1
|
Dornes A, Schmidt LM, Mais CN, Hook JC, Pané-Farré J, Kressler D, Thormann K, Bange G. Polar confinement of a macromolecular machine by an SRP-type GTPase. Nat Commun 2024; 15:5797. [PMID: 38987236 PMCID: PMC11236974 DOI: 10.1038/s41467-024-50274-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024] Open
Abstract
The basal structure of the bacterial flagellum includes a membrane embedded MS-ring (formed by multiple copies of FliF) and a cytoplasmic C-ring (composed of proteins FliG, FliM and FliN). The SRP-type GTPase FlhF is required for directing the initial flagellar protein FliF to the cell pole, but the mechanisms are unclear. Here, we show that FlhF anchors developing flagellar structures to the polar landmark protein HubP/FimV, thereby restricting their formation to the cell pole. Specifically, the GTPase domain of FlhF interacts with HubP, while a structured domain at the N-terminus of FlhF binds to FliG. FlhF-bound FliG subsequently engages with the MS-ring protein FliF. Thus, the interaction of FlhF with HubP and FliG recruits a FliF-FliG complex to the cell pole. In addition, the modulation of FlhF activity by the MinD-type ATPase FlhG controls the interaction of FliG with FliM-FliN, thereby regulating the progression of flagellar assembly at the pole.
Collapse
Affiliation(s)
- Anita Dornes
- Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Hans-Meerwein-Strasse 6, C07, 35043, Marburg, Germany
| | - Lisa Marie Schmidt
- Justus-Liebig-Universität, Department of Microbiology and Molecular Biology, Heinrich-Buff-Ring 26, 35392, Giessen, Germany
| | - Christopher-Nils Mais
- Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Hans-Meerwein-Strasse 6, C07, 35043, Marburg, Germany
| | - John C Hook
- Justus-Liebig-Universität, Department of Microbiology and Molecular Biology, Heinrich-Buff-Ring 26, 35392, Giessen, Germany
| | - Jan Pané-Farré
- Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Hans-Meerwein-Strasse 6, C07, 35043, Marburg, Germany
| | - Dieter Kressler
- University of Fribourg, Department of Biology, Chemin du Musée 10, 1700, Fribourg, Switzerland
| | - Kai Thormann
- Justus-Liebig-Universität, Department of Microbiology and Molecular Biology, Heinrich-Buff-Ring 26, 35392, Giessen, Germany.
| | - Gert Bange
- Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Hans-Meerwein-Strasse 6, C07, 35043, Marburg, Germany.
- Max-Planck-Institute for terrestrial Microbiology, Molecular Physiology of Microbes, Karl-von-Frisch Strasse 14, 35043, Marburg, Germany.
| |
Collapse
|
2
|
Liu J, Eastep GN, Cvirkaite-Krupovic V, Rich-New ST, Kreutzberger MAB, Egelman EH, Krupovic M, Wang F. Two distinct archaeal type IV pili structures formed by proteins with identical sequence. Nat Commun 2024; 15:5049. [PMID: 38877064 PMCID: PMC11178852 DOI: 10.1038/s41467-024-45062-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/10/2024] [Indexed: 06/16/2024] Open
Abstract
Type IV pili (T4P) represent one of the most common varieties of surface appendages in archaea. These filaments, assembled from small pilin proteins, can be many microns long and serve diverse functions, including adhesion, biofilm formation, motility, and intercellular communication. Here, we determine atomic structures of two distinct adhesive T4P from Saccharolobus islandicus via cryo-electron microscopy (cryo-EM). Unexpectedly, both pili were assembled from the same pilin polypeptide but under different growth conditions. One filament, denoted mono-pilus, conforms to canonical archaeal T4P structures where all subunits are equivalent, whereas in the other filament, the tri-pilus, the same polypeptide exists in three different conformations. The three conformations in the tri-pilus are very different from the single conformation found in the mono-pilus, and involve different orientations of the outer immunoglobulin-like domains, mediated by a very flexible linker. Remarkably, the outer domains rotate nearly 180° between the mono- and tri-pilus conformations. Both forms of pili require the same ATPase and TadC-like membrane pore for assembly, indicating that the same secretion system can produce structurally very different filaments. Our results show that the structures of archaeal T4P appear to be less constrained and rigid than those of the homologous archaeal flagellar filaments that serve as helical propellers.
Collapse
Affiliation(s)
- Junfeng Liu
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris, France
| | - Gunnar N Eastep
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Shane T Rich-New
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mark A B Kreutzberger
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA.
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris, France.
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
3
|
Johnson S, Deme JC, Furlong EJ, Caesar JJE, Chevance FFV, Hughes KT, Lea SM. Structural basis of directional switching by the bacterial flagellum. Nat Microbiol 2024; 9:1282-1292. [PMID: 38459206 DOI: 10.1038/s41564-024-01630-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/01/2024] [Indexed: 03/10/2024]
Abstract
The bacterial flagellum is a macromolecular protein complex that harvests energy from uni-directional ion flow across the inner membrane to power bacterial swimming via rotation of the flagellar filament. Rotation is bi-directional, with binding of a cytoplasmic chemotactic response regulator controlling reversal, though the structural and mechanistic bases for rotational switching are not well understood. Here we present cryoelectron microscopy structures of intact Salmonella flagellar basal bodies (3.2-5.5 Å), including the cytoplasmic C-ring complexes required for power transmission, in both counter-clockwise and clockwise rotational conformations. These reveal 180° movements of both the N- and C-terminal domains of the FliG protein, which, when combined with a high-resolution cryoelectron microscopy structure of the MotA5B2 stator, show that the stator shifts from the outside to the inside of the C-ring. This enables rotational switching and reveals how uni-directional ion flow across the inner membrane is used to accomplish bi-directional rotation of the flagellum.
Collapse
Affiliation(s)
- Steven Johnson
- Center for Structural Biology, CCR, NCI, Frederick, MD, USA.
| | - Justin C Deme
- Center for Structural Biology, CCR, NCI, Frederick, MD, USA
| | - Emily J Furlong
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Division of Biomedical Science and Biochemistry, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Joseph J E Caesar
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Central Oxford Structural Molecular Imaging Centre, University of Oxford, Oxford, UK
| | | | - Kelly T Hughes
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Susan M Lea
- Center for Structural Biology, CCR, NCI, Frederick, MD, USA.
| |
Collapse
|
4
|
Singh PK, Sharma P, Afanzar O, Goldfarb MH, Maklashina E, Eisenbach M, Cecchini G, Iverson TM. CryoEM structures reveal how the bacterial flagellum rotates and switches direction. Nat Microbiol 2024; 9:1271-1281. [PMID: 38632342 PMCID: PMC11087270 DOI: 10.1038/s41564-024-01674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 03/12/2024] [Indexed: 04/19/2024]
Abstract
Bacterial chemotaxis requires bidirectional flagellar rotation at different rates. Rotation is driven by a flagellar motor, which is a supercomplex containing multiple rings. Architectural uncertainty regarding the cytoplasmic C-ring, or 'switch', limits our understanding of how the motor transmits torque and direction to the flagellar rod. Here we report cryogenic electron microscopy structures for Salmonella enterica serovar typhimurium inner membrane MS-ring and C-ring in a counterclockwise pose (4.0 Å) and isolated C-ring in a clockwise pose alone (4.6 Å) and bound to a regulator (5.9 Å). Conformational differences between rotational poses include a 180° shift in FliF/FliG domains that rotates the outward-facing MotA/B binding site to inward facing. The regulator has specificity for the clockwise pose by bridging elements unique to this conformation. We used these structures to propose how the switch reverses rotation and transmits torque to the flagellum, which advances the understanding of bacterial chemotaxis and bidirectional motor rotation.
Collapse
Affiliation(s)
- Prashant K Singh
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Pankaj Sharma
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Oshri Afanzar
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Margo H Goldfarb
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Elena Maklashina
- Molecular Biology Division, San Francisco VA Health Care System, San Francisco, CA, USA
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA, USA
| | - Michael Eisenbach
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Gary Cecchini
- Molecular Biology Division, San Francisco VA Health Care System, San Francisco, CA, USA
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA, USA
| | - T M Iverson
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA.
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
5
|
Ribardo DA, Johnson JJ, Hendrixson DR. Viscosity-dependent determinants of Campylobacter jejuni impacting the velocity of flagellar motility. mBio 2024; 15:e0254423. [PMID: 38085029 PMCID: PMC10790790 DOI: 10.1128/mbio.02544-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/06/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE Bacteria can adapt flagellar motor output in response to the load that the extracellular milieu imparts on the flagellar filament to enable propulsion. Bacteria can adapt flagellar motor output in response to the load that the extracellular milieu imparts on the flagellar filament to enable propulsion through diverse environments. These changes may involve increasing power and torque in high-viscosity environments or reducing power and flagellar rotation upon contact with a surface. C. jejuni swimming velocity in low-viscosity environments is comparable to other bacterial flagellates and increases significantly as external viscosity increases. In this work, we provide evidence that the mechanics of the C. jejuni flagellar motor has evolved to naturally promote high swimming velocity in high-viscosity environments. We found that C. jejuni produces VidA and VidB as auxiliary proteins to specifically affect flagellar motor activity in low viscosity to reduce swimming velocity. Our findings provide some of the first insights into different mechanisms that exist in bacteria to alter the mechanics of a flagellar motor, depending on the viscosity of extracellular environments.
Collapse
Affiliation(s)
- Deborah A. Ribardo
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jeremiah J. Johnson
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - David R. Hendrixson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
6
|
Minamino T, Kinoshita M. Structure, Assembly, and Function of Flagella Responsible for Bacterial Locomotion. EcoSal Plus 2023; 11:eesp00112023. [PMID: 37260402 PMCID: PMC10729930 DOI: 10.1128/ecosalplus.esp-0011-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/14/2023] [Indexed: 01/28/2024]
Abstract
Many motile bacteria use flagella for locomotion under a variety of environmental conditions. Because bacterial flagella are under the control of sensory signal transduction pathways, each cell is able to autonomously control its flagellum-driven locomotion and move to an environment favorable for survival. The flagellum of Salmonella enterica serovar Typhimurium is a supramolecular assembly consisting of at least three distinct functional parts: a basal body that acts as a bidirectional rotary motor together with multiple force generators, each of which serves as a transmembrane proton channel to couple the proton flow through the channel with torque generation; a filament that functions as a helical propeller that produces propulsion; and a hook that works as a universal joint that transmits the torque produced by the rotary motor to the helical propeller. At the base of the flagellum is a type III secretion system that transports flagellar structural subunits from the cytoplasm to the distal end of the growing flagellar structure, where assembly takes place. In recent years, high-resolution cryo-electron microscopy (cryoEM) image analysis has revealed the overall structure of the flagellum, and this structural information has made it possible to discuss flagellar assembly and function at the atomic level. In this article, we describe what is known about the structure, assembly, and function of Salmonella flagella.
