1
|
Martins BR, Radl V, Treder K, Michałowska D, Pritsch K, Schloter M. The rhizosphere microbiome of 51 potato cultivars with diverse plant growth characteristics. FEMS Microbiol Ecol 2024; 100:fiae088. [PMID: 38839598 PMCID: PMC11242454 DOI: 10.1093/femsec/fiae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/22/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024] Open
Abstract
Rhizosphere microbial communities play a substantial role in plant productivity. We studied the rhizosphere bacteria and fungi of 51 distinct potato cultivars grown under similar greenhouse conditions using a metabarcoding approach. As expected, individual cultivars were the most important determining factor of the rhizosphere microbial composition; however, differences were also obtained when grouping cultivars according to their growth characteristics. We showed that plant growth characteristics were related to deterministic and stochastic assembly processes of bacterial and fungal communities, respectively. The bacterial genera Arthrobacter and Massilia (known to produce indole acetic acid and siderophores) exhibited greater relative abundance in high- and medium-performing cultivars. Bacterial co-occurrence networks were larger in the rhizosphere of these cultivars and were characterized by a distinctive combination of plant beneficial Proteobacteria and Actinobacteria along with a module of diazotrophs namely Azospira, Azoarcus, and Azohydromonas. Conversely, the network within low-performing cultivars revealed the lowest nodes, hub taxa, edges density, robustness, and the highest average path length resulting in reduced microbial associations, which may potentially limit their effectiveness in promoting plant growth. Our findings established a clear pattern between plant productivity and the rhizosphere microbiome composition and structure for the investigated potato cultivars, offering insights for future management practices.
Collapse
Affiliation(s)
- Benoit Renaud Martins
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Viviane Radl
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Krzysztof Treder
- Plant Breeding and Acclimatization Institute – National Research Institute in Radzików, Bonin Division, Department of Potato Protection and Seed Science at Bonin, Bonin Str 3, 76-009 Bonin, Poland
| | - Dorota Michałowska
- Plant Breeding and Acclimatization Institute – National Research Institute in Radzików, Bonin Division, Department of Potato Protection and Seed Science at Bonin, Bonin Str 3, 76-009 Bonin, Poland
| | - Karin Pritsch
- Research Unit for Environmental Simulation (EUS), Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Chair for Environmental Microbiology, Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Alte Akademie 8, 85354 Freising, Germany
| |
Collapse
|
2
|
Marschmann GL, Tang J, Zhalnina K, Karaoz U, Cho H, Le B, Pett-Ridge J, Brodie EL. Predictions of rhizosphere microbiome dynamics with a genome-informed and trait-based energy budget model. Nat Microbiol 2024; 9:421-433. [PMID: 38316928 PMCID: PMC10847045 DOI: 10.1038/s41564-023-01582-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 12/08/2023] [Indexed: 02/07/2024]
Abstract
Soil microbiomes are highly diverse, and to improve their representation in biogeochemical models, microbial genome data can be leveraged to infer key functional traits. By integrating genome-inferred traits into a theory-based hierarchical framework, emergent behaviour arising from interactions of individual traits can be predicted. Here we combine theory-driven predictions of substrate uptake kinetics with a genome-informed trait-based dynamic energy budget model to predict emergent life-history traits and trade-offs in soil bacteria. When applied to a plant microbiome system, the model accurately predicted distinct substrate-acquisition strategies that aligned with observations, uncovering resource-dependent trade-offs between microbial growth rate and efficiency. For instance, inherently slower-growing microorganisms, favoured by organic acid exudation at later plant growth stages, exhibited enhanced carbon use efficiency (yield) without sacrificing growth rate (power). This insight has implications for retaining plant root-derived carbon in soils and highlights the power of data-driven, trait-based approaches for improving microbial representation in biogeochemical models.
