triggers, functional biomarkers, and strategies to deliberately reshape the oral microbiome for therapeutic benefit. The convergence of sequencing, imaging, cultureomics, synthetic systems, and biomimetic models will provide unprecedented insights into the oral microbiome and offer opportunities to predict, prevent, diagnose, and treat associated oral diseases.
Collapse
Affiliation(s)
- Yongwang Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoyue Liang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhengyi Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Gong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
17
|
Caulton SG, Lambert C, Tyson J, Radford P, Al-Bayati A, Greenwood S, Banks EJ, Clark C, Till R, Pires E, Sockett RE, Lovering AL. Bdellovibrio bacteriovorus uses chimeric fibre proteins to recognize and invade a broad range of bacterial hosts. Nat Microbiol 2024; 9:214-227. [PMID: 38177296 PMCID: PMC10769870 DOI: 10.1038/s41564-023-01552-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/07/2023] [Indexed: 01/06/2024]
Abstract
Predatory bacteria, like the model endoperiplasmic bacterium Bdellovibrio bacteriovorus, show several adaptations relevant to their requirements for locating, entering and killing other bacteria. The mechanisms underlying prey recognition and handling remain obscure. Here we use complementary genetic, microscopic and structural methods to address this deficit. During invasion, the B. bacteriovorus protein CpoB concentrates into a vesicular compartment that is deposited into the prey periplasm. Proteomic and structural analyses of vesicle contents reveal several fibre-like proteins, which we name the mosaic adhesive trimer (MAT) superfamily, and show localization on the predator surface before prey encounter. These dynamic proteins indicate a variety of binding capabilities, and we confirm that one MAT member shows specificity for surface glycans from a particular prey. Our study shows that the B. bacteriovorus MAT protein repertoire enables a broad means for the recognition and handling of diverse prey epitopes encountered during bacterial predation and invasion.
Collapse
Affiliation(s)
- Simon G Caulton
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Carey Lambert
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, UK
- Biodiscovery Institute, School of Life Sciences, Nottingham University, Nottingham, UK
| | - Jess Tyson
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, UK
| | - Paul Radford
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, UK
| | - Asmaa Al-Bayati
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, UK
- Northern Technical University, Kirkuk, Iraq
| | - Samuel Greenwood
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, UK
| | - Emma J Banks
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, UK
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | - Callum Clark
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, UK
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Rob Till
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, UK
| | - Elisabete Pires
- Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - R Elizabeth Sockett
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, UK.
| | | |
Collapse
|
18
|
Kaljević J, Tesseur C, Le TBK, Laloux G. Cell cycle-dependent organization of a bacterial centromere through multi-layered regulation of the ParABS system. PLoS Genet 2023; 19:e1010951. [PMID: 37733798 PMCID: PMC10547168 DOI: 10.1371/journal.pgen.1010951] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/03/2023] [Accepted: 09/01/2023] [Indexed: 09/23/2023] Open
Abstract
The accurate distribution of genetic material is crucial for all organisms. In most bacteria, chromosome segregation is achieved by the ParABS system, in which the ParB-bound parS sequence is actively partitioned by ParA. While this system is highly conserved, its adaptation in organisms with unique lifestyles and its regulation between developmental stages remain largely unexplored. Bdellovibrio bacteriovorus is a predatory bacterium proliferating through polyploid replication and non-binary division inside other bacteria. Our study reveals the subcellular dynamics and multi-layered regulation of the ParABS system, coupled to the cell cycle of B. bacteriovorus. We found that ParA:ParB ratios fluctuate between predation stages, their balance being critical for cell cycle progression. Moreover, the parS chromosomal context in non-replicative cells, combined with ParB depletion at cell division, critically contribute to the unique cell cycle-dependent organization of the centromere in this bacterium, highlighting new levels of complexity in chromosome segregation and cell cycle control.
Collapse
Affiliation(s)
| | | | - Tung B. K. Le
- John Innes Centre, Department of Molecular Microbiology, Norwich, United Kingdom
| | | |
Collapse
|
19
|
Caulton SG, Lovering AL. Moving toward a better understanding of the model bacterial predator Bdellovibrio bacteriovorus. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001380. [PMID: 37535060 PMCID: PMC10482364 DOI: 10.1099/mic.0.001380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023]
Abstract
The bacterial predator Bdellovibrio bacteriovorus is a model for the wider phenomenon of bacteria:bacteria predation, and the specialization required to achieve a lifestyle dependent on prey consumption. Bdellovibrio bacteriovorus is able to recognize, enter and ultimately consume fellow Gram-negative bacteria, killing these prey from within their periplasmic space, and lysing the host at the end of the cycle. The classic phenotype-driven characterization (and observation of predation) has benefitted from an increased focus on molecular mechanisms and fluorescence microscopy and tomography, revealing new features of several of the lifecycle stages. Herein we summarize a selection of these advances and describe likely areas for exploration that will push the field toward a more complete understanding of this fascinating 'two-cell' system.
Collapse
Affiliation(s)
- Simon G. Caulton
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | | |
Collapse
|
20
|
Barnett MJ, Pinheiro J, Keown JR, Biboy J, Gray J, Lucinescu IW, Vollmer W, Hirt RP, Simoes-Barbosa A, Goldstone DC. NlpC/P60 peptidoglycan hydrolases of Trichomonas vaginalis have complementary activities that empower the protozoan to control host-protective lactobacilli. PLoS Pathog 2023; 19:e1011563. [PMID: 37585473 PMCID: PMC10461829 DOI: 10.1371/journal.ppat.1011563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/28/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023] Open
Abstract
Trichomonas vaginalis is a human protozoan parasite that causes trichomoniasis, a prevalent sexually transmitted infection. Trichomoniasis is accompanied by a shift to a dysbiotic vaginal microbiome that is depleted of lactobacilli. Studies on co-cultures have shown that vaginal bacteria in eubiosis (e.g. Lactobacillus gasseri) have antagonistic effects on T. vaginalis pathogenesis, suggesting that the parasite might benefit from shaping the microbiome to dysbiosis (e.g. Gardnerella vaginalis among other anaerobes). We have recently shown that T. vaginalis has acquired NlpC/P60 genes from bacteria, expanding them to a repertoire of nine TvNlpC genes in two distinct clans, and that TvNlpCs of clan A are active against bacterial peptidoglycan. Here, we expand this characterization to TvNlpCs of clan B. In this study, we show that the clan organisation of NlpC/P60 genes is a feature of other species of Trichomonas, and that Histomonas meleagridis has sequences related to one clan. We characterized the 3D structure of TvNlpC_B3 alone and with the inhibitor E64 bound, probing the active site of these enzymes for the first time. Lastly, we demonstrated that TvNlpC_B3 and TvNlpC_B5 have complementary activities with the previously described TvNlpCs of clan A and that exogenous expression of these enzymes empower this mucosal parasite to take over populations of vaginal lactobacilli in mixed cultures. TvNlpC_B3 helps control populations of L. gasseri, but not of G. vaginalis, which action is partially inhibited by E64. This study is one of the first to show how enzymes produced by a mucosal protozoan parasite may contribute to a shift on the status of a microbiome, helping explain the link between trichomoniasis and vaginal dysbiosis. Further understanding of this process might have significant implications for treatments in the future.
Collapse
Affiliation(s)
- Michael J. Barnett
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Jully Pinheiro
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Jeremy R. Keown
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Jacob Biboy
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Joe Gray
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Robert P. Hirt
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - David C. Goldstone
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
21
|
Kaplan M, Chang YW, Oikonomou CM, Nicolas WJ, Jewett AI, Kreida S, Dutka P, Rettberg LA, Maggi S, Jensen GJ. Bdellovibrio predation cycle characterized at nanometre-scale resolution with cryo-electron tomography. Nat Microbiol 2023; 8:1267-1279. [PMID: 37349588 PMCID: PMC11061892 DOI: 10.1038/s41564-023-01401-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 04/27/2023] [Indexed: 06/24/2023]
Abstract
Bdellovibrio bacteriovorus is a microbial predator that offers promise as a living antibiotic for its ability to kill Gram-negative bacteria, including human pathogens. Even after six decades of study, fundamental details of its predation cycle remain mysterious. Here we used cryo-electron tomography to comprehensively image the lifecycle of B. bacteriovorus at nanometre-scale resolution. With high-resolution images of predation in a native (hydrated, unstained) state, we discover several surprising features of the process, including macromolecular complexes involved in prey attachment/invasion and a flexible portal structure lining a hole in the prey peptidoglycan that tightly seals the prey outer membrane around the predator during entry. Unexpectedly, we find that B. bacteriovorus does not shed its flagellum during invasion, but rather resorbs it into its periplasm for degradation. Finally, following growth and division in the bdelloplast, we observe a transient and extensive ribosomal lattice on the condensed B. bacteriovorus nucleoid.