Collapse
Affiliation(s)
- Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Miki Kinoshita
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
7
|
Botting JM, Tachiyama S, Gibson KH, Liu J, Starai VJ, Hoover TR. FlgV forms a flagellar motor ring that is required for optimal motility of Helicobacter pylori. PLoS One 2023; 18:e0287514. [PMID: 37976320 PMCID: PMC10655999 DOI: 10.1371/journal.pone.0287514] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/07/2023] [Indexed: 11/19/2023] Open
Abstract
Flagella-driven motility is essential for Helicobacter pylori to colonize the human stomach, where it causes a variety of diseases, including chronic gastritis, peptic ulcer disease, and gastric cancer. H. pylori has evolved a high-torque-generating flagellar motor that possesses several accessories not found in the archetypical Escherichia coli motor. FlgV was one of the first flagellar accessory proteins identified in Campylobacter jejuni, but its structure and function remain poorly understood. Here, we confirm that deletion of flgV in H. pylori B128 and a highly motile variant of H. pylori G27 (G27M) results in reduced motility in soft agar medium. Comparative analyses of in-situ flagellar motor structures of wild-type, ΔflgV, and a strain expressing FlgV-YFP showed that FlgV forms a ring-like structure closely associated with the junction of two highly conserved flagellar components: the MS and C rings. The results of our studies suggest that the FlgV ring has adapted specifically in Campylobacterota to support the assembly and efficient function of the high-torque-generating motors.
Collapse
Affiliation(s)
- Jack M. Botting
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Shoichi Tachiyama
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, United States of America
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Katherine H. Gibson
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Jun Liu
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, United States of America
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Vincent J. Starai
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Timothy R. Hoover
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
8
|
Partridge JD, Dufour Y, Hwang Y, Harshey RM. Flagellar motor remodeling during swarming requires FliL. Mol Microbiol 2023; 120:670-683. [PMID: 37675594 PMCID: PMC10942728 DOI: 10.1111/mmi.15148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/08/2023]
Abstract
FliL is an essential component of the flagellar machinery in some bacteria, but a conditional one in others. The conditional role is for optimal swarming in some bacteria. During swarming, physical forces associated with movement on a surface are expected to exert a higher load on the flagellum, requiring more motor torque to move. FliL was reported to enhance motor output in several bacteria and observed to assemble as a ring around ion-conducting stators that power the motor. In this study we identify a common new function for FliL in diverse bacteria-Escherichia coli, Bacillus subtilis, and Proteus mirabilis. During swarming, all these bacteria show increased cell speed and a skewed motor bias that suppresses cell tumbling. We demonstrate that these altered motor parameters, or "motor remodeling," require FliL. Both swarming and motor remodeling can be restored in an E. coli fliL mutant by complementation with fliL genes from P. mirabilis and B. subtilis, showing conservation of a swarming-associated FliL function across phyla. In addition, we demonstrate that the strong interaction we reported earlier between FliL and the flagellar MS-ring protein FliF is confined to the RBM-3 domain of FliF that links the periplasmic rod to the cytoplasmic C-ring. This interaction may explain several phenotypes associated with the absence of FliL.
Collapse
Affiliation(s)
- Jonathan D. Partridge
- Department of Molecular Biosciences and the LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, Texas, USA
| | - Yann Dufour
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - YuneSahng Hwang
- Department of Molecular Biosciences and the LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, Texas, USA
| | - Rasika M. Harshey
- Department of Molecular Biosciences and the LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
9
|
Johnson S, Deme JC, Furlong EJ, Caesar JJ, Chevance FF, Hughes KT, Lea SM. Structural Basis of Directional Switching by the Bacterial Flagellum. RESEARCH SQUARE 2023:rs.3.rs-3417165. [PMID: 39108497 PMCID: PMC11302681 DOI: 10.21203/rs.3.rs-3417165/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
The bacterial flagellum is a macromolecular protein complex that harvests energy from ion-flow across the inner membrane to power bacterial swimming in viscous fluids via rotation of the flagellar filament. Bacteria such as Salmonella enterica are capable of bi-directional flagellar rotation even though ion flow is uni-directional. How uni-directional ion-movement through the inner membrane is utilized by this macromolecular machine to drive bi-directional flagellar rotation is not understood, but a chemotactic response regulator in the cytoplasm is known to reverse the direction of rotation. We here present cryo-EM structures of intact Salmonella flagellar basal bodies, including the cytoplasmic complexes required for power transmission, in conformations representing both directions of rotation. The structures reveal that the conformational changes required for switching the direction of rotation involve 180 degree rotations of both the N- and C-terminal domains of the FliG protein. Combining these models with a new, high-resolution, cryo-EM structure of the MotA5B2 stator, in complex with the C-terminal domain of FliG, reveals how uni-directional ion-flow across the inner membrane is used to accomplish bi-directional rotation of the flagellum.
Collapse
Affiliation(s)
- Steven Johnson
- Center for Structural Biology, CCR, NCI, Frederick, MD 21702-1201 USA
| | - Justin C. Deme
- Center for Structural Biology, CCR, NCI, Frederick, MD 21702-1201 USA
| | - Emily J. Furlong
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Joseph J.E. Caesar
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Central Oxford Structural Molecular Imaging Centre, University of Oxford, Oxford, UK
| | | | - Kelly T. Hughes
- Department of Biology, University of Utah, Salt Lake City, Utah, USA
| | - Susan M. Lea
- Center for Structural Biology, CCR, NCI, Frederick, MD 21702-1201 USA
| |
Collapse
|
10
|
Gibson KH, Botting JM, Al-Otaibi N, Maitre K, Bergeron J, Starai VJ, Hoover TR. Control of the flagellation pattern in Helicobacter pylori by FlhF and FlhG. J Bacteriol 2023; 205:e0011023. [PMID: 37655916 PMCID: PMC10521351 DOI: 10.1128/jb.00110-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/06/2023] [Indexed: 09/02/2023] Open
Abstract
FlhF and FlhG control the location and number of flagella, respectively, in many polar-flagellated bacteria. The roles of FlhF and FlhG are not well characterized in bacteria that have multiple polar flagella, such as Helicobacter pylori. Deleting flhG in H. pylori shifted the flagellation pattern where most cells had approximately four flagella to a wider and more even distribution in flagellar number. As reported in other bacteria, deleting flhF in H. pylori resulted in reduced motility, hypoflagellation, and the improper localization of flagella to nonpolar sites. Motile variants of H. pylori ∆flhF mutants that had a higher proportion of flagella localizing correctly to the cell pole were isolated, but we were unable to identify the genetic determinants responsible for the increased localization of flagella to the cell pole. One motile variant though produced more flagella than the ΔflhF parental strain, which apparently resulted from a missense mutation in fliF (encodes the MS ring protein), which changed Asn-255 to aspartate. Recombinant FliFN255D, but not recombinant wild-type FliF, formed ordered ring-like assemblies in vitro that were ~50 nm wide and displayed the MS ring architecture. We infer from these findings that the FliFN225D variant forms the MS ring more effectively in vivo in the absence of FlhF than wild-type FliF. IMPORTANCE Helicobacter pylori colonizes the human stomach where it can cause a variety of diseases, including peptic ulcer disease and gastric cancer. H. pylori uses flagella for motility, which is required for host colonization. FlhG and FlhF control the flagellation patterns in many bacteria. We found that in H. pylori, FlhG ensures that cells have approximately equal number of flagella and FlhF is needed for flagellum assembly and localization. FlhF is proposed to facilitate the assembly of FliF into the MS ring, which is one of the earliest structures formed in flagellum assembly. We identified a FliF variant that assembles the MS ring in the absence of FlhF, which supports the proposed role of FlhF in facilitating MS ring assembly.
Collapse
Affiliation(s)
| | - Jack M. Botting
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Natalie Al-Otaibi
- Randall Division of Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| | - Kriti Maitre
- Randall Division of Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| | - Julien Bergeron
- Randall Division of Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| | - Vincent J. Starai
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Timothy R. Hoover
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
11
|
Worrall LJ, Majewski DD, Strynadka NCJ. Structural Insights into Type III Secretion Systems of the Bacterial Flagellum and Injectisome. Annu Rev Microbiol 2023; 77:669-698. [PMID: 37713458 DOI: 10.1146/annurev-micro-032521-025503] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Two of the most fascinating bacterial nanomachines-the broadly disseminated rotary flagellum at the heart of cellular motility and the eukaryotic cell-puncturing injectisome essential to specific pathogenic species-utilize at their core a conserved export machinery called the type III secretion system (T3SS). The T3SS not only secretes the components that self-assemble into their extracellular appendages but also, in the case of the injectisome, subsequently directly translocates modulating effector proteins from the bacterial cell into the infected host. The injectisome is thought to have evolved from the flagellum as a minimal secretory system lacking motility, with the subsequent acquisition of additional components tailored to its specialized role in manipulating eukaryotic hosts for pathogenic advantage. Both nanomachines have long been the focus of intense interest, but advances in structural and functional understanding have taken a significant step forward since 2015, facilitated by the revolutionary advances in cryo-electron microscopy technologies. With several seminal structures of each nanomachine now captured, we review here the molecular similarities and differences that underlie their diverse functions.
Collapse
Affiliation(s)
- Liam J Worrall
- Department of Biochemistry and Molecular Biology and Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada; , ,
| | - Dorothy D Majewski
- Department of Biochemistry and Molecular Biology and Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada; , ,
- Current affiliation: Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Natalie C J Strynadka
- Department of Biochemistry and Molecular Biology and Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada; , ,
| |
Collapse
|
12
|
Liu J, Eastep GN, Cvirkaite-Krupovic V, Rich-New ST, Kreutzberger MAB, Egelman EH, Krupovic M, Wang F. Two dramatically distinct archaeal type IV pili structures formed by the same pilin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.07.552285. [PMID: 37609343 PMCID: PMC10441282 DOI: 10.1101/2023.08.07.552285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Type IV pili (T4P) represent one of the most common varieties of surface appendages in archaea. These filaments, assembled from relatively small pilin proteins, can be many microns long and serve diverse functions, including adhesion, biofilm formation, motility, and intercellular communication. Using cryo-electron microscopy (cryo-EM), we determined atomic structures of two dramatically different T4P from Saccharolobus islandicus REY15A. Unexpectedly, both pili were assembled from the same pilin protein but under different growth conditions. One filament, denoted mono-pilus, conforms to canonical archaeal T4P structures where all subunits are equivalent, whereas in the other filament, the tri-pilus, the same protein exists in three different conformations. The three conformations involve different orientations of the outer immunoglobulin (Ig)-like domains, mediated by a very flexible linker, and all three of these conformations are very different from the single conformation found in the mono-pilus. Remarkably, the outer domains rotate nearly 180° between the mono- and tri-pilus conformations, formally similar to what has been shown for outer domains in bacterial flagellar filaments, despite lack of homology between bacterial flagella and archaeal T4P. Interestingly, both forms of pili require the same ATPase and TadC-like membrane pore for assembly, indicating that the same secretion system can produce structurally very different filaments. However, the expression of the ATPase and TadC genes was significantly different under the conditions yielding mono- and tri-pili. While archaeal T4P are homologs of archaeal flagellar filaments, our results show that in contrast to the rigid supercoil that the flagellar filaments must adopt to serve as helical propellers, archaeal T4P are likely to have fewer constraints on their structure and enjoy more internal degrees of freedom.