Collapse
Affiliation(s)
- Gianna L Marschmann
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jinyun Tang
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kateryna Zhalnina
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ulas Karaoz
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Heejung Cho
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Beatrice Le
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Life and Environmental Sciences Department, University of California Merced, Merced, CA, USA
| | - Eoin L Brodie
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
3
|
Jiao L, Cao X, Wang C, Chen F, Zou H, Yue L, Wang Z. Crosstalk between in situ root exudates and rhizobacteria to promote rice growth by selenium nanomaterials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163175. [PMID: 37003329 DOI: 10.1016/j.scitotenv.2023.163175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/25/2023] [Accepted: 03/26/2023] [Indexed: 05/13/2023]
Abstract
Maximizing the potential of plant-microbe systems offers great opportunities to confront sustainability issues in agroecosystems. However, the dialog between root exudates and rhizobacteria remains largely unknown. As a novel nanofertilizer, nanomaterials (NMs) have significant potential to improve agricultural productivity due to their unique properties. Here, soil amendment with 0.1 mg·kg-1 selenium (Se) NMs (30-50 nm) significantly promoted rice seedling growth. Differences in root exudates and rhizobacteria were evident. At an earlier time point (3rd week), Se NMs increased the relative content of malic and citric acid by 15.4- and 8.1-fold, respectively. Meanwhile, the relative abundances of Streptomyces and Sphingomonas were increased by 164.6 % and 38.3 %, respectively. As the exposure time increased, succinic acid (40.5-fold) at the 4th week and salicylic acid (4.7-fold) and indole-3-acetic (7.0-fold) at the 5th week were enhanced, while Pseudomonas and Bacillus increased at the 4th (112.3 % and 50.2 %) and 5th weeks (190.8 % and 53.1 %), respectively. Further analysis indicated that (1) Se NMs directly enhanced the synthesis and secretion of malic and citric acids by upregulating their biosynthesis and transporter genes and then recruited Bacillus and Pseudomonas; (2) Se NMs upregulated the chemotaxis and flagellar genes of Sphingomonas for more interaction with rice plants, thereby promoting rice growth and stimulating root exudate secretion. This crosstalk of root exudates and rhizobacteria enhanced nutrient uptake, resulting in promoted rice growth. Our study offers insights into the crosstalk between root exudates and rhizobacteria by NMs and provides new insights into rhizosphere regulation in nano-enabled agriculture.
Collapse
Affiliation(s)
- Liya Jiao
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Hua Zou
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China.
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| |
Collapse
|
4
|
Jiawen C, Yuan W, Xin Z, Junjie G, Xing H, Jinglei X. Diversity analysis of leaf endophytic fungi and rhizosphere soil fungi of Korean Epimedium at different growth stages. ENVIRONMENTAL MICROBIOME 2022; 17:52. [PMID: 36271421 PMCID: PMC9585767 DOI: 10.1186/s40793-022-00446-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Rhizosphere fungi and endophytic fungi play key roles in plant growth and development; however, their role in the growth of Epimedium koreanum Nakai at different stages remains unclear. Here, we used the Illumina MiSeq system, a high-throughput sequencing technology, to study the endophytic fungi and rhizosphere microbiome of Korean Epimedium. RESULTS Epimedium koreanum Nakai rhizosphere soil and leaves had highly diverse fungal communities during the growth process. The relative abundance of soil fungi in the rhizosphere stage was higher than that of leaf endophytic fungi in the early growth stage, but the overall abundance was basically equal. Sebacina is a significantly divergent fungal genera, and Sebacina sp. are present among leaf fungi species in the rhizosphere soil of Epimedium koreanum Nakai. Sebacina sp. can move to each other in rhizosphere soil fungi and leaf endophytes. VIF (variance inflation factor) analysis showed that soluble salt, whole nitrogen, alkaline lysis nitrogen, whole phosphorus, total potassium, and fast-acting potassium are useful environmental factors for rhizosphere soil and leaf endophytic fungi: potassium, total nitrogen, whole phosphorus, and three environmental factors were significantly and positively associated with the relative abundance of Sebacina sp. CONCLUSIONS (1) This study is the first to clarify the species diversity of fungi in Epimedium koreanum Nakai leaf and rhizosphere soil. (2) Different fungal communities of rhizosphere soil fungi and leaf endophytic fungi at different growth stages of Epimedium koreanum Nakai were examined. (3) Sebacina sp. can move to each other between rhizosphere soil fungi and leaf endophytic fungi. (4) Nitrogen, phosphorus and potassium elements in the environment have a significant positive effect on the relative abundance of Sebacina sp.