Collapse
Affiliation(s)
- Mohammed Kaplan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Department of Microbiology, University of Chicago, Chicago, IL, USA.
| | - Yi-Wei Chang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Catherine M Oikonomou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - William J Nicolas
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Andrew I Jewett
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Stefan Kreida
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Solna, Sweden
| | - Przemysław Dutka
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | | | - Stefano Maggi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Grant J Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
22
|
Sockett RE. Learning with Bdellovibrio. Nat Microbiol 2023:10.1038/s41564-023-01417-8. [PMID: 37391456 DOI: 10.1038/s41564-023-01417-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
|
23
|
Lai TF, Ford RM, Huwiler SG. Advances in cellular and molecular predatory biology of Bdellovibrio bacteriovorus six decades after discovery. Front Microbiol 2023; 14:1168709. [PMID: 37256055 PMCID: PMC10225642 DOI: 10.3389/fmicb.2023.1168709] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/14/2023] [Indexed: 06/01/2023] Open
Abstract
Since its discovery six decades ago, the predatory bacterium Bdellovibrio bacteriovorus has sparked recent interest as a potential remedy to the antibiotic resistance crisis. Here we give a comprehensive historical overview from discovery to progressive developments in microscopy and molecular mechanisms. Research on B. bacteriovorus has moved from curiosity to a new model organism, revealing over time more details on its physiology and fascinating predatory life cycle with the help of a variety of methods. Based on recent findings in cryo-electron tomography, we recapitulate on the intricate molecular details known in the predatory life cycle including how this predator searches for its prey bacterium, to how it attaches, grows, and divides all from within the prey cell. Finally, the newly developed B. bacteriovorus progeny leave the prey cell remnants in the exit phase. While we end with some unanswered questions remaining in the field, new imaging technologies and quantitative, systematic advances will likely help to unravel them in the next decades.
Collapse
Affiliation(s)
- Ting F. Lai
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Rhian M. Ford
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Simona G. Huwiler
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
24
|
Santin YG, Lamot T, van Raaphorst R, Kaljević J, Laloux G. Modulation of prey size reveals adaptability and robustness in the cell cycle of an intracellular predator. Curr Biol 2023:S0960-9822(23)00541-9. [PMID: 37207648 DOI: 10.1016/j.cub.2023.04.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/14/2023] [Accepted: 04/25/2023] [Indexed: 05/21/2023]
Abstract
Despite a remarkable diversity of lifestyles, bacterial replication has only been investigated in a few model species. In bacteria that do not rely on canonical binary division for proliferation, the coordination of major cellular processes is still largely mysterious. Moreover, the dynamics of bacterial growth and division remain unexplored within spatially confined niches where nutrients are limited. This includes the life cycle of the model endobiotic predatory bacterium Bdellovibrio bacteriovorus, which grows by filamentation within its prey and produces a variable number of daughter cells. Here, we examined the impact of the micro-compartment in which predators replicate (i.e., the prey bacterium) on their cell-cycle progression at the single-cell level. Using Escherichia coli with genetically encoded size differences, we show that the duration of the predator cell cycle scales with prey size. Consequently, prey size determines predator offspring numbers. We found that individual predators elongate exponentially, with a growth rate determined by the nutritional quality of the prey, irrespective of prey size. However, the size of newborn predator cells is remarkably stable across prey nutritional content and size variations. Tuning the predatory cell cycle by modulating prey dimensions also allowed us to reveal invariable temporal connections between key cellular processes. Altogether, our data imply adaptability and robustness shaping the enclosed cell-cycle progression of B. bacteriovorus, which might contribute to optimal exploitation of the finite resources and space in their prey. This study extends the characterization of cell cycle control strategies and growth patterns beyond canonical models and lifestyles.
Collapse
Affiliation(s)
- Yoann G Santin
- de Duve Institute, UCLouvain, 75 avenue Hippocrate, 1200 Brussels, Belgium
| | - Thomas Lamot
- de Duve Institute, UCLouvain, 75 avenue Hippocrate, 1200 Brussels, Belgium
| | | | - Jovana Kaljević
- de Duve Institute, UCLouvain, 75 avenue Hippocrate, 1200 Brussels, Belgium
| | - Géraldine Laloux
- de Duve Institute, UCLouvain, 75 avenue Hippocrate, 1200 Brussels, Belgium.
| |
Collapse
|
25
|
Dörr T. Cleave a Septum, Leave a Cell: Bdellovibrio bacteriovorus Secretes a Specialized Lytic Transglycosylase to Clear Prey Cell Septum Obstruction. J Bacteriol 2023; 205:e0007423. [PMID: 37010280 PMCID: PMC10128895 DOI: 10.1128/jb.00074-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
Abstract
Predatory microbes like Bdellovibrio feed on other bacteria by invading their periplasm, replicating within the bacterial shell that is now a feeding trough, and ultimately lysing the prey and disseminating. A new study by E. J. Banks, C. Lambert, S. Mason, J. Tyson, et al. (J Bacteriol 205:e00475-22, 2023, https://doi.org/10.1128/jb.00475-22) highlights the great lengths to which Bdellovibrio must go to affect host cell remodeling: A secreted cell wall lytic enzyme with specificity for the host septal cell wall maximizes the size of the attacker's meal and the size of the restaurant in which it can spread out. This study provides novel insights into bacterial predator-prey dynamics and showcases elegant co-option of an endogenous cell wall turnover enzyme refurbished as a warhead to enhance prey consumption.
Collapse
Affiliation(s)
- Tobias Dörr
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA
- Department of Microbiology, Cornell University, Ithaca, New York, USA
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, USA
| |
Collapse
|
26
|
Volle C, Núñez ME, Spain EM, Hart BC, Wengen MB, Lane S, Criollo A, Mahoney CA, Ferguson MA. AFM Force Mapping Elucidates Pilus Deployment and Key Lifestyle-Dependent Surface Properties in Bdellovibrio bacteriovorus. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4233-4244. [PMID: 36926913 PMCID: PMC10062353 DOI: 10.1021/acs.langmuir.2c03134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Bdellovibrio bacteriovorus is known for predation of a wide variety of Gram-negative bacteria, making it of interest as an alternative or supplement to chemical antibiotics. However, a fraction of B. bacteriovorus follows a nonpredatory, "host-independent" (HI) life cycle. In this study, live predatory and HI B. bacteriovorus were captured on a surface and examined, in buffer, by collecting force maps using atomic force microscopy (AFM). The approach curves obtained on HI cells are similar to those on other Gram-negative cells, with a short nonlinear region followed by a linear region. In contrast, the approach curves obtained on predatory cells have a large nonlinear region, reflecting the unusual flexibility of the predatory cell. As the AFM tip is retracted, it shows virtually no adhesion to predatory B. bacteriovorus but has multiple adhesion events on HI cells and the 200-500+ nm region immediately surrounding them. Measured pull-off forces, pull-off distances, and effective spring constants are consistent with the multiple stretching events of Type IV pili, both on and especially adjacent to the cells. Exposure of the HI B. bacteriovorus to a pH-neutral 10% cranberry juice solution, which contains type A proanthocyanidins that are known to interfere with the adhesion of multiple types of pili, results in a substantial reduction in adhesion. Type IV pili are required for successful predation by B. bacteriovorus, but pili used in the predation process are located at the non-flagellated pole of the cell and can retract when not in use. Such pili are rarely observed under the conditions of this study, where the predator has not encountered a prey cell. In contrast, HI cells appear to have many pili distributed on and around the whole cell, presumably ready to be utilized for a variety of HI cell activities including attachment to surfaces.