Collapse
|
13
|
Ryan ME, Damke PP, Bryant C, Sheedlo MJ, Shaffer CL. Architectural asymmetry enables DNA transport through the Helicobacter pylori cag type IV secretion system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550604. [PMID: 37546756 PMCID: PMC10402047 DOI: 10.1101/2023.07.25.550604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Structural asymmetry within secretion system architecture is fundamentally important for apparatus diversification and biological function. However, the mechanism by which symmetry mismatch contributes to nanomachine assembly and interkingdom effector translocation are undefined. Here, we show that architectural asymmetry orchestrates dynamic substrate selection and enables trans-kingdom DNA conjugation through the Helicobacter pylori cag type IV secretion system (cag T4SS). Structural analyses of asymmetric units within the cag T4SS periplasmic ring complex (PRC) revealed intermolecular π-π stacking interactions that coordinate DNA binding and license trans-kingdom conjugation without disrupting the translocation of protein and peptidoglycan effector molecules. Additionally, we identified a novel proximal translocation channel gating mechanism that regulates cargo loading and governs substrate transport across the outer membrane. We thus propose a model whereby the organization and geometry of architectural symmetry mismatch exposes π-π interfaces within the PRC to facilitate DNA transit through the cag T4SS translocation channel.
Collapse
Affiliation(s)
- Mackenzie E. Ryan
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Prashant P. Damke
- Department of Veterinary Sciences, University of Kentucky College of Agriculture, Lexington, KY, 40546, USA
| | - Caitlynn Bryant
- Department of Veterinary Sciences, University of Kentucky College of Agriculture, Lexington, KY, 40546, USA
| | - Michael J. Sheedlo
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Carrie L. Shaffer
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
- Department of Veterinary Sciences, University of Kentucky College of Agriculture, Lexington, KY, 40546, USA
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY, 40536, USA
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| |
Collapse
|
14
|
Partridge JD, Dufour Y, Hwang Y, Harshey RM. Flagellar motor remodeling during swarming requires FliL. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.14.549092. [PMID: 37503052 PMCID: PMC10370021 DOI: 10.1101/2023.07.14.549092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
FliL is an essential component of the flagellar machinery in some bacteria, but a conditional one in others. The conditional role is for optimal swarming in some bacteria. During swarming, physical forces associated with movement on a surface are expected to exert a higher load on the flagellum, requiring more motor torque to move. Bacterial physiology and morphology are also altered during swarming to cope with the challenges of surface navigation. FliL was reported to enhance motor output in several bacteria and observed to assemble as a ring around ion-conducting stators that power the motor. In this study we identify a common new function for FliL in diverse bacteria - Escherichia coli, Bacillus subtilis and Proteus mirabilis . During swarming, all these bacteria show increased cell speed and a skewed motor bias that suppresses cell tumbling. We demonstrate that these altered motor parameters, or 'motor remodeling', require FliL. Both swarming and motor remodeling can be restored in an E. coli fliL mutant by complementation with fliL genes from P. mirabilis and B. subtilis , showing conservation of swarming-associated FliL function across phyla. In addition, we demonstrate that the strong interaction we reported earlier between FliL and the flagellar MS-ring protein FliF is confined to the RBM-3 domain of FliF that links the periplasmic rod to the cytoplasmic C-ring. This interaction may explain several phenotypes associated with the absence of FliL.
Collapse
Affiliation(s)
- Jonathan D Partridge
- Department of Molecular Biosciences and the LaMontagne Center for Infectious Diseases The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Yann Dufour
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - YuneSahng Hwang
- Department of Molecular Biosciences and the LaMontagne Center for Infectious Diseases The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Rasika M Harshey
- Department of Molecular Biosciences and the LaMontagne Center for Infectious Diseases The University of Texas at Austin, Austin, Texas, 78712, USA
| |
Collapse
|
15
|
Ye C, Liu Z, Yu S, Fan Z, Wang Y. Design and Motion Analysis of a Soft-Limb Robot Inspired by Bacterial Flagella. Biomimetics (Basel) 2023; 8:271. [PMID: 37504159 PMCID: PMC10377722 DOI: 10.3390/biomimetics8030271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023] Open
Abstract
Soft robots demonstrate an impressive ability to adapt to objects and environments. However, current soft mobile robots often use a single mode of movement. This gives soft robots good locomotion performance in specific environments but poor performance in others. In this paper, we propose a leg-wheel mechanism inspired by bacterial flagella and use it to design a leg-wheel robot. This mechanism employs a tendon-driven continuum structure to replicate the bacterial flagellar filaments, while servo and gear components mimic the action of bacterial flagellar motors. By utilizing twisting and swinging motions of the continuum structure, the robot achieves both wheeled and legged locomotion. The paper provides comprehensive descriptions and detailed kinematic analysis of the mechanism and the robot. To verify the feasibility of the robot, a prototype was implemented, and experiments were performed on legged mode, wheeled mode, and post-overturning motion. The experimental results demonstrate that the robot can achieve legged and wheeled motions. Moreover, it is also demonstrated that the robot still has mobility after overturning. This expands the applicability scenarios of the current soft mobile robot.
Collapse
Affiliation(s)
- Changlong Ye
- School of Mechatronics Engineering, Shenyang Aerospace University, Shenyang 110136, China
| | - Zhanpeng Liu
- School of Mechatronics Engineering, Shenyang Aerospace University, Shenyang 110136, China
| | - Suyang Yu
- School of Mechatronics Engineering, Shenyang Aerospace University, Shenyang 110136, China
| | - Zifu Fan
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 569830, Singapore
| | - Yinchao Wang
- School of Mechatronics Engineering, Shenyang Aerospace University, Shenyang 110136, China
| |
Collapse
|
16
|
Kinosita Y, Sowa Y. Flagellar polymorphism-dependent bacterial swimming motility in a structured environment. Biophys Physicobiol 2023; 20:e200024. [PMID: 37867560 PMCID: PMC10587448 DOI: 10.2142/biophysico.bppb-v20.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/29/2023] [Indexed: 10/24/2023] Open
Abstract
Most motile bacteria use supramolecular motility machinery called bacterial flagellum, which converts the chemical energy gained from ion flux into mechanical rotation. Bacterial cells sense their external environment through a two-component regulatory system consisting of a histidine kinase and response regulator. Combining these systems allows the cells to move toward favorable environments and away from their repellents. A representative example of flagellar motility is run-and-tumble swimming in Escherichia coli, where the counter-clockwise (CCW) rotation of a flagellar bundle propels the cell forward, and the clockwise (CW) rotation undergoes cell re-orientation (tumbling) upon switching the direction of flagellar motor rotation from CCW to CW. In this mini review, we focus on several types of chemotactic behaviors that respond to changes in flagellar shape and direction of rotation. Moreover, our single-cell analysis demonstrated back-and-forth swimming motility of an original E. coli strain. We propose that polymorphic flagellar changes are required to enhance bacterial movement in a structured environment as a colony spread on an agar plate.
Collapse
Affiliation(s)
| | - Yoshiyuki Sowa
- Department of Frontier Bioscience, Hosei University, Tokyo 184-8584, Japan
- Research Center for Micro-Nano Technology, Hosei University, Tokyo 184-8584, Japan
| |
Collapse
|
17
|
Takahashi K, Nishikino T, Kajino H, Kojima S, Uchihashi T, Homma M. Ring formation by Vibrio fusion protein composed of FliF and FliG, MS-ring and C-ring component of bacterial flagellar motor in membrane. Biophys Physicobiol 2023; 20:e200028. [PMID: 38496245 PMCID: PMC10941966 DOI: 10.2142/biophysico.bppb-v20.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/05/2023] [Indexed: 03/19/2024] Open
Abstract
The marine bacterium Vibrio alginolyticus has a single flagellum as a locomotory organ at the cell pole, which is rotated by the Na+-motive force to swim in a liquid. The base of the flagella has a motor composed of a stator and rotor, which serves as a power engine to generate torque through the rotor-stator interaction coupled to Na+ influx through the stator channel. The MS-ring, which is embedded in the membrane at the base of the flagella as part of the rotor, is the initial structure required for flagellum assembly. It comprises 34 molecules of the two-transmembrane protein FliF. FliG, FliM, and FliN form a C-ring just below the MS-ring. FliG is an important rotor protein that interacts with the stator PomA and directly contributes to force generation. We previously found that FliG promotes MS-ring formation in E. coli. In the present study, we constructed a fliF-fliG fusion gene, which encodes an approximately 100 kDa protein, and the successful production of this protein effectively formed the MS-ring in E. coli cells. We observed fuzzy structures around the ring using either electron microscopy or high-speed atomic force microscopy (HS-AFM), suggesting that FliM and FliN are necessary for the formation of a stable ring structure. The HS-AFM movies revealed flexible movements at the FliG region.