Collapse
Affiliation(s)
- Chen Jiawen
- Institute of Identification Department of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jin Lin Province China
| | - Wu Yuan
- Institute of Identification Department of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jin Lin Province China
| | - Zhuang Xin
- Institute of Identification Department of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jin Lin Province China
| | - Guo Junjie
- Institute of Identification Department of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jin Lin Province China
| | - Hu Xing
- Institute of Identification Department of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jin Lin Province China
| | - Xiao Jinglei
- Institute of Identification Department of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jin Lin Province China
| |
Collapse
|
5
|
Wen T, Yu GH, Hong WD, Yuan J, Niu GQ, Xie PH, Sun FS, Guo LD, Kuzyakov Y, Shen QR. Root exudate chemistry affects soil carbon mobilization via microbial community reassembly. FUNDAMENTAL RESEARCH 2022; 2:697-707. [PMID: 38933120 PMCID: PMC11197519 DOI: 10.1016/j.fmre.2021.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 11/20/2022] Open
Abstract
Plant roots are one of the major mediators that allocate carbon captured from the atmosphere to soils as rhizodeposits, including root exudates. Although rhizodeposition regulates both microbial activity and the biogeochemical cycling of nutrients, the effects of particular exudate species on soil carbon fluxes and key rhizosphere microorganisms remain unclear. By combining high-throughput sequencing, q-PCR, and NanoSIMS analyses, we characterized the bacterial community structure, quantified total bacteria depending on root exudate chemistry, and analyzed the consequences on the mobility of mineral-protected carbon. Using well-controlled incubation experiments, we showed that the three most abundant groups of root exudates (amino acids, carboxylic acids, and sugars) have contrasting effects on the release of dissolved organic carbon (DOC) and bioavailable Fe in an Ultisol through the disruption of organo-mineral associations and the alteration of bacterial communities, thus priming organic matter decomposition in the rhizosphere. High resolution (down to 50 nm) NanoSIMS images of mineral particles indicated that iron and silicon co-localized significantly more organic carbon following amino acid inputs than treatments without exudates or with carboxylic acids. The application of sugar strongly reduced microbial diversity without impacting soil carbon mobilization. Carboxylic acids increased the prevalence of Actinobacteria and facilitated carbon mobilization, whereas amino acid addition increased the abundances of Proteobacteria that prevented DOC release. In summary, root exudate functions are defined by their chemical composition that regulates bacterial community composition and, consequently, the biogeochemical cycling of carbon in the rhizosphere.