Collapse
Affiliation(s)
- Catherine
B. Volle
- Departments
of Chemistry and Biology, Cornell College, Mount Vernon, Iowa 52314, United States
| | - Megan E. Núñez
- Department
of Chemistry, Wellesley College, Wellesley, Massachusetts 02481, United States
| | - Eileen M. Spain
- Department
of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Bridget C. Hart
- Department
of Chemistry, State University of New York, New Paltz, New York 12561, United States
| | - Michael B. Wengen
- Department
of Chemistry, State University of New York, New Paltz, New York 12561, United States
| | - Sophia Lane
- Department
of Chemistry, State University of New York, New Paltz, New York 12561, United States
| | - Alexa Criollo
- Department
of Chemistry, State University of New York, New Paltz, New York 12561, United States
| | - Catherine A. Mahoney
- Department
of Chemistry, State University of New York, New Paltz, New York 12561, United States
| | - Megan A. Ferguson
- Department
of Chemistry, State University of New York, New Paltz, New York 12561, United States
| |
Collapse
|
27
|
Parallel Evolution in Predatory Bdellovibrio sp. NC01 during Long-Term Coculture with a Single Prey Strain. Appl Environ Microbiol 2023; 89:e0177622. [PMID: 36598482 PMCID: PMC9888234 DOI: 10.1128/aem.01776-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Experimental evolution provides a powerful tool for examining how Bdellovibrio evolves in response to unique selective pressures associated with its predatory lifestyle. We tested how Bdellovibrio sp. NC01 adapts to long-term coculture with Pseudomonas sp. NC02, which is less susceptible to predation compared to other Gram-negative bacteria. Analyzing six replicate Bdellovibrio populations across six time points spanning 40 passages and 2,880 h of coculture, we detected 30 to 40 new mutations in each population that exceeded a frequency of 5%. Nonsynonymous substitutions were the most abundant type of new mutation, followed by small indels and synonymous substitutions. After completing the final passage, we detected 20 high-frequency (>75%) mutations across all six evolved Bdellovibrio populations. Eighteen of these alter protein sequences, and most increased in frequency rapidly. Four genes acquired a high-frequency mutation in two or more evolved Bdellovibrio populations, reflecting parallel evolution and positive selection. The genes encode a sodium/phosphate cotransporter family protein (Bd2221), a metallophosphoesterase (Bd0054), a TonB family protein (Bd0396), and a hypothetical protein (Bd1601). Tested prey range and predation efficiency phenotypes did not differ significantly between evolved Bdellovibrio populations and the ancestor; however, all six evolved Bdellovibrio populations demonstrated enhanced starvation survival compared to the ancestor. These results suggest that, instead of evolving improved killing of Pseudomonas sp. NC02, Bdellovibrio evolved to better withstand nutrient limitation in the presence of this prey strain. The mutations identified here point to genes and functions that may be important for Bdellovibrio adaptation to the different selective pressures of long-term coculture with Pseudomonas. IMPORTANCE Bdellovibrio attack and kill Gram-negative bacteria, including drug-resistant pathogens of animals and plants. This lifestyle is unusual among bacteria, and it imposes unique selective pressures on Bdellovibrio. Determining how Bdellovibrio evolve in response to these pressures is valuable for understanding the mechanisms that govern predation. We applied experimental evolution to test how Bdellovibrio sp. NC01 evolved in response to long-term coculture with a single Pseudomonas strain, which NC01 can kill, but with low efficiency. Our experimental design imposed different selective pressures on the predatory bacteria and tracked the evolutionary trajectories of replicate Bdellovibrio populations. Using genome sequencing, we identified Bdellovibrio genes that acquired high-frequency mutations in two or more populations. Using phenotype assays, we determined that evolved Bdellovibrio populations did not improve their ability to kill Pseudomonas, but rather are better able to survive starvation. Overall, our results point to functions that may be important for Bdellovibrio adaptation.
Collapse
|
28
|
PBP1A Directly Interacts with the Divisome Complex to Promote Septal Peptidoglycan Synthesis in Acinetobacter baumannii. J Bacteriol 2022; 204:e0023922. [PMID: 36317921 PMCID: PMC9765026 DOI: 10.1128/jb.00239-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The class A penicillin-binding proteins (aPBPs), PBP1A and PBP1B, are major peptidoglycan synthases that synthesize more than half of the peptidoglycan per generation in Escherichia coli. Whereas aPBPs have distinct roles in peptidoglycan biosynthesis during growth (i.e., elongation and division), they are semiredundant; disruption of either is rescued by the other to maintain envelope homeostasis and promote proper growth. Acinetobacter baumannii is a nosocomial pathogen that has a high propensity to overcome antimicrobial treatment. A. baumannii contains both PBP1A and PBP1B (encoded by mrcA and mrcB, respectively), but only mrcA deletion decreased fitness and contributed to colistin resistance through inactivation of lipooligosaccharide biosynthesis, indicating that PBP1B was not functionally redundant with the PBP1A activity. While previous studies suggested a distinct role for PBP1A in division, it was unknown whether its role in septal peptidoglycan biosynthesis was direct. Here, we show that A. baumannii PBP1A has a direct role in division through interactions with divisome components. PBP1A localizes to septal sites during growth, where it interacts with the transpeptidase PBP3, an essential division component that regulates daughter cell formation. PBP3 overexpression was sufficient to rescue the division defect in ΔmrcA A. baumannii; however, PBP1A overexpression was not sufficient to rescue the septal defect when PBP3 was inhibited, suggesting that their activity is not redundant. Overexpression of a major dd-carboxypeptidase, PBP5, also restored the canonical A. baumannii coccobacilli morphology in ΔmrcA cells. Together, these data support a direct role for PBP1A in A. baumannii division and highlights its role as a septal peptidoglycan synthase. IMPORTANCE Peptidoglycan biosynthesis is a validated target of β-lactam antibiotics, and it is critical that we understand essential processes in multidrug-resistant pathogens such as Acinetobacter baumannii. While model systems such as Escherichia coli have shown that PBP1A is associated with side wall peptidoglycan synthesis, we show herein that A. baumannii PBP1A directly interacts with the divisome component PBP3 to promote division, suggesting a unique role for the enzyme in this highly drug-resistant nosocomial pathogen. A. baumannii demonstrated unanticipated resistance and tolerance to envelope-targeting antibiotics, which may be driven by rewired peptidoglycan machinery and may underlie therapeutic failure during antibiotic treatment.
Collapse
|
29
|
Song WF, Yao WQ, Chen QW, Zheng D, Han ZY, Zhang XZ. In Situ Bioorthogonal Conjugation of Delivered Bacteria with Gut Inhabitants for Enhancing Probiotics Colonization. ACS CENTRAL SCIENCE 2022; 8:1306-1317. [PMID: 36188344 PMCID: PMC9523781 DOI: 10.1021/acscentsci.2c00533] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 06/16/2023]
Abstract
Clinical treatment efficacy of oral bacterial therapy has been largely limited by insufficient gut retention of probiotics. Here, we developed a bioorthogonal-mediated bacterial delivery strategy for enhancing probiotics colonization by modulating bacterial adhesion between probiotics and gut inhabitants. Metabolic amino acid engineering was applied to metabolically incorporate azido-decorated d-alanine into peptidoglycans of gut inhabitants, which could enable in situ bioorthogonal conjugation with dibenzocyclooctyne (DBCO)-modified probiotics. Both in vitro and in vivo studies demonstrated that the occurrence of the bioorthogonal reaction between azido- and DBCO-modified bacteria could result in obvious bacterial adhesion even in a complex physiological environment. DBCO-modified Clostridium butyricum (C. butyricum) also showed more efficient reservation in the gut and led to obvious disease relief in dextran sodium sulfate-induced colitis mice. This strategy highlights metabolically modified gut inhabitants as artificial reaction sites to bind with DBCO-decorated probiotics via bioorthogonal reactions, which shows great potential for enhancing bacterial colonization.