Collapse
Affiliation(s)
- Kanji Takahashi
- Department of Physics, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Tatsuro Nishikino
- Institute for protein research, Osaka University, Suita, Osaka 565-0871, Japan
- Present address: Department of Materials Science and Engineering, Nagoya Institute of Technology, Nagoya Aichi 466-8555, Japan
| | - Hiroki Kajino
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Takayuki Uchihashi
- Department of Physics, Nagoya University, Nagoya, Aichi 464-8602, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi 464-0814, Japan
- Department of Creative Research, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Michio Homma
- Department of Physics, Nagoya University, Nagoya, Aichi 464-8602, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
18
|
Liwo A, Pyrka M, Czaplewski C, Peng X, Niemi AJ. Long-Time Dynamics of Selected Molecular-Motor Components Using a Physics-Based Coarse-Grained Approach. Biomolecules 2023; 13:941. [PMID: 37371521 PMCID: PMC10296118 DOI: 10.3390/biom13060941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Molecular motors are essential for the movement and transportation of macromolecules in living organisms. Among them, rotatory motors are particularly efficient. In this study, we investigated the long-term dynamics of the designed left-handed alpha/alpha toroid (PDB: 4YY2), the RBM2 flagellum protein ring from Salmonella (PDB: 6SD5), and the V-type Na+-ATPase rotor in Enterococcus hirae (PDB: 2BL2) using microcanonical and canonical molecular dynamics simulations with the coarse-grained UNRES force field, including a lipid-membrane model, on a millisecond laboratory time scale. Our results demonstrate that rotational motion can occur with zero total angular momentum in the microcanonical regime and that thermal motions can be converted into net rotation in the canonical regime, as previously observed in simulations of smaller cyclic molecules. For 6SD5 and 2BL2, net rotation (with a ratcheting pattern) occurring only about the pivot of the respective system was observed in canonical simulations. The extent and direction of the rotation depended on the initial conditions. This result suggests that rotatory molecular motors can convert thermal oscillations into net rotational motion. The energy from ATP hydrolysis is required probably to set the direction and extent of rotation. Our findings highlight the importance of molecular-motor structures in facilitating movement and transportation within living organisms.
Collapse
Affiliation(s)
- Adam Liwo
- Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities, Wita Stwosza 63, 80-308 Gdańsk, Poland; (M.P.); (C.C.)
| | - Maciej Pyrka
- Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities, Wita Stwosza 63, 80-308 Gdańsk, Poland; (M.P.); (C.C.)
- Department of Physics and Biophysics, University of Warmia and Mazury, ul. Oczapowskiego 4, 10-719 Olsztyn, Poland
| | - Cezary Czaplewski
- Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities, Wita Stwosza 63, 80-308 Gdańsk, Poland; (M.P.); (C.C.)
| | - Xubiao Peng
- Center for Quantum Technology Research, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China;
| | - Antti J. Niemi
- Nordita, Stockholm University and Uppsala University, Roslagstullsbacken 23, SE-106 91 Stockholm, Sweden;
| |
Collapse
|
19
|
Tao A, Liu G, Zhang R, Yuan J. Precise Measurement of the Stoichiometry of the Adaptive Bacterial Flagellar Switch. mBio 2023; 14:e0018923. [PMID: 36946730 PMCID: PMC10128058 DOI: 10.1128/mbio.00189-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
The cytoplasmic ring (C-ring) of the bacterial flagellar motor controls the motor rotation direction, thereby controlling bacterial run-and-tumble behavior. The C-ring has been shown to undergo adaptive remodeling in response to changes in motor directional bias. However, the stoichiometry and arrangement of the C-ring is still unclear due to contradiction between the results from fluorescence studies and cryo-electron microscopy (cryo-EM) structural analysis. Here, by using the copy number of FliG molecules (34) in the C-ring as a reference, we precisely measured the copy numbers of FliM molecules in motors rotating exclusively counterclockwise (CCW) and clockwise (CW). We surprisingly found that there are on average 45 and 58 FliM molecules in CW and CCW rotating motors, respectively, which are much higher than previous estimates. Our results suggested a new mechanism of C-ring adaptation, that is, extra FliM molecules could be bound to the primary C-ring with probability depending on the motor rotational direction. We further confirmed that all of the FliM molecules in the C-ring function in chemotaxis signaling transduction because all of them could be bound by the chemotactic response regulator CheY-P. Our measurements provided new insights into the structure and arrangement of the flagellar switch. IMPORTANCE The bacterial flagellar switch can undergo adaptive remodeling in response to changes in motor rotation direction, thereby shifting its operating point to match the output of the chemotaxis signaling pathway. However, it remains unclear how the flagellar switch accomplishes this adaptive remodeling. Here, via precise fluorescence studies, we measured the absolute copy numbers of the critical component in the switch for motors rotating counterclockwise and clockwise, obtaining much larger numbers than previous relative estimates. Our results suggested a new mechanism of adaptive remodeling of the flagellar switch and provided new insights for updating the conformation spread model of the switch.
Collapse
Affiliation(s)
- Antai Tao
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| | - Guangzhe Liu
- Wenzhou Institute, University of Chinese Academy of Science, Wenzhou, Zhejiang, P.R. China
- School of Engineering and Science, University of Chinese Academy of Science, Beijing, P.R. China
| | - Rongjing Zhang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| | - Junhua Yuan
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
20
|
Sun M, Liu M, Shan H, Li K, Wang P, Guo H, Zhao Y, Wang R, Tao Y, Yang L, Zhang Y, Su X, Liu Y, Li C, Lin J, Chen XL, Zhang YZ, Shen QT. Ring-stacked capsids of white spot syndrome virus and structural transitions with genome ejection. SCIENCE ADVANCES 2023; 9:eadd2796. [PMID: 36812312 PMCID: PMC9946344 DOI: 10.1126/sciadv.add2796] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
White spot syndrome virus (WSSV) is one of the largest DNA viruses and the major pathogen responsible for white spot syndrome in crustaceans. The WSSV capsid is critical for genome encapsulation and ejection and exhibits the rod-shaped and oval-shaped structures during the viral life cycle. However, the detailed architecture of the capsid and the structural transition mechanism remain unclear. Here, using cryo-electron microscopy (cryo-EM), we obtained a cryo-EM model of the rod-shaped WSSV capsid and were able to characterize its ring-stacked assembly mechanism. Furthermore, we identified an oval-shaped WSSV capsid from intact WSSV virions and analyzed the structural transition mechanism from the oval-shaped to rod-shaped capsids induced by high salinity. These transitions, which decrease internal capsid pressure, always accompany DNA release and mostly eliminate the infection of the host cells. Our results demonstrate an unusual assembly mechanism of the WSSV capsid and offer structural insights into the pressure-driven genome release.
Collapse
Affiliation(s)
- Meiling Sun
- Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Mingdong Liu
- School of Life Science, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- iHuman Institute and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hong Shan
- iHuman Institute and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Kang Li
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China
| | - Peng Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Huarong Guo
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Yaqi Zhao
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Rui Wang
- iHuman Institute and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yiwen Tao
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Liuyan Yang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China
| | - Ying Zhang
- iHuman Institute and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoming Su
- High Performance Computing Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yunhui Liu
- School of Life Science, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Chunyang Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - James Lin
- High Performance Computing Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China
| | - Yu-Zhong Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China
- Corresponding author. (Q.-T.S.); (Y.-Z.Z.)
| | - Qing-Tao Shen
- School of Life Science, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- iHuman Institute and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Corresponding author. (Q.-T.S.); (Y.-Z.Z.)
| |
Collapse
|
21
|
Singh PK, Cecchini G, Nakagawa T, Iverson TM. CryoEM structure of a post-assembly MS-ring reveals plasticity in stoichiometry and conformation. PLoS One 2023; 18:e0285343. [PMID: 37205674 DOI: 10.1371/journal.pone.0285343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/20/2023] [Indexed: 05/21/2023] Open
Abstract
The flagellar motor supports bacterial chemotaxis, a process that allows bacteria to move in response to their environment. A central feature of this motor is the MS-ring, which is composed entirely of repeats of the FliF subunit. This MS-ring is critical for the assembly and stability of the flagellar switch and the entire flagellum. Despite multiple independent cryoEM structures of the MS-ring, there remains a debate about the stoichiometry and organization of the ring-building motifs (RBMs). Here, we report the cryoEM structure of a Salmonella MS-ring that was purified from the assembled flagellar switch complex (MSC-ring). We term this the 'post-assembly' state. Using 2D class averages, we show that under these conditions, the post-assembly MS-ring can contain 32, 33, or 34 FliF subunits, with 33 being the most common. RBM3 has a single location with C32, C33, or C34 symmetry. RBM2 is found in two locations with RBM2inner having C21 or C22 symmetry and an RBM2outer-RBM1 having C11 symmetry. Comparison to previously reported structures identifies several differences. Most strikingly, we find that the membrane domain forms 11 regions of discrete density at the base of the structure rather than a contiguous ring, although density could not be unambiguously interpreted. We further find density in some previously unresolved areas, and we assigned amino acids to those regions. Finally, we find differences in interdomain angles in RBM3 that affect the diameter of the ring. Together, these investigations support a model of the flagellum with structural plasticity, which may be important for flagellar assembly and function.
Collapse
Affiliation(s)
- Prashant K Singh
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States of America
| | - Gary Cecchini
- Molecular Biology Division, San Francisco VA Health Care System, San Francisco, CA, United States of America
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA, United States of America
| | - Terunaga Nakagawa
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, TN, United States of America
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States of America
| | - T M Iverson
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States of America
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States of America
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States of America
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, United States of America
| |
Collapse
|
22
|
Structural Insights into the Dimeric Form of Bacillus subtilis RNase Y Using NMR and AlphaFold. Biomolecules 2022; 12:biom12121798. [PMID: 36551226 PMCID: PMC9775385 DOI: 10.3390/biom12121798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
RNase Y is a crucial component of genetic translation, acting as the key enzyme initiating mRNA decay in many Gram-positive bacteria. The N-terminal domain of Bacillus subtilis RNase Y (Nter-BsRNaseY) is thought to interact with various protein partners within a degradosome complex. Bioinformatics and biophysical analysis have previously shown that Nter-BsRNaseY, which is in equilibrium between a monomeric and a dimeric form, displays an elongated fold with a high content of α-helices. Using multidimensional heteronuclear NMR and AlphaFold models, here, we show that the Nter-BsRNaseY dimer is constituted of a long N-terminal parallel coiled-coil structure, linked by a turn to a C-terminal region composed of helices that display either a straight or bent conformation. The structural organization of the N-terminal domain is maintained within the AlphaFold model of the full-length RNase Y, with the turn allowing flexibility between the N- and C-terminal domains. The catalytic domain is globular, with two helices linking the KH and HD modules, followed by the C-terminal region. This latter region, with no function assigned up to now, is most likely involved in the dimerization of B. subtilis RNase Y together with the N-terminal coiled-coil structure.