Collapse
Affiliation(s)
- Tao Wen
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Guang-Hui Yu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin 300072, China
| | - Wen-Dan Hong
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Yuan
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Guo-Qing Niu
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng-Hao Xie
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Fu-Sheng Sun
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin 300072, China
| | - Lao-Dong Guo
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Ave., Milwaukee, WI 53204, United States
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Göttingen, Göttingen 37073, Germany
- Agro-Technological Institute, Peoples Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Qi-Rong Shen
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Sun N, Jiang F, Zhang L, Feng G. Hyphal exudates of an arbuscular mycorrhizal fungus<italic>Rhizophagus irregularis</italic> induce phosphate-solubilizingbacterium <italic>Rahnella aquatilis</italic> to swim towards its hyphae. CHINESE SCIENCE BULLETIN-CHINESE 2021. [DOI: 10.1360/tb-2021-0579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Visualizing the Hidden Half: Plant-Microbe Interactions in the Rhizosphere. mSystems 2021; 6:e0076521. [PMID: 34519527 PMCID: PMC8547458 DOI: 10.1128/msystems.00765-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Plant roots and the associated rhizosphere constitute a dynamic environment that fosters numerous intra- and interkingdom interactions, including metabolite exchange between plants and soil mediated by root exudates and the rhizosphere microbiome. These interactions affect plant fitness and performance, soil health, and the belowground carbon budget. Exploring and understanding the molecular mechanisms governing ecosystem responses via rhizosphere interactions allow the rational and sustainable design of future ecosystems. However, visualizing the plant root system architecture with spatially resolved root exudate and microbiome profiles along the root in its native state remains an ambitious grand challenge in rhizosphere biology. To address this challenge, we developed a three-dimensional (3D) root cartography platform to accurately visualize molecular and microbial constituents and their interactions in the root-rhizosphere zone.
Collapse
|
8
|
Sun H, Jiang S, Jiang C, Wu C, Gao M, Wang Q. A review of root exudates and rhizosphere microbiome for crop production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:54497-54510. [PMID: 34431053 DOI: 10.1007/s11356-021-15838-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/02/2021] [Indexed: 05/04/2023]
Abstract
Increasing crop yields and ensuring food security is a major global challenge. In order to increase crop production, chemical fertilizers and pesticides are excessively used. However, the significance of root exudates is understudied. Beneficial interactions between plant and rhizosphere microbiome are critical for plant fitness and health. In this review, we discuss the application and progress of current research methods and technologies in terms of root exudates and rhizosphere microbiome. We summarize how root exudates promote plant access to nitrogen, phosphorus, and iron, and how root exudates strengthen plant immunity to cope with biotic stress by regulating the rhizosphere microbiome, and thereby reducing dependence on fertilizers and pesticides. Optimizing these interactions to increase plant nutrient uptake and resistance to biotic stresses offers one of the few untapped opportunities to confront sustainability issues in food security. To overcome the limitations of current research, combination of multi-omics, imaging technology together with synthetic communities has the potential to uncover the interaction mechanisms and to fill the knowledge gap for their applications in agriculture to achieve sustainable development.
Collapse
Affiliation(s)
- Haishu Sun
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Cancan Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Chuanfu Wu
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 10083, China
| | - Ming Gao
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 10083, China
| | - Qunhui Wang
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 10083, China.
| |
Collapse
|
9
|
Brunel C, Pouteau R, Dawson W, Pester M, Ramirez KS, van Kleunen M. Towards Unraveling Macroecological Patterns in Rhizosphere Microbiomes. TRENDS IN PLANT SCIENCE 2020; 25:1017-1029. [PMID: 32467065 DOI: 10.1016/j.tplants.2020.04.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/18/2020] [Accepted: 04/28/2020] [Indexed: 05/26/2023]
Abstract
It is generally accepted that plants locally influence the composition and activity of their rhizosphere microbiome, and that rhizosphere community assembly further involves a hierarchy of constraints with varying strengths across spatial and temporal scales. However, our knowledge of rhizosphere microbiomes is largely based on single-location and time-point studies. Consequently, it remains difficult to predict patterns at large landscape scales, and we lack a clear understanding of how the rhizosphere microbiome forms and is maintained by drivers beyond the influence of the plant. By synthesizing recent literature and collating data on rhizosphere microbiomes, we point out the opportunities and challenges offered by advances in molecular biology, bioinformatics, and data availability. Specifically, we highlight the use of exact sequence variants, coupled with existing and newly generated data to decipher the rules of rhizosphere community assembly across large spatial and taxonomic scales.