Collapse
|
30
|
Zhang C, Reymond L, Rutschmann O, Meyer MA, Denereaz J, Qiao J, Ryckebusch F, Griffié J, Stepp WL, Manley S. Fluorescent d-Amino Acids for Super-resolution Microscopy of the Bacterial Cell Wall. ACS Chem Biol 2022; 17:2418-2424. [PMID: 35994360 DOI: 10.1021/acschembio.2c00496] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Fluorescent d-amino acids (FDAAs) have previously been developed to enable in situ highlighting of locations of bacterial cell wall growth. Most bacterial cells lie at the edge of the diffraction limit of visible light; thus, resolving the precise details of peptidoglycan (PG) biosynthesis requires super-resolution microscopy after probe incorporation. Single molecule localization microscopy (SMLM) has stringent requirements on the fluorophore photophysical properties and therefore has remained challenging in this context. Here, we report the synthesis and characterization of new FDAAs compatible with one-step labeling and SMLM imaging. We demonstrate the incorporation of our probes and their utility for visualizing PG at the nanoscale in Gram-negative, Gram-positive, and mycobacteria species. This improved FDAA toolkit will endow researchers with a nanoscale perspective on the spatial distribution of PG biosynthesis for a broad range of bacterial species.
Collapse
Affiliation(s)
- Chen Zhang
- Institute of Physics, School of Basic Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Luc Reymond
- Biomolecular Screening Core Facility, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Ophélie Rutschmann
- Global Health Institute, School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Mischa A Meyer
- Institute of Physics, School of Basic Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland.,Global Health Institute, School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Julien Denereaz
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne (UNIL), Lausanne 1015, Switzerland
| | - Jiangtao Qiao
- Environmental Engineering Institute, School of Architecture, Civil and Environmental Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Faustine Ryckebusch
- Global Health Institute, School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Juliette Griffié
- Institute of Physics, School of Basic Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Willi L Stepp
- Institute of Physics, School of Basic Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Suliana Manley
- Institute of Physics, School of Basic Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| |
Collapse
|
31
|
Zhong CJ, Hu XL, Yang XL, Gan HQ, Yan KC, Shu FT, Wei P, Gong T, Luo PF, James TD, Chen ZH, Zheng YJ, He XP, Xia ZF. Metabolically Specific In Situ Fluorescent Visualization of Bacterial Infection on Wound Tissues. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39808-39818. [PMID: 36005548 DOI: 10.1021/acsami.2c10115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The ability to effectively detect bacterial infection in human tissues is important for the timely treatment of the infection. However, traditional techniques fail to visualize bacterial species adhered to host cells in situ in a target-specific manner. Dihydropteroate synthase (DHPS) exclusively exists in bacterial species and metabolically converts p-aminobenzoic acid (PABA) to folic acid (FA). By targeting this bacterium-specific metabolism, we have developed a fluorescent imaging probe, PABA-DCM, based on the conjugation of PABA with a long-wavelength fluorophore, dicyanomethylene 4H-pyran (DCM). We confirmed that the probe can be used in the synthetic pathway of a broad spectrum of Gram-positive and negative bacteria, resulting in a significantly extended retention time in bacterial over mammalian cells. We validated that DHPS catalytically introduces a dihydropteridine group to the amino end of the PABA motif of PABA-DCM, and the resulting adduct leads to an increase in the FA levels of bacteria. We also constructed a hydrogel dressing containing PABA-DCM and graphene oxide (GO), termed PABA-DCM@GO, that achieves target-specific fluorescence visualization of bacterial infection on the wounded tissues of mice. Our research paves the way for the development of fluorescent imaging agents that target species-conserved metabolic pathways of microorganisms for the in situ monitoring of infections in human tissues.
Collapse
Affiliation(s)
- Chen-Jian Zhong
- Department of Burn Surgery and Wound Repair, Fujian Burn Medical Center, Fujian Provincial Key Laboratory of Burn and Trauma, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, PR China
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, PR China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai 200433, China
| | - Xi-Le Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Xiao-Lan Yang
- Department of Burn Surgery and Wound Repair, Fujian Burn Medical Center, Fujian Provincial Key Laboratory of Burn and Trauma, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, PR China
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, PR China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai 200433, China
- Department of Burn Surgery and Wound Repair, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362001, Fujian, China
| | - Hui-Qi Gan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Kai-Cheng Yan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Fu-Ting Shu
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, PR China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai 200433, China
| | - Pei Wei
- Department of Burn Surgery and Wound Repair, Fujian Burn Medical Center, Fujian Provincial Key Laboratory of Burn and Trauma, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, PR China
| | - Teng Gong
- Department of Burn Surgery and Wound Repair, Fujian Burn Medical Center, Fujian Provincial Key Laboratory of Burn and Trauma, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, PR China
| | - Peng-Fei Luo
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, PR China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai 200433, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA27AY, United Kingdom
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Zhao-Hong Chen
- Department of Burn Surgery and Wound Repair, Fujian Burn Medical Center, Fujian Provincial Key Laboratory of Burn and Trauma, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, PR China
| | - Yong-Jun Zheng
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, PR China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai 200433, China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
- National Center for Liver Cancer, Shanghai 200438, China
| | - Zhao-Fan Xia
- Department of Burn Surgery and Wound Repair, Fujian Burn Medical Center, Fujian Provincial Key Laboratory of Burn and Trauma, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, PR China
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, PR China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai 200433, China
| |
Collapse
|
32
|
Lorente Cobo N, Sibinelli-Sousa S, Biboy J, Vollmer W, Bayer-Santos E, Prehna G. Molecular characterization of the type VI secretion system effector Tlde1a reveals a structurally altered LD-transpeptidase fold. J Biol Chem 2022; 298:102556. [PMID: 36183829 PMCID: PMC9638812 DOI: 10.1016/j.jbc.2022.102556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 12/01/2022] Open
Abstract
The type VI secretion system (T6SS) is a molecular machine that Gram-negative bacteria have adapted for multiple functions, including interbacterial competition. Bacteria use the T6SS to deliver protein effectors into adjacent cells to kill rivals and establish niche dominance. Central to T6SS-mediated bacterial competition is an arms race to acquire diverse effectors to attack and neutralize target cells. The peptidoglycan has a central role in bacterial cell physiology, and effectors that biochemically modify peptidoglycan structure effectively induce cell death. One such T6SS effector is Tlde1a from Salmonella Typhimurium. Tlde1a functions as an LD-carboxypeptidase to cleave tetrapeptide stems and as an LD-transpeptidase to exchange the terminal D-alanine of a tetrapeptide stem with a noncanonical D-amino acid. To understand how Tlde1a exhibits toxicity at the molecular level, we determined the X-ray crystal structure of Tlde1a alone and in complex with D-amino acids. Our structural data revealed that Tlde1a possesses a unique LD-transpeptidase fold consisting of a dual pocket active site with a capping subdomain. This includes an exchange pocket to bind a D-amino acid for exchange and a catalytic pocket to position the D-alanine of a tetrapeptide stem for cleavage. Our toxicity assays in Escherichia coli and in vitro peptidoglycan biochemical assays with Tlde1a variants correlate Tlde1a molecular features directly to its biochemical functions. We observe that the LD-carboxypeptidase and LD-transpeptidase activities of Tlde1a are both structurally and functionally linked. Overall, our data highlight how an LD-transpeptidase fold has been structurally altered to create a toxic effector in the T6SS arms race.