Collapse
|
23
|
Darmawati S, Adi Gunawan IA, Wijayanti N, Dafip M. Immunogenicity Response of Mus musculus var. Balb/C after Immunization using Flagellin Salmonella typhi Serovar Semarang. Pak J Biol Sci 2022; 25:1085-1093. [PMID: 36978276 DOI: 10.3923/pjbs.2022.1085.1093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
<b>Background and Objective:</b> The flagellin of <i>Salmonella typhi</i> is potentially developed as an identifying antigen in a rapid diagnostic test instrument that may be more accurate than conventional serological tests. Therefore, this study aims to analyze the immunogenicity of flagellin <i>S. typhi</i> as the basis for developing a typhoid fever diagnostic. <b>Materials and Methods:</b> Flagellin was isolated from the bacterial culture of <i>S. typhi</i> serovar Semarang and used as the primary antigen for vaccine assembly. Native flagellin antigen was immunized in Balb/C mice with injection doses of 2, 3, 4, 5 and 6 g/100 L in each group (K0-K5), respectively, via intraperitoneal cavity. Blood serum was collected to ELISA based-measurement for IL-6 and TNF-a titers. Then, specific immunoglobulin (Ig) of anti-flagellin was detected using in-house ELISA and western blotting. <b>Results:</b> The findings in this study showed that immunization at the dose of 4-5 g/100 L significantly decreased the IL-6 titer, i.e., 8.33±0.87 pg mL<sup>1</sup>, compared to control. The antibody titer test analysis showed the highest Ig-G anti-flagellin was found in K4 mice after immunization using a dose of 5 g/100 L with an average absorbance of Ig-G reaching 1.19 ±0.32. <b>Conclusion:</b> The results indicated that the flagellin protein of <i>S. typhi</i> serovar Semarang induces adaptive immune responses and produces specific antibodies against flagellin. The immunogenic properties of the flagellin protein of <i>S. typhi</i> serovar Semarang potentially developed as a specific diagnostic marker. Further research may also focus on a beneficial feature of flagellin as a vaccine candidate.
Collapse
|
24
|
Abstract
Bacterial type IV secretion systems (T4SSs) are a versatile group of nanomachines that can horizontally transfer DNA through conjugation and deliver effector proteins into a wide range of target cells. The components of T4SSs in gram-negative bacteria are organized into several large subassemblies: an inner membrane complex, an outer membrane core complex, and, in some species, an extracellular pilus. Cryo-electron tomography has been used to define the structures of T4SSs in intact bacteria, and high-resolution structural models are now available for isolated core complexes from conjugation systems, the Xanthomonas citri T4SS, the Helicobacter pylori Cag T4SS, and the Legionella pneumophila Dot/Icm T4SS. In this review, we compare the molecular architectures of these T4SSs, focusing especially on the structures of core complexes. We discuss structural features that are shared by multiple T4SSs as well as evolutionary strategies used for T4SS diversification. Finally, we discuss how structural variations among T4SSs may confer specialized functional properties.
Collapse
Affiliation(s)
- Michael J. Sheedlo
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Melanie D. Ohi
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - D. Borden Lacy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - Timothy L. Cover
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| |
Collapse
|
25
|
Qu D, Jiang M, Duffin C, Hughes KT, Chevance FFV. Targeting early proximal-rod component substrate FlgB to FlhB for flagellar-type III secretion in Salmonella. PLoS Genet 2022; 18:e1010313. [PMID: 35819991 PMCID: PMC9307174 DOI: 10.1371/journal.pgen.1010313] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/22/2022] [Accepted: 06/24/2022] [Indexed: 11/18/2022] Open
Abstract
The Salmonella flagellar secretion apparatus is a member of the type III secretion (T3S) family of export systems in bacteria. After completion of the flagellar motor structure, the hook-basal body (HBB), the flagellar T3S system undergoes a switch from early to late substrate secretion, which results in the expression and assembly of the external, filament propeller-like structure. In order to characterize early substrate secretion-signals in the flagellar T3S system, the FlgB, and FlgC components of the flagellar rod, which acts as the drive-shaft within the HBB, were subject to deletion mutagenesis to identify regions of these proteins that were important for secretion. The β-lactamase protein lacking its Sec-dependent secretion signal (Bla) was fused to the C-terminus of FlgB and FlgC and used as a reporter to select for and quantify the secretion of FlgB and FlgC into the periplasm. Secretion of Bla into the periplasm confers resistance to ampicillin. In-frame deletions of amino acids 9 through 18 and amino acids 39 through 58 of FlgB decreased FlgB secretion levels while deleting amino acid 6 through 14 diminished FlgC secretion levels. Further PCR-directed mutagenesis indicated that amino acid F45 of FlgB was critical for secretion. Single amino acid mutagenesis revealed that all amino acid substitutions at F45 of FlgB position impaired rod assembly, which was due to a defect of FlgB secretion. An equivalent F49 position in FlgC was essential for assembly but not for secretion. This study also revealed that a hydrophobic patch in the cleaved C-terminal domain of FlhB is critical for recognition of FlgB at F45. Type III secretion (T3S) is the means by which proteins are secreted from the bacterial cytoplasm to build flagella for motility and injectisome structures that facilitate pathogenesis. T3S is the only secretion system known to date that undergoes a secretion-specificity switch. For the assembly of the bacterial flagellum, the T3S system initially secretes early substrates to build the hook-basal body (HBB), which is the main component that makes up the flagellar motor. Upon HBB completion, the flagellar T3S system becomes specific for late substrates, which make up the long external filament that acts as the propeller of the motility organelle. This work identifies important sites of interaction between an early substrate, FlgB and a target site at the cytoplasmic base of T3S apparatus. A second early substrate, FlgC, lacks the targeting interaction found for FlgB suggesting a mechanism that distinguishes early substrates, and may indicate an order to early substrate secretion to facilitate the order of protein subunit assembly for the flagellum.
Collapse
Affiliation(s)
- Daofeng Qu
- Key Laboratory of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Mengxue Jiang
- Key Laboratory of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Calder Duffin
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Kelly T. Hughes
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Fabienne F. V. Chevance
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
26
|
Direct Measurement of the Stall Torque of the Flagellar Motor in Escherichia coli with Magnetic Tweezers. mBio 2022; 13:e0078222. [PMID: 35699374 PMCID: PMC9426426 DOI: 10.1128/mbio.00782-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The flagellar motor drives the rotation of flagellar filaments, propelling the swimming of flagellated bacteria. The maximum torque the motor generates, the stall torque, is a key characteristic of the motor function. Direct measurements of the stall torque carried out 3 decades ago suffered from large experimental uncertainties, and subsequently there were only indirect measurements. Here, we applied magnetic tweezers to directly measure the stall torque in E. coli. We precisely calibrated the torsional stiffness of the magnetic tweezers and performed motor resurrection experiments at stall, accomplishing a precise determination of the stall torque per torque-generating unit (stator unit). From our measurements, each stator passes 2 protons per step, indicating a tight coupling between motor rotation and proton flux. IMPORTANCE The maximum torque the bacterial flagellar motor generates, the stall torque, is a critical parameter that describes the motor energetics. As the motor operates in equilibrium near stall, from the stall torque one can determine how many protons each torque-generating unit (stator) of the motor passes per revolution and then test whether motor rotation and proton flux are tightly or loosely coupled, which has been controversial in recent years. Direct measurements performed 3 decades ago suffered from large uncertainties, and subsequently, only indirect measurements were attempted, obtaining a range of values inconsistent with the previous direct measurements. Here, we developed a method that used magnetic tweezers to perform motor resurrection experiments at stall, resulting in a direct precise measurement of the stall torque per stator. Our study resolved the previous inconsistencies and provided direct experimental support for the tight coupling mechanism between motor rotation and proton flux.
Collapse
|
27
|
Kaplan M, Oikonomou CM, Wood CR, Chreifi G, Subramanian P, Ortega DR, Chang Y, Beeby M, Shaffer CL, Jensen GJ. Novel transient cytoplasmic rings stabilize assembling bacterial flagellar motors. EMBO J 2022; 41:e109523. [PMID: 35301732 PMCID: PMC9108667 DOI: 10.15252/embj.2021109523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/31/2022] [Accepted: 02/16/2022] [Indexed: 12/20/2022] Open
Abstract
The process by which bacterial cells build their intricate flagellar motility apparatuses has long fascinated scientists. Our understanding of this process comes mainly from studies of purified flagella from two species, Escherichia coli and Salmonella enterica. Here, we used electron cryo-tomography (cryo-ET) to image the assembly of the flagellar motor in situ in diverse Proteobacteria: Hylemonella gracilis, Helicobacter pylori, Campylobacter jejuni, Pseudomonas aeruginosa, Pseudomonas fluorescens, and Shewanella oneidensis. Our results reveal the in situ structures of flagellar intermediates, beginning with the earliest flagellar type III secretion system core complex (fT3SScc) and MS-ring. In high-torque motors of Beta-, Gamma-, and Epsilon-proteobacteria, we discovered novel cytoplasmic rings that interact with the cytoplasmic torque ring formed by FliG. These rings, associated with the MS-ring, assemble very early and persist until the stators are recruited into their periplasmic ring; in their absence the stator ring does not assemble. By imaging mutants in Helicobacter pylori, we found that the fT3SScc proteins FliO and FliQ are required for the assembly of these novel cytoplasmic rings. Our results show that rather than a simple accretion of components, flagellar motor assembly is a dynamic process in which accessory components interact transiently to assist in building the complex nanomachine.
Collapse
Affiliation(s)
- Mohammed Kaplan
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCAUSA
| | - Catherine M Oikonomou
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCAUSA
| | - Cecily R Wood
- Department of Veterinary ScienceUniversity of KentuckyLexingtonKYUSA
| | - Georges Chreifi
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCAUSA
| | - Poorna Subramanian
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCAUSA
| | - Davi R Ortega
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCAUSA
| | - Yi‐Wei Chang
- Department of Biochemistry and BiophysicsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Morgan Beeby
- Department of Life SciencesImperial College LondonLondonUK
| | - Carrie L Shaffer
- Department of Veterinary ScienceUniversity of KentuckyLexingtonKYUSA
- Department of Microbiology, Immunology, and Molecular GeneticsUniversity of KentuckyLexingtonKYUSA
- Department of Pharmaceutical SciencesUniversity of KentuckyLexingtonKYUSA
| | - Grant J Jensen
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCAUSA
- Department of Chemistry and BiochemistryBrigham Young UniversityProvoUTUSA
| |
Collapse
|
28
|
Tupiņa D, Krah A, Marzinek JK, Zuzic L, Moverley AA, Constantinidou C, Bond PJ. Bridging the N-terminal and middle domains in FliG of the flagellar rotor. Curr Res Struct Biol 2022; 4:59-67. [PMID: 35345452 PMCID: PMC8956890 DOI: 10.1016/j.crstbi.2022.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/28/2022] [Accepted: 02/28/2022] [Indexed: 11/27/2022] Open
Abstract
Flagella are necessary for bacterial movement and contribute to various aspects of virulence. They are complex cylindrical structures built of multiple molecular rings with self-assembly properties. The flagellar rotor is composed of the MS-ring and the C-ring. The FliG protein of the C-ring is central to flagellar assembly and function due to its roles in linking the C-ring with the MS-ring and in torque transmission from stator to rotor. No high-resolution structure of an assembled C-ring has been resolved to date, and the conformation adopted by FliG within the ring is unclear due to variations in available crystallographic data. Here, we use molecular dynamics (MD) simulations to study the conformation and dynamics of FliG in different states of assembly, including both in physiologically relevant and crystallographic lattice environments. We conclude that the linker between the FliG N-terminal and middle domain likely adopts an extended helical conformation in vivo, in contrast with the contracted conformation observed in some previous X-ray studies. We further support our findings with integrative model building of full-length FliG and a FliG ring model that is compatible with cryo-electron tomography (cryo-ET) and electron microscopy (EM) densities of the C-ring. Collectively, our study contributes to a better mechanistic understanding of the flagellar rotor assembly and its function.