Collapse
Affiliation(s)
- Caroline Brunel
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, 318000 Taizhou, China; IRD, IPME, 911 Avenue Agropolis, BP 64501, 34394, Montpellier, France.
| | - Robin Pouteau
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, 318000 Taizhou, China; AMAP, IRD, CNRS, CIRAD, INRA, Université de Montpellier, 34398 Montpellier Cedex 05, France
| | - Wayne Dawson
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Michael Pester
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, D-38124 Braunschweig, Germany; Technical University of Braunschweig, Institute for Microbiology, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Kelly S Ramirez
- Netherlands Institute of Ecology, Droevendaalsesteeg 10, 6708, PB, Wageningen, The Netherlands; University of Texas at El Paso, Department of Biological Sciences, 500 W University Ave, El Paso, TX 79968, USA
| | - Mark van Kleunen
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, 318000 Taizhou, China; Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| |
Collapse
|
10
|
Li J, Mavrodi OV, Hou J, Blackmon C, Babiker EM, Mavrodi DV. Comparative Analysis of Rhizosphere Microbiomes of Southern Highbush Blueberry ( Vaccinium corymbosum L.), Darrow's Blueberry ( V. darrowii Camp), and Rabbiteye Blueberry ( V. virgatum Aiton). Front Microbiol 2020; 11:370. [PMID: 32226421 PMCID: PMC7081068 DOI: 10.3389/fmicb.2020.00370] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/19/2020] [Indexed: 11/16/2022] Open
Abstract
Plants are inhabited by millions of parasitic, commensal, and mutualistic microorganisms that coexist in complex ecological communities, and profoundly affect the plant’s productivity, health, and capacity to cope with environmental stress. Therefore, a better understanding of the rhizosphere microbiome may open a yet untapped avenue for the rational exploitation of beneficial plant–microbe interactions in modern agriculture. Blueberries encompass several wild and cultivated species of shrubs of the genus Vaccinium that are native to North America. They are grown commercially for the production of fruits, which are considered a health food due to the rich content of minerals, trace elements, and phenolic compounds with antioxidant, antitumor, and anti-inflammatory properties. Despite a long history of breeding and extensive commercial use, remarkably little is known about the composition and function of the blueberry root microbiome. To address this gap, we employed molecular approaches to characterize and compare microbial communities inhabiting the roots of rabbiteye blueberry (Vaccinium virgatum), Darrow’s blueberry (Vaccinium darrowii), and southern highbush blueberry (SHB; an interspecific hybrid of Vaccinium corymbosum and V. darrowii). Our results revealed that these plant species share a common core rhizobiome, but at the same time differ significantly in the diversity, relative abundance, richness, and evenness of multiple groups of prokaryotic and eukaryotic microorganisms. Although the host signature effects were especially pronounced at the plant species level, we also observed genotype-level variations in the distribution of specific microbial taxa, which suggests that the assembly of the blueberry microbiome is shaped by the plant genotype and modifications associated with the domestication and breeding of members of the Vaccinium genus. We also demonstrated that the studied Vaccinium species differ in the abundance of beneficial rhizobacteria and ericoid mycorrhizal fungi, which play a vital role in their adaptation to soils with low pH and slow turnover of organic matter.
Collapse
Affiliation(s)
- Jiangang Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Olga V Mavrodi
- Department of Cell and Molecular Biology, School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States.,South Mississippi Branch Experiment Station, Mississippi State University, Poplarville, MS, United States
| | - Jinfeng Hou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Chazden Blackmon
- Department of Cell and Molecular Biology, School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Ebrahiem M Babiker
- USDA-ARS Southern Horticultural Research Laboratory, Poplarville, MS, United States
| | - Dmitri V Mavrodi
- Department of Cell and Molecular Biology, School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
11
|
Rhizosphere microbiome mediates systemic root metabolite exudation by root-to-root signaling. Proc Natl Acad Sci U S A 2020; 117:3874-3883. [PMID: 32015118 DOI: 10.1073/pnas.1912130117] [Citation(s) in RCA: 237] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Microbial communities associated with roots confer specific functions to their hosts, thereby modulating plant growth, health, and productivity. Yet, seminal questions remain largely unaddressed including whether and how the rhizosphere microbiome modulates root metabolism and exudation and, consequently, how plants fine tune this complex belowground web of interactions. Here we show that, through a process termed systemically induced root exudation of metabolites (SIREM), different microbial communities induce specific systemic changes in tomato root exudation. For instance, systemic exudation of acylsugars secondary metabolites is triggered by local colonization of bacteria affiliated with the genus Bacillus Moreover, both leaf and systemic root metabolomes and transcriptomes change according to the rhizosphere microbial community structure. Analysis of the systemic root metabolome points to glycosylated azelaic acid as a potential microbiome-induced signaling molecule that is subsequently exuded as free azelaic acid. Our results demonstrate that rhizosphere microbiome assembly drives the SIREM process at the molecular and chemical levels. It highlights a thus-far unexplored long-distance signaling phenomenon that may regulate soil conditioning.