Collapse
Affiliation(s)
- Neil Lorente Cobo
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Stephanie Sibinelli-Sousa
- Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Jacob Biboy
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ethel Bayer-Santos
- Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Gerd Prehna
- Department of Microbiology, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
33
|
Peptidoglycan Recycling Promotes Outer Membrane Integrity and Carbapenem Tolerance in Acinetobacter baumannii. mBio 2022; 13:e0100122. [PMID: 35638738 PMCID: PMC9239154 DOI: 10.1128/mbio.01001-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
β-Lactam antibiotics exploit the essentiality of the bacterial cell envelope by perturbing the peptidoglycan layer, typically resulting in rapid lysis and death. Many Gram-negative bacteria do not lyse but instead exhibit "tolerance," the ability to sustain viability in the presence of bactericidal antibiotics for extended periods. Antibiotic tolerance has been implicated in treatment failure and is a stepping-stone in the acquisition of true resistance, and the molecular factors that promote intrinsic tolerance are not well understood. Acinetobacter baumannii is a critical-threat nosocomial pathogen notorious for its ability to rapidly develop multidrug resistance. Carbapenem β-lactam antibiotics (i.e., meropenem) are first-line prescriptions to treat A. baumannii infections, but treatment failure is increasingly prevalent. Meropenem tolerance in Gram-negative pathogens is characterized by morphologically distinct populations of spheroplasts, but the impact of spheroplast formation is not fully understood. Here, we show that susceptible A. baumannii clinical isolates demonstrate tolerance to high-level meropenem treatment, form spheroplasts upon exposure to the antibiotic, and revert to normal growth after antibiotic removal. Using transcriptomics and genetic screens, we show that several genes associated with outer membrane integrity maintenance and efflux promote tolerance, likely by limiting entry into the periplasm. Genes associated with peptidoglycan homeostasis in the periplasm and cytoplasm also answered our screen, and their disruption compromised cell envelope barrier function. Finally, we defined the enzymatic activity of the tolerance determinants penicillin-binding protein 7 (PBP7) and ElsL (a cytoplasmic ld-carboxypeptidase). These data show that outer membrane integrity and peptidoglycan recycling are tightly linked in their contribution to A. baumannii meropenem tolerance. IMPORTANCE Carbapenem treatment failure associated with "superbug" infections has rapidly increased in prevalence, highlighting the urgent need to develop new therapeutic strategies. Antibiotic tolerance can directly lead to treatment failure but has also been shown to promote the acquisition of true resistance within a population. While some studies have addressed mechanisms that promote tolerance, factors that underlie Gram-negative bacterial survival during carbapenem treatment are not well understood. Here, we characterized the role of peptidoglycan recycling in outer membrane integrity maintenance and meropenem tolerance in A. baumannii. These studies suggest that the pathogen limits antibiotic concentrations in the periplasm and highlight physiological processes that could be targeted to improve antimicrobial treatment.
Collapse
|
34
|
Mamou G, Corona F, Cohen-Khait R, Housden NG, Yeung V, Sun D, Sridhar P, Pazos M, Knowles TJ, Kleanthous C, Vollmer W. Peptidoglycan maturation controls outer membrane protein assembly. Nature 2022; 606:953-959. [PMID: 35705811 PMCID: PMC9242858 DOI: 10.1038/s41586-022-04834-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 05/05/2022] [Indexed: 11/12/2022]
Abstract
Linkages between the outer membrane of Gram-negative bacteria and the peptidoglycan layer are crucial for the maintenance of cellular integrity and enable survival in challenging environments1–5. The function of the outer membrane is dependent on outer membrane proteins (OMPs), which are inserted into the membrane by the β-barrel assembly machine6,7 (BAM). Growing Escherichia coli cells segregate old OMPs towards the poles by a process known as binary partitioning, the basis of which is unknown8. Here we demonstrate that peptidoglycan underpins the spatiotemporal organization of OMPs. Mature, tetrapeptide-rich peptidoglycan binds to BAM components and suppresses OMP foldase activity. Nascent peptidoglycan, which is enriched in pentapeptides and concentrated at septa9, associates with BAM poorly and has little effect on its activity, leading to preferential insertion of OMPs at division sites. The synchronization of OMP biogenesis with cell wall growth results in the binary partitioning of OMPs as cells divide. Our study reveals that Gram-negative bacteria coordinate the assembly of two major cell envelope layers by rendering OMP biogenesis responsive to peptidoglycan maturation, a potential vulnerability that could be exploited in future antibiotic design. Peptidoglycan stem peptides in the Gram-negative bacterial cell wall regulate the insertion of essential outer membrane proteins, thus representing a potential target for antibiotic design.
Collapse
Affiliation(s)
- Gideon Mamou
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford, UK
| | - Federico Corona
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.,Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Ruth Cohen-Khait
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford, UK
| | - Nicholas G Housden
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford, UK
| | - Vivian Yeung
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford, UK
| | - Dawei Sun
- Structural Biology, Genentech, South San Francisco, CA, USA
| | - Pooja Sridhar
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Manuel Pazos
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.,Department of Molecular Biology, Center of Molecular Biology 'Severo Ochoa' (UAM-CSIC), Autonomous University of Madrid, Madrid, Spain
| | | | - Colin Kleanthous
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford, UK.
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
35
|
Gao X, Li M, Zhao M, Wang X, Wang S, Liu Y. Metabolism-Triggered Colorimetric Sensor Array for Fingerprinting and Antibiotic Susceptibility Testing of Bacteria. Anal Chem 2022; 94:6957-6966. [PMID: 35500293 DOI: 10.1021/acs.analchem.1c05006] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The rapid identification and antibiotic susceptibility testing (AST) of bacteria would help us to accurately identify the infectious sources as well as guide the use of antibiotics, which are crucial for improving the survival rate and antimicrobial resistance. Herein, a colorimetric sensor array for bacteria fingerprinting was constructed with d-amino acid (d-AA)-modified gold nanoparticles (AuNPs) as probes (Au/d-AA). Bacteria can metabolize the d-AA, triggering the aggregation of AuNPs. Making use of different metabolic capabilities of bacteria toward different d-AA, eight kinds of bacteria including antibiotic-resistant bacteria and strains of the same bacterial species are successfully differentiated via learning the response patterns. Meanwhile, the sensor array also performs well in quantitative analysis of single bacterium and differentiation of bacteria mixtures. More interestingly, a rapid colorimetric AST approach has been developed based on the Au/d-AA nanoprobes by monitoring the d-AA metabolic activity of bacteria toward various antibiotic treatments. In this regard, the outlined work here would promote clinical practicability and facilitate antibiotic stewardship.
Collapse
Affiliation(s)
- Xia Gao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Miaomiao Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Minyang Zhao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Xinke Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Yaqing Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
36
|
Asymmetric peptidoglycan editing generates cell curvature in Bdellovibrio predatory bacteria. Nat Commun 2022; 13:1509. [PMID: 35314810 PMCID: PMC8938487 DOI: 10.1038/s41467-022-29007-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 02/22/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractPeptidoglycan hydrolases contribute to the generation of helical cell shape in Campylobacter and Helicobacter bacteria, while cytoskeletal or periskeletal proteins determine the curved, vibrioid cell shape of Caulobacter and Vibrio. Here, we identify a peptidoglycan hydrolase in the vibrioid-shaped predatory bacterium Bdellovibrio bacteriovorus which invades and replicates within the periplasm of Gram-negative prey bacteria. The protein, Bd1075, generates cell curvature in B. bacteriovorus by exerting LD-carboxypeptidase activity upon the predator cell wall as it grows inside spherical prey. Bd1075 localizes to the outer convex face of B. bacteriovorus; this asymmetric localization requires a nuclear transport factor 2-like (NTF2) domain at the protein C-terminus. We solve the crystal structure of Bd1075, which is monomeric with key differences to other LD-carboxypeptidases. Rod-shaped Δbd1075 mutants invade prey more slowly than curved wild-type predators and stretch invaded prey from within. We therefore propose that the vibrioid shape of B. bacteriovorus contributes to predatory fitness.