Collapse
|
29
|
Mariano G, Faba-Rodriguez R, Bui S, Zhao W, Ross J, Tzokov SB, Bergeron JRC. Oligomerization of the FliF Domains Suggests a Coordinated Assembly of the Bacterial Flagellum MS Ring. Front Microbiol 2022; 12:781960. [PMID: 35087486 PMCID: PMC8786727 DOI: 10.3389/fmicb.2021.781960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/08/2021] [Indexed: 12/30/2022] Open
Abstract
The bacterial flagellum is a complex, self-assembling macromolecular machine that powers bacterial motility. It plays diverse roles in bacterial virulence, including aiding in colonization and dissemination during infection. The flagellum consists of a filamentous structure protruding from the cell, and of the basal body, a large assembly that spans the cell envelope. The basal body is comprised of over 20 different proteins forming several concentric ring structures, termed the M- S- L- P- and C-rings, respectively. In particular, the MS rings are formed by a single protein FliF, which consists of two trans-membrane helices anchoring it to the inner membrane and surrounding a large periplasmic domain. Assembly of the MS ring, through oligomerization of FliF, is one of the first steps of basal body assembly. Previous computational analysis had shown that the periplasmic region of FliF consists of three structurally similar domains, termed Ring-Building Motif (RBM)1, RBM2, and RBM3. The structure of the MS-ring has been reported recently, and unexpectedly shown that these three domains adopt different symmetries, with RBM3 having a 34-mer stoichiometry, while RBM2 adopts two distinct positions in the complex, including a 23-mer ring. This observation raises some important question on the assembly of the MS ring, and the formation of this symmetry mismatch within a single protein. In this study, we analyze the oligomerization of the individual RBM domains in isolation, in the Salmonella enterica serovar Typhimurium FliF ortholog. We demonstrate that the periplasmic domain of FliF assembles into the MS ring, in the absence of the trans-membrane helices. We also report that the RBM2 and RBM3 domains oligomerize into ring structures, but not RBM1. Intriguingly, we observe that a construct encompassing RBM1 and RBM2 is monomeric, suggesting that RBM1 interacts with RBM2, and inhibits its oligomerization. However, this inhibition is lifted by the addition of RBM3. Collectively, this data suggest a mechanism for the controlled assembly of the MS ring.
Collapse
Affiliation(s)
- Giuseppina Mariano
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Raquel Faba-Rodriguez
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Soi Bui
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Weilong Zhao
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - James Ross
- Department of Biochemistry, University of British Columbia, Vancouver, BC, Canada
| | - Svetomir B Tzokov
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Julien R C Bergeron
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
30
|
Homma M, Nishikino T, Kojima S. Achievements in bacterial flagellar research with focus on Vibrio species. Microbiol Immunol 2021; 66:75-95. [PMID: 34842307 DOI: 10.1111/1348-0421.12954] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/01/2022]
Abstract
In 1980's, the most genes involved in the bacterial flagellar function and formation had been isolated though many of their functions or roles were not clarified. Bacterial flagella are the primary locomotive organ and are not necessary for growing in vitro but are probably essential for living in natural condition and are involved in the pathogenicity. In vitro, the flagella-deficient strains can grow at rates similar to wild-type strains. More than 50 genes are responsible for flagellar function, and the flagellum is constructed by more than 20 structural proteins. The maintenance cost of flagellum is high as several genes are required for its development. The fact that it evolved as a motor organ even with such the high cost shows that the motility is indispensable to survive under the harsh environment of Earth. In this review, we focus on flagella-related research conducted by the authors for about 40 years and flagellar research focused on Vibrio spp. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University
| | | | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University
| |
Collapse
|
31
|
Liu B, Chan H, Bauda E, Contreras-Martel C, Bellard L, Villard AM, Mas C, Neumann E, Fenel D, Favier A, Serrano M, Henriques AO, Rodrigues CDA, Morlot C. Structural insights into ring-building motif domains involved in bacterial sporulation. J Struct Biol 2021; 214:107813. [PMID: 34808342 DOI: 10.1016/j.jsb.2021.107813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/29/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023]
Abstract
Components of specialized secretion systems, which span the inner and outer membranes in Gram-negative bacteria, include ring-forming proteins whose oligomerization was proposed to be promoted by domains called RBM for "Ring-Building Motifs". During spore formation in Gram-positive bacteria, a transport system called the SpoIIIA-SpoIIQ complex also assembles in the double membrane that surrounds the forespore following its endocytosis by the mother cell. The presence of RBM domains in some of the SpoIIIA proteins led to the hypothesis that they would assemble into rings connecting the two membranes and form a conduit between the mother cell and forespore. Among them, SpoIIIAG forms homo-oligomeric rings in vitro but the oligomerization of other RBM-containing SpoIIIA proteins, including SpoIIIAH, remains to be demonstrated. In this work, we identified RBM domains in the YhcN/YlaJ family of proteins that are not related to the SpoIIIA-SpoIIQ complex. We solved the crystal structure of YhcN from Bacillus subtilis, which confirmed the presence of a RBM fold, flanked by additional secondary structures. As the protein did not show any oligomerization ability in vitro, we investigated the structural determinants of ring formation in SpoIIIAG, SpoIIIAH and YhcN. We showed that in vitro, the conserved core of RBM domains alone is not sufficient for oligomerization while the β-barrel forming region in SpoIIIAG forms rings on its own. This work suggests that some RBMs might indeed participate in the assembly of homomeric rings but others might have evolved toward other functions.
Collapse
Affiliation(s)
- Bowen Liu
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | - Helena Chan
- The ithree institute, University of Technology Sydney, 2007 Ultimo, NSW, Australia
| | - Elda Bauda
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | | | - Laure Bellard
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | | | - Caroline Mas
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | | | - Daphna Fenel
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | - Adrien Favier
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | - Monica Serrano
- Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | - Cecile Morlot
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France.
| |
Collapse
|
32
|
Abstract
The FliE component of the bacterial flagellum is the first protein secreted through the flagellar type III secretion system (fT3SS) that is capable of self-assembly into the growing bacterial organelle. The FliE protein plays dual roles in the assembly of the Salmonella flagellum as the final component of the flagellar type III secretion system (fT3SS) and as an adaptor protein that anchors the rod (drive shaft) of the flagellar motor to the membrane-imbedded MS-ring structure. This work has identified the interactions between FliE and other proteins at the inner membrane base of the flagellar machine. The fliE sequence coding for the 104-amino-acid protein was subject to saturating mutagenesis. Single-amino-acid substitutions were generated in fliE, resulting in motility phenotypes. From these mutants, intergenic suppressor mutations were generated, isolated, and characterized. Single-amino-acid mutations defective in FliE function were localized to the N- and C-terminal helices of the protein. Motile suppressors of amino acid mutations in fliE were found in rod protein genes flgB and flgC, the MS ring gene, fliF, and one of the core T3SS genes, fliR. These results support the hypothesis that FliE acts as a linker protein consisting of an N-terminal α-helix that is involved in the interaction with the MS ring with a rotational symmetry and a C-terminal coiled coil that interacts with FliF, FliR, FlgB, and FlgC, and these interactions open the exit gate of the protein export channel of the fT3SS.
Collapse
|
33
|
Modulation of the enzymatic activity of the flagellar lytic transglycosylase SltF by rod components, and the scaffolding protein FlgJ in Rhodobacter sphaeroides. J Bacteriol 2021; 203:e0037221. [PMID: 34309398 DOI: 10.1128/jb.00372-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Macromolecular cell-envelope-spanning structures such as the bacterial flagellum must traverse the cell wall. Lytic transglycosylases enzymes are capable of enlarging gaps in the peptidoglycan meshwork to allow the efficient assembly of supramolecular complexes. In the periplasmic space, the assembly of the flagellar rod requires the scaffold protein FlgJ, which includes a muramidase domain in the canonical models Salmonella enterica and Escherichia coli. In contrast, in Rhodobacter sphaeroides, FlgJ and the dedicated flagellar lytic transglycosylase SltF are separate entities that interact in the periplasm. In this study we show that sltF is expressed along with the genes encoding the early components of the flagellar hierarchy that include the hook-basal body proteins, making SltF available during the rod assembly. Protein-protein interaction experiments demonstrated that SltF interacts with the rod proteins FliE, FlgB, FlgC, FlgF and FlgG through its C-terminal region. A deletion analysis that divides the C-terminus in two halves revealed that the interacting regions for most of the rod proteins are not redundant. Our results also show that the presence of the rod proteins FliE, FlgB, FlgC, and FlgF displace the previously reported SltF-FlgJ interaction. In addition, we observed modulation of the transglycosylase activity of SltF mediated by FlgB and FlgJ that could be relevant to coordinate rod assembly with cell wall remodeling. In summary, different mechanisms regulate the flagellar lytic transglycosylase, SltF ensuring a timely transcription, a proper localization and a controlled enzymatic activity. Importance Several mechanisms participate in the assembly of cell-envelope-spanning macromolecular structures. The sequential expression of substrates to be exported, selective export, and a specific order of incorporation are some of the mechanisms that stand out to drive an efficient assembly process. In this work we analyze how the structural rod proteins, the scaffold protein FlgJ and the flagellar lytic enzyme SltF, interact in an orderly fashion to assemble the flagellar rod into the periplasmic space. A complex arrangement of transient interactions directs a dedicated flagellar muramidase towards the flagellar rod. All these interactions bring this protein to the proximity of the peptidoglycan wall while also modulating its enzymatic activity. This study suggests how a dynamic network of interactions participates in controlling SltF, a prominent component for flagellar formation.