Collapse
|
12
|
Resident and phytometer plants host comparable rhizosphere fungal communities in managed grassland ecosystems. Sci Rep 2020; 10:919. [PMID: 31969613 PMCID: PMC6976665 DOI: 10.1038/s41598-020-57760-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 01/06/2020] [Indexed: 12/14/2022] Open
Abstract
Plants are known to modulate their own rhizosphere mycobiome. However, field studies that use resident plants to relate the microbiome assemblage to environmental factors such as land-use suffer from the problem that confounding factors such as plant age and performance may override the targeted effects. In contrast, the use of even-aged phytometer plants pre-cultivated under uniform conditions helps to reduce such random variation. We investigated the rhizosphere mycobiomes of phytometer and resident plants of two common grassland species, Dactylis glomerata L. s. str. and Plantago lanceolata L. along a land-use intensity gradient using ITS rRNA Illumina amplicon sequencing. Remarkably, we did not detect effects of the plant types (resident vs. phytometer plant, even though some fungal taxa exhibited plant species specificity), indicating that phytometer plants hosted a comparable rhizosphere mycobiome as resident plants. Our data indicate that the plant species harbor distinct fungal communities, with fungal richness in the rhizosphere of P. lanceolata being substantially higher than that of D. glomerata. Land-use intensity had a clear impact on the mycobiome of both plant species, with specific fungal genera showing differential tolerance to high intensities. Overall, the phytometer approach has a high potential to reveal environmental impacts on rhizosphere communities.
Collapse
|
13
|
Taking Advantage of the Genomics Revolution for Monitoring and Conservation of Chondrichthyan Populations. DIVERSITY-BASEL 2019. [DOI: 10.3390/d11040049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chondrichthyes (sharks, rays, skates and chimaeras) are among the oldest extant predators and are vital to top-down regulation of oceanic ecosystems. They are an ecologically diverse group occupying a wide range of habitats and are thus, exploited by coastal, pelagic and deep-water fishing industries. Chondrichthyes are among the most data deficient vertebrate species groups making design and implementation of regulatory and conservation measures challenging. High-throughput sequencing technologies have significantly propelled ecological investigations and understanding of marine and terrestrial species’ populations, but there remains a paucity of NGS based research on chondrichthyan populations. We present a brief review of current methods to access genomic and metagenomic data from Chondrichthyes and discuss applications of these datasets to increase our understanding of chondrichthyan taxonomy, evolution, ecology and population structures. Last, we consider opportunities and challenges offered by genomic studies for conservation and management of chondrichthyan populations.