Collapse
|
37
|
Weaver AI, Alvarez L, Rosch KM, Ahmed A, Wang GS, van Nieuwenhze MS, Cava F, Dörr T. Lytic transglycosylases mitigate periplasmic crowding by degrading soluble cell wall turnover products. eLife 2022; 11:e73178. [PMID: 35073258 PMCID: PMC8820737 DOI: 10.7554/elife.73178] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/23/2022] [Indexed: 11/25/2022] Open
Abstract
The peptidoglycan cell wall is a predominant structure of bacteria, determining cell shape and supporting survival in diverse conditions. Peptidoglycan is dynamic and requires regulated synthesis of new material, remodeling, and turnover - or autolysis - of old material. Despite exploitation of peptidoglycan synthesis as an antibiotic target, we lack a fundamental understanding of how peptidoglycan synthesis and autolysis intersect to maintain the cell wall. Here, we uncover a critical physiological role for a widely misunderstood class of autolytic enzymes, lytic transglycosylases (LTGs). We demonstrate that LTG activity is essential to survival by contributing to periplasmic processes upstream and independent of peptidoglycan recycling. Defects accumulate in Vibrio cholerae LTG mutants due to generally inadequate LTG activity, rather than absence of specific enzymes, and essential LTG activities are likely independent of protein-protein interactions, as heterologous expression of a non-native LTG rescues growth of a conditional LTG-null mutant. Lastly, we demonstrate that soluble, uncrosslinked, endopeptidase-dependent peptidoglycan chains, also detected in the wild-type, are enriched in LTG mutants, and that LTG mutants are hypersusceptible to the production of diverse periplasmic polymers. Collectively, our results suggest that LTGs prevent toxic crowding of the periplasm with synthesis-derived peptidoglycan polymers and, contrary to prevailing models, that this autolytic function can be temporally separate from peptidoglycan synthesis.
Collapse
Affiliation(s)
- Anna Isabell Weaver
- Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
- Department of Microbiology, Cornell UniversityIthacaUnited States
| | - Laura Alvarez
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå UniversityUmeåSweden
| | - Kelly M Rosch
- Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Asraa Ahmed
- Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell UniversityIthacaUnited States
| | - Garrett Sean Wang
- Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Michael S van Nieuwenhze
- Department of Molecular and Cellular Biochemistry, Indiana UniversityBloomingtonSweden
- Department of Chemistry, Indiana UniversityBloomingtonUnited States
| | - Felipe Cava
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå UniversityUmeåSweden
| | - Tobias Dörr
- Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
- Department of Microbiology, Cornell UniversityIthacaUnited States
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell UniversityIthacaUnited States
| |
Collapse
|
38
|
Rational Design and Synthesis of Large Stokes Shift 2,6-Sulphur-Disubstituted BODIPYs for Cell Imaging. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10010019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Five new disubstituted 2,6-thioaryl-BODIPY dyes were synthesized via selective aromatic electrophilic substitution from commercially available thiophenols. The analysis of the photophysical properties via absorption and emission spectroscopy showed unusually large Stokes shifts for BODIPY fluorophores (70–100 nm), which makes them suitable probes for bioimaging. Selected compounds were evaluated for labelling primary immune cells as well as different cancer cell lines using confocal fluorescence microscopy.
Collapse
|
39
|
Jiang Z, Sun B, Wang Y, Gao H, Ren H, Zhang H, Lu T, Ren X, Wei W, Wang X, Zhang L, Li J, Ding D, Lovell JF, Zhang Y. Surfactant-Stripped Micelles with Aggregation-Induced Enhanced Emission for Bimodal Gut Imaging In Vivo and Microbiota Tagging Ex Vivo. Adv Healthc Mater 2021; 10:e2100356. [PMID: 34160147 DOI: 10.1002/adhm.202100356] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/14/2021] [Indexed: 12/22/2022]
Abstract
Aggregation-induced emission luminogens (AIEgens) hold promise for biomedical imaging and new approaches facilitating their aggregation state are desirable for fluorescence enhancement. Herein, a series of surfactant-stripped AIEgen micelles (SSAMs) with improved fluorescence are developed by a low-temperature surfactant-stripping method to encapsulate AIEgens in temperature-sensitive Pluronic block copolymer. After stripping excessive surfactant, SSAMs exhibit altered optical properties and significantly higher fluorescence quantum yield. Using this method, a library of highly concentrated fluorescent nanoparticles are generated with tunable absorption and emission wavelengths, permitting imaging of deep tissues at different wavelengths. SSAMs remain physiologically stable and can pass safely through gastrointestinal tract (GI) without degradation in the harsh conditions, allowing for fluorescence and photoacoustic imaging of intestine with high resolution. d-amino acids (DAA), a natural metabolite for bacteria, can be chemically conjugated on the surface of SSAMs, enabling non-invasive monitoring of the microbial behavior of ex vivo fluorescently labeled gut microbiota in the GI tract.
Collapse
Affiliation(s)
- Zhen Jiang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, 300350, P. R. China
| | - Boyang Sun
- Department of Biomedical Engineering, The State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Yueqi Wang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, 300350, P. R. China
| | - Heqi Gao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials Ministry of Education and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - He Ren
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, 300350, P. R. China
| | - Hao Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, 300350, P. R. China
| | - Tong Lu
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Xiangkui Ren
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, 300350, P. R. China
| | - Wei Wei
- South China Normal University, Guangzhou, Guangdong Province, 510631, P. R. China
| | - Xiaoli Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, R. P. China
| | - Lei Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, 300350, P. R. China
| | - Jiao Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials Ministry of Education and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials Ministry of Education and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, The State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Yumiao Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
40
|
Mookherjee A, Jurkevitch E. Interactions between Bdellovibrio and like organisms and bacteria in biofilms: beyond predator-prey dynamics. Environ Microbiol 2021; 24:998-1011. [PMID: 34816563 DOI: 10.1111/1462-2920.15844] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/19/2022]
Abstract
Bdellovibrio and like organisms (BALOs) prey on Gram-negative bacteria in the planktonic phase as well as in biofilms, with the ability to reduce prey populations by orders of magnitude. During the last few years, evidence has mounted for a significant ecological role for BALOs, with important implications for our understanding of microbial community dynamics as well as for applications against pathogens, including drug-resistant pathogens, in medicine, agriculture and aquaculture, and in industrial settings for various uses. However, our understanding of biofilm predation by BALOs is still very fragmentary, including gaps in their effect on biofilm structure, on prey resistance, and on evolutionary outcomes of both predators and prey. Furthermore, their impact on biofilms has been shown to reach beyond predation, as they are reported to reduce biofilm structures of non-prey cells (including Gram-positive bacteria). Here, we review the available literature on BALOs in biofilms, extending known aspects to potential mechanisms employed by the predators to grow in biofilms. Within that context, we discuss the potential ecological significance and potential future utilization of the predatory and enzymatic possibilities offered by BALOs in medical, agricultural and environmental applications.
Collapse
Affiliation(s)
- Abhirup Mookherjee
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Edouard Jurkevitch
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
41
|
Unipolar Peptidoglycan Synthesis in the Rhizobiales Requires an Essential Class A Penicillin-Binding Protein. mBio 2021; 12:e0234621. [PMID: 34544272 PMCID: PMC8546619 DOI: 10.1128/mbio.02346-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Members of the Rhizobiales are polarly growing bacteria that lack homologs of the canonical Rod complex. To investigate the mechanisms underlying polar cell wall synthesis, we systematically probed the function of cell wall synthesis enzymes in the plant pathogen Agrobacterium tumefaciens. The development of fluorescent d-amino acid dipeptide (FDAAD) probes, which are incorporated into peptidoglycan by penicillin-binding proteins in A. tumefaciens, enabled us to monitor changes in growth patterns in the mutants. Use of these fluorescent cell wall probes and peptidoglycan compositional analysis demonstrate that a single class A penicillin-binding protein is essential for polar peptidoglycan synthesis. Furthermore, we find evidence of an additional mode of cell wall synthesis that requires ld-transpeptidase activity. Genetic analysis and cell wall targeting antibiotics reveal that the mechanism of unipolar growth is conserved in Sinorhizobium and Brucella. This work provides insights into unipolar peptidoglycan biosynthesis employed by the Rhizobiales during cell elongation.
Collapse
|
42
|
Novick RP. Antibacterial particles and predatory bacteria as alternatives to antibacterial chemicals in the era of antibiotic resistance. Curr Opin Microbiol 2021; 64:109-116. [PMID: 34688038 DOI: 10.1016/j.mib.2021.09.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/26/2022]
Abstract
This review is focused on the subset of antibacterial agents whose action involves one-on-one targeting of infecting bacteria. These agents target individual bacteria and their efficacy is based on particle numbers in contrast to chemical agents such as antibiotics, whose efficacy is based on minimal inhibitory concentrations. Four extant members of this class are predatory bacteria, functional (plaque-forming) phages, and engineered particulate systems, phagemids (plasmids that contain a phage packaging signal) and antibacterial drones (ABDs) that package chromosomal island DNA carrying antibacterial genes. We differentiate the natural predators, phages and predatory bacteria, from the engineered delivery vehicles, phagemids and ABDs, because the latter are much more versatile and can largely bypass the historical warfare that informs the predator-prey interactions.