Collapse
|
34
|
Structure of the molecular bushing of the bacterial flagellar motor. Nat Commun 2021; 12:4469. [PMID: 34294704 PMCID: PMC8298488 DOI: 10.1038/s41467-021-24715-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022] Open
Abstract
The basal body of the bacterial flagellum is a rotary motor that consists of several rings (C, MS and LP) and a rod. The LP ring acts as a bushing supporting the distal rod for its rapid and stable rotation without much friction. Here, we use electron cryomicroscopy to describe the LP ring structure around the rod, at 3.5 Å resolution, from Salmonella Typhimurium. The structure shows 26-fold rotational symmetry and intricate intersubunit interactions of each subunit with up to six partners, which explains the structural stability. The inner surface is charged both positively and negatively. Positive charges on the P ring (the part of the LP ring that is embedded within the peptidoglycan layer) presumably play important roles in its initial assembly around the rod with a negatively charged surface. In the basal body of the bacterial flagellum, the LP ring acts as a bushing supporting the distal rod for its rapid and stable rotation. Here, Yamaguchi et al. present the electron cryomicroscopy structure of the LP ring around the rod, shedding light into potential mechanisms involved in stability and assembly of the structure.
Collapse
|
35
|
Hu H, Santiveri M, Wadhwa N, Berg HC, Erhardt M, Taylor NMI. Structural basis of torque generation in the bi-directional bacterial flagellar motor. Trends Biochem Sci 2021; 47:160-172. [PMID: 34294545 DOI: 10.1016/j.tibs.2021.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022]
Abstract
The flagellar stator unit is an oligomeric complex of two membrane proteins (MotA5B2) that powers bi-directional rotation of the bacterial flagellum. Harnessing the ion motive force across the cytoplasmic membrane, the stator unit operates as a miniature rotary motor itself to provide torque for rotation of the flagellum. Recent cryo-electron microscopic (cryo-EM) structures of the stator unit provided novel insights into its assembly, function, and subunit stoichiometry, revealing the ion flux pathway and the torque generation mechanism. Furthermore, in situ cryo-electron tomography (cryo-ET) studies revealed unprecedented details of the interactions between stator unit and rotor. In this review, we summarize recent advances in our understanding of the structure and function of the flagellar stator unit, torque generation, and directional switching of the motor.
Collapse
Affiliation(s)
- Haidai Hu
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Mònica Santiveri
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Navish Wadhwa
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA; Rowland Institute at Harvard, Harvard University, 100 Edwin H. Land Blvd, Cambridge, MA 02142, USA
| | - Howard C Berg
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA; Rowland Institute at Harvard, Harvard University, 100 Edwin H. Land Blvd, Cambridge, MA 02142, USA
| | - Marc Erhardt
- Institut für Biologie/Bakterienphysiologie, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Nicholas M I Taylor
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
36
|
Native flagellar MS ring is formed by 34 subunits with 23-fold and 11-fold subsymmetries. Nat Commun 2021; 12:4223. [PMID: 34244518 PMCID: PMC8270960 DOI: 10.1038/s41467-021-24507-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/22/2021] [Indexed: 01/25/2023] Open
Abstract
The bacterial flagellar MS ring is a transmembrane complex acting as the core of the flagellar motor and template for flagellar assembly. The C ring attached to the MS ring is involved in torque generation and rotation switch, and a large symmetry mismatch between these two rings has been a long puzzle, especially with respect to their role in motor function. Here, using cryoEM structural analysis of the flagellar basal body and the MS ring formed by full-length FliF from Salmonella enterica, we show that the native MS ring is formed by 34 FliF subunits with no symmetry variation. Symmetry analysis of the C ring shows a variation with a peak at 34-fold, suggesting flexibility in C ring assembly. Finally, our data also indicate that FliF subunits assume two different conformations, contributing differentially to the inner and middle parts of the M ring and thus resulting in 23- and 11-fold subsymmetries in the inner and middle M ring, respectively. The internal core of the M ring, formed by 23 subunits, forms a hole of the right size to accommodate the protein export gate. The bacterial flagellar MS ring is a core transmembrane complex within the flagellar basal body. Here, cryoEM analysis suggests that the MS ring is formed by 34 full-length FliF subunits, with 23- and 11-fold subsymmetries in the inner and middle M ring, respectively.
Collapse
|
37
|
Johnson S, Furlong EJ, Deme JC, Nord AL, Caesar JJE, Chevance FFV, Berry RM, Hughes KT, Lea SM. Molecular structure of the intact bacterial flagellar basal body. Nat Microbiol 2021; 6:712-721. [PMID: 33931760 PMCID: PMC7610862 DOI: 10.1038/s41564-021-00895-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/23/2021] [Indexed: 02/03/2023]
Abstract
The bacterial flagellum is a macromolecular protein complex that enables motility in many species. Bacterial flagella self-assemble a strong, multicomponent drive shaft that couples rotation in the inner membrane to the micrometre-long flagellar filament that powers bacterial swimming in viscous fluids1-3. Here, we present structures of the intact Salmonella flagellar basal body4, encompassing the inner membrane rotor, drive shaft and outer-membrane bushing, solved using cryo-electron microscopy to resolutions of 2.2-3.7 Å. The structures reveal molecular details of how 173 protein molecules of 13 different types assemble into a complex spanning two membranes and a cell wall. The helical drive shaft at one end is intricately interwoven with the rotor component with both the export gate complex and the proximal rod forming interactions with the MS-ring. At the other end, the drive shaft distal rod passes through the LP-ring bushing complex, which functions as a molecular bearing anchored in the outer membrane through interactions with the lipopolysaccharide. The in situ structure of a protein complex capping the drive shaft provides molecular insights into the assembly process of this molecular machine.
Collapse
Affiliation(s)
- Steven Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
- Center for Structural Biology, CCR, NCI, Frederick, MD, USA.
| | - Emily J Furlong
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Justin C Deme
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Center for Structural Biology, CCR, NCI, Frederick, MD, USA
- Central Oxford Structural Molecular Imaging Centre, University of Oxford, Oxford, UK
| | - Ashley L Nord
- Department of Physics, University of Oxford, Oxford, UK
- Centre de Biologie Structurale, INSERM, CNRS, Université de Montpellier, Montpellier, France
| | - Joseph J E Caesar
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Central Oxford Structural Molecular Imaging Centre, University of Oxford, Oxford, UK
| | | | | | - Kelly T Hughes
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Susan M Lea
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
- Center for Structural Biology, CCR, NCI, Frederick, MD, USA.
- Central Oxford Structural Molecular Imaging Centre, University of Oxford, Oxford, UK.
| |
Collapse
|
38
|
Kojima S, Kajino H, Hirano K, Inoue Y, Terashima H, Homma M. Role of the N- and C-terminal regions of FliF, the MS ring component in Vibrio flagellar basal body. J Bacteriol 2021; 203:JB.00009-21. [PMID: 33619151 PMCID: PMC8092156 DOI: 10.1128/jb.00009-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/15/2021] [Indexed: 11/20/2022] Open
Abstract
The MS ring is a part of the flagellar basal body and formed by 34 subunits of FliF, which consists of a large periplasmic region and two transmembrane segments connected to the N- and C-terminal regions facing the cytoplasm. A cytoplasmic protein, FlhF, which determines the position and number of the basal body, supports MS ring formation in the membrane in Vibrio species. In this study, we constructed FliF deletion mutants that lack 30 or 50 residues from the N-terminus (ΔN30 and ΔN50), and 83 (ΔC83) or 110 residues (ΔC110) at the C-terminus. The N-terminal deletions were functional and conferred motility of Vibrio cells, whereas the C-terminal deletions were nonfunctional. The mutants were expressed in Escherichia coli to determine whether an MS ring could still be assembled. When co-expressing ΔN30FliF or ΔN50FliF with FlhF, fewer MS rings were observed than with the expression of wild-type FliF, in the MS ring fraction, suggesting that the N-terminus interacts with FlhF. MS ring formation is probably inefficient without FlhF. The deletion of the C-terminal cytoplasmic region did not affect the ability of FliF to form an MS ring because a similar number of MS rings were observed for ΔC83FliF as with wild-type FliF, although further deletion of the second transmembrane segment (ΔC110FliF) abolished it. These results suggest that the terminal regions of FliF have distinct roles; the N-terminal region for efficient MS ring formation and the C-terminal region for MS ring function. The second transmembrane segment is indispensable for MS ring assembly.ImportanceThe bacterial flagellum is a supramolecular architecture involved in cell motility. At the base of the flagella, a rotary motor that begins to construct an MS ring in the cytoplasmic membrane comprises 34 transmembrane proteins (FliF). Here, we investigated the roles of the N and C terminal regions of FliF, which are MS rings. Unexpectedly, the cytoplasmic regions of FliF are not indispensable for the formation of the MS ring, but the N-terminus appears to assist in ring formation through recruitment of FlhF, which is essential for flagellar formation. The C-terminus is essential for motor formation or function.
Collapse
Affiliation(s)
- Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.
| | - Hiroki Kajino
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Keiichi Hirano
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yuna Inoue
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Hiroyuki Terashima
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.
| |
Collapse
|
39
|
Tan J, Zhang X, Wang X, Xu C, Chang S, Wu H, Wang T, Liang H, Gao H, Zhou Y, Zhu Y. Structural basis of assembly and torque transmission of the bacterial flagellar motor. Cell 2021; 184:2665-2679.e19. [PMID: 33882274 DOI: 10.1016/j.cell.2021.03.057] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/28/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022]
Abstract
The bacterial flagellar motor is a supramolecular protein machine that drives rotation of the flagellum for motility, which is essential for bacterial survival in different environments and a key determinant of pathogenicity. The detailed structure of the flagellar motor remains unknown. Here we present an atomic-resolution cryoelectron microscopy (cryo-EM) structure of the bacterial flagellar motor complexed with the hook, consisting of 175 subunits with a molecular mass of approximately 6.3 MDa. The structure reveals that 10 peptides protruding from the MS ring with the FlgB and FliE subunits mediate torque transmission from the MS ring to the rod and overcome the symmetry mismatch between the rotational and helical structures in the motor. The LP ring contacts the distal rod and applies electrostatic forces to support its rotation and torque transmission to the hook. This work provides detailed molecular insights into the structure, assembly, and torque transmission mechanisms of the flagellar motor.