Collapse
|
14
|
Rootstocks Shape the Rhizobiome: Rhizosphere and Endosphere Bacterial Communities in the Grafted Tomato System. Appl Environ Microbiol 2019; 85:AEM.01765-18. [PMID: 30413478 DOI: 10.1128/aem.01765-18] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/23/2018] [Indexed: 12/21/2022] Open
Abstract
Root-associated microbes are critical to plant health and performance, although understanding of the factors that structure these microbial communities and the theory to predict microbial assemblages are still limited. Here, we use a grafted tomato system to study the effects of rootstock genotypes and grafting in endosphere and rhizosphere microbiomes that were evaluated by sequencing 16S rRNA. We compared the microbiomes of nongrafted tomato cultivar BHN589, self-grafted BHN589, and BHN589 grafted to Maxifort or RST-04-106 hybrid rootstocks. Operational taxonomic unit (OTU)-based bacterial diversity was greater in Maxifort compared to the nongrafted control, whereas bacterial diversity in the controls (self-grafted and nongrafted) and the other rootstock (RST-04-106) was similar. Grafting itself did not affect bacterial diversity; diversity in the self-graft was similar to that of the nongraft. Bacterial diversity was higher in the rhizosphere than in the endosphere for all treatments. However, despite the lower overall diversity, there was a greater number of differentially abundant OTUs (DAOTUs) in the endosphere, with the greatest number of DAOTUs associated with Maxifort. In a permutational multivariate analysis of variance (PERMANOVA), there was evidence for an effect of rootstock genotype on bacterial communities. The endosphere-rhizosphere compartment and study site explained a high percentage of the differences among bacterial communities. Further analyses identified OTUs responsive to rootstock genotypes in both the endosphere and rhizosphere. Our findings highlight the effects of rootstocks on bacterial diversity and composition. The influence of rootstock and plant compartment on microbial communities indicates opportunities for the development of designer communities and microbiome-based breeding to improve future crop production.IMPORTANCE Understanding factors that control microbial communities is essential for designing and supporting microbiome-based agriculture. In this study, we used a grafted tomato system to study the effect of rootstock genotypes and grafting on bacterial communities colonizing the endosphere and rhizosphere. To compare the bacterial communities in control treatments (nongrafted and self-grafted plants) with the hybrid rootstocks used by farmers, we evaluated the effect of rootstocks on overall bacterial diversity and composition. These findings indicate the potential for using plant genotype to indirectly select bacterial taxa. In addition, we identify taxa responsive to each rootstock treatment, which may represent candidate taxa useful for biocontrol and in biofertilizers.
Collapse
|
15
|
Hugoni M, Luis P, Guyonnet J, Haichar FEZ. Plant host habitat and root exudates shape fungal diversity. MYCORRHIZA 2018; 28:451-463. [PMID: 30109473 DOI: 10.1007/s00572-018-0857-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/25/2018] [Indexed: 05/06/2023]
Abstract
The rhizospheric microbiome is clearly affected by plant species and certain of their functional traits. These functional traits allow plants to adapt to their environmental conditions by acquiring or conserving nutrients, thus defining different ecological resource-use plant strategies. In the present study, we investigated whether plants with one of the two nutrient-use strategies (conservative versus exploitative) could influence fungal communities involved in soil organic matter degradation and root exudate assimilation, as well as those colonizing root tissues. We applied a DNA-based, stable-isotope probing (DNA-SIP) approach to four grass species distributed along a gradient of plant nutrient resource strategies, ranging from conservative to exploitative species, and analyzed their associated mycobiota composition using a fungal internal transcribed spacer (ITS) and Glomeromycotina 18S rRNA gene metabarcoding approach. Our results demonstrated that fungal taxa associated with exploitative and conservative plants could be separated into two general categories according to their location: generalists, which are broadly distributed among plants from each strategy and represent the core mycobiota of soil organic matter degraders, root exudate consumers in the root-adhering soil, and root colonizers; and specialists, which are locally abundant in one species and more specifically involved in soil organic matter degradation or root exudate assimilation on the root-adhering soil and the root tissues. Interestingly, for arbuscular mycorrhizal fungi analysis, all plant roots were mainly colonized by Glomus species, whereas an increased diversity of Glomeromycotina genera was observed for the exploitative plant species Dactylis glomerata.