Collapse
|
43
|
Hoshiko Y, Nishiyama Y, Moriya T, Kadokami K, López-Jácome LE, Hirano R, García-Contreras R, Maeda T. Quinolone Signals Related to Pseudomonas Quinolone Signal-Quorum Sensing Inhibits the Predatory Activity of Bdellovibrio bacteriovorus. Front Microbiol 2021; 12:722579. [PMID: 34566925 PMCID: PMC8461301 DOI: 10.3389/fmicb.2021.722579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
Bdellovibrio bacteriovorus is one of the predatory bacteria; therefore, it can act as a novel “living antibiotic,” unlike the current antibiotics. Here the predation of Escherichia coli by B. bacteriovorus was inhibited in the presence of Pseudomonas aeruginosa. This study investigated whether P. aeruginosa-induced predation inhibition is associated with bacterial quorum sensing (QS). Each las, rhl, or pqs QS mutant in P. aeruginosa was used to check the predatory activity of E. coli cells using B. bacteriovorus. As a result, the predatory activity of B. bacteriovorus increased in a mutant pqs QS system, whereas wild-type PA14 inhibited the predatory activity. Moreover, the addition of 4-hydroxy-2-heptylquinoline (HHQ) or the analog triggered the low predatory activity of B. bacteriovorus and killed B. bacteriovorus cells. Therefore, a defensive action of P. aeruginosa against B. bacteriovorus is activated by the pqs QS system, which produces some quinolone compounds such as HHQ.
Collapse
Affiliation(s)
- Yuki Hoshiko
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | - Yoshito Nishiyama
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | - Tae Moriya
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | - Kiwao Kadokami
- Institute of Environmental Science and Technology, The University of Kitakyushu, Kitakyushu, Japan
| | - Luis Esaú López-Jácome
- Department of Microbiology and Parasitology, Faculty of Medicine, UNAM, Mexico City, Mexico.,Laboratory of Infectology, National Institute of Rehabilitation Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Ryutaro Hirano
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | | | - Toshinari Maeda
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| |
Collapse
|
44
|
Gallagher KA, Brun YV. Bacterial chromosome segregation: New insights into non-binary replication and division. Curr Biol 2021; 31:R1044-R1046. [PMID: 34520714 DOI: 10.1016/j.cub.2021.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Bdellovibrio bacteriovorus divides in a non-binary manner resulting in an even or odd number of progeny. A new study tracks the spatiotemporal dynamics of chromosome segregation in this species and shows that the process is dependent on the conserved ParA-ParB-parS system.
Collapse
Affiliation(s)
- Kelley A Gallagher
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal H3C 3J7, Canada
| | - Yves V Brun
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal H3C 3J7, Canada.
| |
Collapse
|
45
|
Seef S, Herrou J, de Boissier P, My L, Brasseur G, Robert D, Jain R, Mercier R, Cascales E, Habermann BH, Mignot T. A Tad-like apparatus is required for contact-dependent prey killing in predatory social bacteria. eLife 2021; 10:72409. [PMID: 34505573 PMCID: PMC8460266 DOI: 10.7554/elife.72409] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/09/2021] [Indexed: 12/21/2022] Open
Abstract
Myxococcus xanthus, a soil bacterium, predates collectively using motility to invade prey colonies. Prey lysis is mostly thought to rely on secreted factors, cocktails of antibiotics and enzymes, and direct contact with Myxococcus cells. In this study, we show that on surfaces the coupling of A-motility and contact-dependent killing is the central predatory mechanism driving effective prey colony invasion and consumption. At the molecular level, contact-dependent killing involves a newly discovered type IV filament-like machinery (Kil) that both promotes motility arrest and prey cell plasmolysis. In this process, Kil proteins assemble at the predator-prey contact site, suggesting that they allow tight contact with prey cells for their intoxication. Kil-like systems form a new class of Tad-like machineries in predatory bacteria, suggesting a conserved function in predator-prey interactions. This study further reveals a novel cell-cell interaction function for bacterial pili-like assemblages.
Collapse
Affiliation(s)
- Sofiene Seef
- Aix-Marseille Université - CNRS UMR 7283, Institut de Microbiologie de la Méditerranée and Turing Center for Living Systems, Marseille, France
| | - Julien Herrou
- Aix-Marseille Université - CNRS UMR 7283, Institut de Microbiologie de la Méditerranée and Turing Center for Living Systems, Marseille, France
| | - Paul de Boissier
- Aix-Marseille Université - CNRS UMR 7288, Institut de Biologie du Développement de Marseille and Turing Center for Living Systems, Marseille, France
| | - Laetitia My
- Aix-Marseille Université - CNRS UMR 7283, Institut de Microbiologie de la Méditerranée and Turing Center for Living Systems, Marseille, France
| | - Gael Brasseur
- Aix-Marseille Université - CNRS UMR 7283, Institut de Microbiologie de la Méditerranée and Turing Center for Living Systems, Marseille, France
| | - Donovan Robert
- Aix-Marseille Université - CNRS UMR 7283, Institut de Microbiologie de la Méditerranée and Turing Center for Living Systems, Marseille, France
| | - Rikesh Jain
- Aix-Marseille Université - CNRS UMR 7283, Institut de Microbiologie de la Méditerranée and Turing Center for Living Systems, Marseille, France.,Aix-Marseille Université - CNRS UMR 7288, Institut de Biologie du Développement de Marseille and Turing Center for Living Systems, Marseille, France
| | - Romain Mercier
- Aix-Marseille Université - CNRS UMR 7283, Institut de Microbiologie de la Méditerranée and Turing Center for Living Systems, Marseille, France
| | - Eric Cascales
- Aix-Marseille Université - CNRS UMR 7255, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Bianca H Habermann
- Aix-Marseille Université - CNRS UMR 7288, Institut de Biologie du Développement de Marseille and Turing Center for Living Systems, Marseille, France
| | - Tâm Mignot
- Aix-Marseille Université - CNRS UMR 7283, Institut de Microbiologie de la Méditerranée and Turing Center for Living Systems, Marseille, France
| |
Collapse
|
46
|
Ning G, Wang H, Fu M, Liu J, Sun Y, Lu H, Fan X, Zhang Y, Wang H. Dual Signals Electrochemical Biosensor for Point‐of‐care Testing of Amino Acids Enantiomers. ELECTROANAL 2021. [DOI: 10.1002/elan.202100240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Guyang Ning
- Key Laboratory of Analytical Science and Technology of Hebei Province College of Chemistry and Environmental Science Key Laboratory of Medicinal Chemistry and Molecular Diagnosis Ministry of Education Hebei University 071002 Baoding P. R. China
| | - Haiyang Wang
- Key Laboratory of Analytical Science and Technology of Hebei Province College of Chemistry and Environmental Science Key Laboratory of Medicinal Chemistry and Molecular Diagnosis Ministry of Education Hebei University 071002 Baoding P. R. China
| | - Mingxuan Fu
- Key Laboratory of Analytical Science and Technology of Hebei Province College of Chemistry and Environmental Science Key Laboratory of Medicinal Chemistry and Molecular Diagnosis Ministry of Education Hebei University 071002 Baoding P. R. China
| | - Jiaxian Liu
- Key Laboratory of Analytical Science and Technology of Hebei Province College of Chemistry and Environmental Science Key Laboratory of Medicinal Chemistry and Molecular Diagnosis Ministry of Education Hebei University 071002 Baoding P. R. China
| | - Yuena Sun
- Key Laboratory of Analytical Science and Technology of Hebei Province College of Chemistry and Environmental Science Key Laboratory of Medicinal Chemistry and Molecular Diagnosis Ministry of Education Hebei University 071002 Baoding P. R. China
| | - Haijun Lu
- Key Laboratory of Analytical Science and Technology of Hebei Province College of Chemistry and Environmental Science Key Laboratory of Medicinal Chemistry and Molecular Diagnosis Ministry of Education Hebei University 071002 Baoding P. R. China
| | - Xinyu Fan
- Key Laboratory of Analytical Science and Technology of Hebei Province College of Chemistry and Environmental Science Key Laboratory of Medicinal Chemistry and Molecular Diagnosis Ministry of Education Hebei University 071002 Baoding P. R. China
| | - Yufan Zhang
- Key Laboratory of Analytical Science and Technology of Hebei Province College of Chemistry and Environmental Science Key Laboratory of Medicinal Chemistry and Molecular Diagnosis Ministry of Education Hebei University 071002 Baoding P. R. China
| | - Huan Wang
- Key Laboratory of Analytical Science and Technology of Hebei Province College of Chemistry and Environmental Science Key Laboratory of Medicinal Chemistry and Molecular Diagnosis Ministry of Education Hebei University 071002 Baoding P. R. China
| |
Collapse
|
47
|
Kaljević J, Saaki TNV, Govers SK, Remy O, van Raaphorst R, Lamot T, Laloux G. Chromosome choreography during the non-binary cell cycle of a predatory bacterium. Curr Biol 2021; 31:3707-3720.e5. [PMID: 34256020 PMCID: PMC8445325 DOI: 10.1016/j.cub.2021.06.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/13/2021] [Accepted: 06/09/2021] [Indexed: 12/03/2022]
Abstract
In bacteria, the dynamics of chromosome replication and segregation are tightly coordinated with cell-cycle progression and largely rely on specific spatiotemporal arrangement of the chromosome. Whereas these key processes are mostly investigated in species that divide by binary fission, they remain mysterious in bacteria producing larger number of descendants. Here, we establish the predatory bacterium Bdellovibrio bacteriovorus as a model to investigate the non-binary processing of a circular chromosome. We found that its single chromosome is highly compacted in a polarized nucleoid that excludes freely diffusing proteins during the non-proliferative stage of the cell cycle. A binary-like cycle of DNA replication and asymmetric segregation is followed by multiple asynchronous rounds of replication and progressive ParABS-dependent partitioning, uncoupled from cell division. Finally, we provide the first evidence for an on-off behavior of the ParB protein, which localizes at the centromere in a cell-cycle-regulated manner. Altogether, our findings support a model of complex chromosome choreography leading to the generation of variable, odd, or even numbers of offspring and highlight the adaptation of conserved mechanisms to achieve non-binary reproduction. The Bdellovibrio chromosome is polarized, with ori located near the invasive pole The highly compacted nucleoid excludes cytosolic proteins in non-replicative cells Replication and segregation of chromosomes are uncoupled from cell division The centromeric protein ParB localizes at parS in a cell-cycle-dependent manner
Collapse
Affiliation(s)
- Jovana Kaljević
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium
| | - Terrens N V Saaki
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium
| | - Sander K Govers
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Ophélie Remy
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium
| | | | - Thomas Lamot
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium
| | - Géraldine Laloux
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium.
| |
Collapse
|
48
|
Wucher BR, Elsayed M, Adelman JS, Kadouri DE, Nadell CD. Bacterial predation transforms the landscape and community assembly of biofilms. Curr Biol 2021; 31:2643-2651.e3. [PMID: 33826904 PMCID: PMC8588571 DOI: 10.1016/j.cub.2021.03.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/02/2021] [Accepted: 03/10/2021] [Indexed: 01/10/2023]
Abstract
The bacterium Bdellovibrio bacteriovorus attaches to the exterior of a Gram-negative prey cell, enters the periplasm, and harvests resources to replicate before lysing the host to find new prey.1-7 Predatory bacteria such as this are common in many natural environments,8-13 as are groups of matrix-bound prey cell clusters, termed biofilms.14-16 Despite the ubiquity of both predatory bacteria and biofilm-dwelling prey, the interaction between B. bacteriovorus and prey inside biofilms has received little attention and has not yet been studied at the micrometer scale. Filling this knowledge gap is critical to understanding bacterial predator-prey interaction in nature. Here we show that B. bacteriovorus is able to attack biofilms of the pathogen Vibrio cholerae, but only up until a critical maturation threshold past which the prey biofilms are protected from their predators. Using high-resolution microscopy and detailed spatial analysis, we determine the relative contributions of matrix secretion and cell-cell packing of the prey biofilm toward this protection mechanism. Our results demonstrate that B. bacteriovorus predation in the context of this protection threshold fundamentally transforms the sub-millimeter-scale landscape of biofilm growth, as well as the process of community assembly as new potential biofilm residents enter the system. We conclude that bacterial predation can be a key factor influencing the spatial community ecology of microbial biofilms.
Collapse
Affiliation(s)
- Benjamin R Wucher
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH 03755, USA
| | - Mennat Elsayed
- Department of Oral Biology, Rutgers School of Dental Medicine, 110 Bergen Street, Newark, NJ 07101, USA
| | - James S Adelman
- Department of Biological Sciences, The University of Memphis, 3700 Walker Avenue, Memphis, TN 38117, USA
| | - Daniel E Kadouri
- Department of Oral Biology, Rutgers School of Dental Medicine, 110 Bergen Street, Newark, NJ 07101, USA
| | - Carey D Nadell
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH 03755, USA.
| |
Collapse
|
49
|
Aliashkevich A, Cava F. LD-transpeptidases: the great unknown among the peptidoglycan cross-linkers. FEBS J 2021; 289:4718-4730. [PMID: 34109739 DOI: 10.1111/febs.16066] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/05/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022]
Abstract
The peptidoglycan (PG) cell wall is an essential polymer for the shape and viability of bacteria. Its protective role is in great part provided by its mesh-like character. Therefore, PG-cross-linking enzymes like the penicillin-binding proteins (PBPs) are among the best targets for antibiotics. However, while PBPs have been in the spotlight for more than 50 years, another class of PG-cross-linking enzymes called LD-transpeptidases (LDTs) seemed to contribute less to PG synthesis and, thus, has kept an aura of mystery. In the last years, a number of studies have associated LDTs with cell wall adaptation to stress including β-lactam antibiotics, outer membrane stability, and toxin delivery, which has shed light onto the biological meaning of these proteins. Furthermore, as some species display a great abundance of LD-cross-links in their cell wall, it has been hypothesized that LDTs could also be the main synthetic PG-transpeptidases in some bacteria. In this review, we introduce these enzymes and their role in PG biosynthesis and we highlight the most recent advances in understanding their biological role in diverse species.
Collapse
Affiliation(s)
- Alena Aliashkevich
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Sweden
| | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Sweden
| |
Collapse
|
50
|
Bauer A, Forchhammer K. Bacterial Predation on Cyanobacteria. Microb Physiol 2021; 31:99-108. [PMID: 34010833 DOI: 10.1159/000516427] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/07/2021] [Indexed: 11/19/2022]
Abstract
Predatory bacteria gained interest in the last 20 years. Nevertheless, only a few species are well characterized. The endobiotic predator Bdellovibrio bacteriovorus invades its prey to consume it from the inside, whereas Myxococcus xanthus hunts as a whole group to overcome its prey. Both species were described to prey on cyanobacteria as well. This minireview summarizes the findings of the last 20 years of predatory bacteria of cyanobacteria and is supplemented by new findings from a screening experiment for bacterial predators of the model organism Anabaena variabilis PCC 7937. Known predatory bacteria of cyanobacteria belong to the phyla Proteobacteria, Bacteroidetes, and Firmicutes and follow different hunting strategies. The underlying mechanisms are in most cases not known in much detail. Isolates from the screening experiment were clustered after predation behaviour and analyzed with respect to their size. The effect of predation in high nitrate levels and the occurrence of nitrogen-fixing cells, called heterocysts, are addressed.
Collapse
Affiliation(s)
- Antje Bauer
- Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls Universität, Tübingen, Germany
| | - Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls Universität, Tübingen, Germany
| |
Collapse
|