Collapse
Affiliation(s)
- Mylène Hugoni
- CNRS, UMR5557, Ecologie Microbienne, INRA, UMR1418, Université Lyon 1, 69220, Villeurbanne Cedex, France
| | - Patricia Luis
- CNRS, UMR5557, Ecologie Microbienne, INRA, UMR1418, Université Lyon 1, 69220, Villeurbanne Cedex, France
| | - Julien Guyonnet
- CNRS, UMR5557, Ecologie Microbienne, INRA, UMR1418, Université Lyon 1, 69220, Villeurbanne Cedex, France
| | - Feth El Zahar Haichar
- CNRS, UMR5557, Ecologie Microbienne, INRA, UMR1418, Université Lyon 1, 69220, Villeurbanne Cedex, France.
| |
Collapse
|
16
|
Monleón D, Talaya A, Giménez E, Vinuesa V, Morales JM, Hernández-Boluda JC, Pérez A, Piñana JL, Solano C, Navarro D. Validation of a plasma metabolomics model that allows anticipation of the occurrence of cytomegalovirus DNAaemia in allogeneic stem cell transplant recipients. J Med Microbiol 2018; 67:814-819. [PMID: 29724268 DOI: 10.1099/jmm.0.000746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A plasma metabolomic model obtained by means of untargeted 1H nuclear magnetic resonance, to which taurine, choline, methylamine, total glutathione, trimethylamine N-oxide, lactate, lysine, isoleucine, total fatty acids and unsaturated fatty acids contributed, was validated for the prediction of first episodes of cytomegalovirus (CMV) DNAaemia in a cohort of 79 allogeneic stem haematopoietic stem cell transplant (allo-HSCT) recipients. The predictive success rate was nearly 65 % for patients at both low and high risk of CMV-related complications according to their baseline characteristics. Plasma metabolomics profiling shortly after engraftment (day 21 after transplantation) allowed the anticipation of the occurrence of CMV DNAaemia in 71 % of patients. Plasma metabolomics analyses may be ancillary for identifying allo-HSCT patients at the highest risk of CMV DNAaemia who may benefit from early targeted antiviral prophylaxis.
Collapse
Affiliation(s)
- Daniel Monleón
- Metabolomic and Molecular Image Laboratory, Fundación de Investigación INCLIVA, Department of Pathology, School of Medicine, University of Valencia, Valencia, Spain
| | - Alberto Talaya
- Microbiology Service, Hospital Clínico Universitario, Fundación de Investigación INCLIVA, Valencia, Spain
| | - Estela Giménez
- Microbiology Service, Hospital Clínico Universitario, Fundación de Investigación INCLIVA, Valencia, Spain
| | - Víctor Vinuesa
- Microbiology Service, Hospital Clínico Universitario, Fundación de Investigación INCLIVA, Valencia, Spain
| | - José Manuel Morales
- Metabolomic and Molecular Image Laboratory, Fundación de Investigación INCLIVA, Department of Pathology, School of Medicine, University of Valencia, Valencia, Spain
| | - Juan Carlos Hernández-Boluda
- Hematology and Medical Oncology Service, Hospital Clínico Universitario, Fundación de Investigación INCLIVA, Valencia, Spain
| | - Ariadna Pérez
- Hematology and Medical Oncology Service, Hospital Clínico Universitario, Fundación de Investigación INCLIVA, Valencia, Spain
| | - José Luis Piñana
- Hematology and Medical Oncology Service, Hospital Clínico Universitario, Fundación de Investigación INCLIVA, Valencia, Spain
| | - Carlos Solano
- Hematology and Medical Oncology Service, Hospital Clínico Universitario, Fundación de Investigación INCLIVA, Valencia, Spain.,Department of Medicine, School of Medicine, University of Valencia, Valencia, Spain
| | - David Navarro
- Department of Microbiology, School of Medicine, University of Valencia, Valencia, Spain.,Microbiology Service, Hospital Clínico Universitario, Fundación de Investigación INCLIVA, Valencia, Spain
| |
Collapse
|