Collapse
Affiliation(s)
- Jiaxing Tan
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Life Sciences Institute and School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; The MOE Key Laboratory for Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Institute of Microbiology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xing Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Life Sciences Institute and School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center of Cryo Electron Microscopy, Zhejiang University, Hangzhou, Zhejiang 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang 311121, China.
| | - Xiaofei Wang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Life Sciences Institute and School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; The MOE Key Laboratory for Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Caihuang Xu
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Life Sciences Institute and School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center of Cryo Electron Microscopy, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shenghai Chang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Life Sciences Institute and School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center of Cryo Electron Microscopy, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hangjun Wu
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Life Sciences Institute and School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center of Cryo Electron Microscopy, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ting Wang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Life Sciences Institute and School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; The MOE Key Laboratory for Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Institute of Microbiology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Huihui Liang
- Institute of Microbiology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Haichun Gao
- Institute of Microbiology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yan Zhou
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Life Sciences Institute and School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; The MOE Key Laboratory for Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Institute of Microbiology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yongqun Zhu
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Life Sciences Institute and School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; The MOE Key Laboratory for Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Institute of Microbiology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
40
|
Chang Y, Carroll BL, Liu J. Structural basis of bacterial flagellar motor rotation and switching. Trends Microbiol 2021; 29:1024-1033. [PMID: 33865677 DOI: 10.1016/j.tim.2021.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 01/08/2023]
Abstract
The bacterial flagellar motor, a remarkable rotary machine, can rapidly switch between counterclockwise (CCW) and clockwise (CW) rotational directions to control the migration behavior of the bacterial cell. The flagellar motor consists of a bidirectional spinning rotor surrounded by torque-generating stator units. Recent high-resolution in vitro and in situ structural studies have revealed stunning details of the individual components of the flagellar motor and their interactions in both the CCW and CW senses. In this review, we discuss these structures and their implications for understanding the molecular mechanisms underlying flagellar rotation and switching.
Collapse
Affiliation(s)
- Yunjie Chang
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, USA; Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Brittany L Carroll
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, USA; Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, USA; Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA.
| |
Collapse
|
41
|
Amphipathic environments for determining the structure of membrane proteins by single-particle electron cryo-microscopy. Q Rev Biophys 2021; 54:e6. [PMID: 33785082 DOI: 10.1017/s0033583521000044] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past decade, the structural biology of membrane proteins (MPs) has taken a new turn thanks to epoch-making technical progress in single-particle electron cryo-microscopy (cryo-EM) as well as to improvements in sample preparation. The present analysis provides an overview of the extent and modes of usage of the various types of surfactants for cryo-EM studies. Digitonin, dodecylmaltoside, protein-based nanodiscs, lauryl maltoside-neopentyl glycol, glyco-diosgenin, and amphipols (APols) are the most popular surfactants at the vitrification step. Surfactant exchange is frequently used between MP purification and grid preparation, requiring extensive optimization each time the study of a new MP is undertaken. The variety of both the surfactants and experimental approaches used over the past few years bears witness to the need to continue developing innovative surfactants and optimizing conditions for sample preparation. The possibilities offered by novel APols for EM applications are discussed.
Collapse
|
42
|
Takekawa N, Kawamoto A, Sakuma M, Kato T, Kojima S, Kinoshita M, Minamino T, Namba K, Homma M, Imada K. Two Distinct Conformations in 34 FliF Subunits Generate Three Different Symmetries within the Flagellar MS-Ring. mBio 2021; 12:e03199-20. [PMID: 33653894 PMCID: PMC8092281 DOI: 10.1128/mbio.03199-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/22/2021] [Indexed: 11/20/2022] Open
Abstract
The bacterial flagellum is a protein nanomachine essential for bacterial motility. The flagellar basal body contains several ring structures. The MS-ring is embedded in the cytoplasmic membrane and is formed at the earliest stage of flagellar formation to serve as the base for flagellar assembly as well as a housing for the flagellar protein export gate complex. The MS-ring is formed by FliF, which has two transmembrane helices and a large periplasmic region. A recent electron cryomicroscopy (cryoEM) study of the MS-ring formed by overexpressed FliF revealed a symmetry mismatch between the S-ring and inner part of the M-ring. However, the actual symmetry relation in the native MS-ring and positions of missing domains remain obscure. Here, we show the structure of the M-ring by combining cryoEM and X-ray crystallography. The crystal structure of the N-terminal half of the periplasmic region of FliF showed that it consists of two domains (D1 and D2) resembling PrgK D1/PrgH D2 and PrgK D2/PrgH D3 of the injectisome. CryoEM analysis revealed that the inner part of the M-ring shows a gear wheel-like density with the inner ring of C23 symmetry surrounded by cogs with C11 symmetry, to which 34 copies of FliFD1-D2 fitted well. We propose that FliFD1-D2 adopts two distinct orientations in the M-ring relative to the rest of FliF, with 23 chains forming the wheel and 11 chains forming the cogs, and the 34 chains come together to form the S-ring with C34 symmetry for multiple functions of the MS-ring.IMPORTANCE The bacterial flagellum is a motility organelle formed by tens of thousands of protein molecules. At the earliest stage of flagellar assembly, a transmembrane protein, FliF, forms the MS-ring in the cytoplasmic membrane as the base for flagellar assembly. Here, we solved the crystal structure of a FliF fragment. Electron cryomicroscopy (cryoEM) structural analysis of the MS-ring showed that the M-ring and S-ring have different rotational symmetries. By docking the crystal structure of the FliF fragment into the cryoEM density map of the entire MS-ring, we built a model of the whole periplasmic region of FliF and proposed that FliF adopts two distinct conformations to generate three distinct C11, C23, and C34 symmetries within the MS-ring for its multiple functions.
Collapse
Affiliation(s)
- Norihiro Takekawa
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Akihiro Kawamoto
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Mayuko Sakuma
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Takayuki Kato
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Miki Kinoshita
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- RIKEN Spring-8 Center and Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- JEOL Yokogushi Research Alliance Laboratories, Osaka University, Suita, Osaka, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Katsumi Imada
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| |
Collapse
|
43
|
The Shigella Type III Secretion System: An Overview from Top to Bottom. Microorganisms 2021; 9:microorganisms9020451. [PMID: 33671545 PMCID: PMC7926512 DOI: 10.3390/microorganisms9020451] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/16/2022] Open
Abstract
Shigella comprises four species of human-restricted pathogens causing bacillary dysentery. While Shigella possesses multiple genetic loci contributing to virulence, a type III secretion system (T3SS) is its primary virulence factor. The Shigella T3SS nanomachine consists of four major assemblies: the cytoplasmic sorting platform; the envelope-spanning core/basal body; an exposed needle; and a needle-associated tip complex with associated translocon that is inserted into host cell membranes. The initial subversion of host cell activities is carried out by the effector functions of the invasion plasmid antigen (Ipa) translocator proteins, with the cell ultimately being controlled by dedicated effector proteins that are injected into the host cytoplasm though the translocon. Much of the information now available on the T3SS injectisome has been accumulated through collective studies on the T3SS from three systems, those of Shigella flexneri, Salmonella typhimurium and Yersinia enterocolitica/Yersinia pestis. In this review, we will touch upon the important features of the T3SS injectisome that have come to light because of research in the Shigella and closely related systems. We will also briefly highlight some of the strategies being considered to target the Shigella T3SS for disease prevention.
Collapse
|
44
|
An organelle-tethering mechanism couples flagellation to cell division in bacteria. Dev Cell 2021; 56:657-670.e4. [PMID: 33600766 DOI: 10.1016/j.devcel.2021.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/09/2020] [Accepted: 01/20/2021] [Indexed: 11/21/2022]
Abstract
In some free-living and pathogenic bacteria, problems in the synthesis and assembly of early flagellar components can cause cell-division defects. However, the mechanism that couples cell division with the flagellar biogenesis has remained elusive. Herein, we discover the regulator MadA that controls transcription of flagellar and cell-division genes in Caulobacter crescentus. We demonstrate that MadA, a small soluble protein, binds the type III export component FlhA to promote activation of FliX, which in turn is required to license the conserved σ54-dependent transcriptional activator FlbD. While in the absence of MadA, FliX and FlbD activation is crippled, bypass mutations in FlhA restore flagellar biogenesis and cell division. Furthermore, we demonstrate that MadA safeguards the divisome stoichiometry to license cell division. We propose that MadA has a sentinel-type function that senses an early flagellar biogenesis event and, through cell-division control, ensures that a flagellated offspring emerges.
Collapse
|
45
|
Morimoto YV, Minamino T. Architecture and Assembly of the Bacterial Flagellar Motor Complex. Subcell Biochem 2021; 96:297-321. [PMID: 33252734 DOI: 10.1007/978-3-030-58971-4_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
One of the central systems responsible for bacterial motility is the flagellum. The bacterial flagellum is a macromolecular protein complex that is more than five times the cell length. Flagella-driven motility is coordinated via a chemosensory signal transduction pathway, and so bacterial cells sense changes in the environment and migrate towards more desirable locations. The flagellum of Salmonella enterica serovar Typhimurium is composed of a bi-directional rotary motor, a universal joint and a helical propeller. The flagellar motor, which structurally resembles an artificial motor, is embedded within the cell envelop and spins at several hundred revolutions per second. In contrast to an artificial motor, the energy utilized for high-speed flagellar motor rotation is the inward-directed proton flow through a transmembrane proton channel of the stator unit of the flagellar motor. The flagellar motor realizes efficient chemotaxis while performing high-speed movement by an ingenious directional switching mechanism of the motor rotation. To build the universal joint and helical propeller structures outside the cell body, the flagellar motor contains its own protein transporter called a type III protein export apparatus. In this chapter we summarize the structure and assembly of the Salmonella flagellar motor complex.
Collapse
Affiliation(s)
- Yusuke V Morimoto
- Department of Physics and Information Technology, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka, 820-8502, Japan
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
46
|
Protein Export via the Type III Secretion System of the Bacterial Flagellum. Biomolecules 2021; 11:biom11020186. [PMID: 33572887 PMCID: PMC7911332 DOI: 10.3390/biom11020186] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022] Open
Abstract
The bacterial flagellum and the related virulence-associated injectisome system of pathogenic bacteria utilize a type III secretion system (T3SS) to export substrate proteins across the inner membrane in a proton motive force-dependent manner. The T3SS is composed of an export gate (FliPQR/FlhA/FlhB) located in the flagellar basal body and an associated soluble ATPase complex in the cytoplasm (FliHIJ). Here, we summarise recent insights into the structure, assembly and protein secretion mechanisms of the T3SS with a focus on energy transduction and protein transport across the cytoplasmic membrane.
Collapse
|
47
|
Nishikino T, Kojima S, Homma M. [Flagellar related genes and functions in Vibrio]. Nihon Saikingaku Zasshi 2021; 75:195-214. [PMID: 33390367 DOI: 10.3412/jsb.75.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bacteria can move or swim by flagella. On the other hand, the motile ability is not necessary to live at all. In laboratory, the flagella-deficient strains can grow just like the wild-type strains. The flagellum is assembled from more than 20 structural proteins and there are more than 50 genes including the structural genes to regulate or support the flagellar formation. The cost to construct the flagellum is so expensive. The fact that it evolved as a motor organ means even at such the large cost shows that the flagellum is essential for survival in natural condition. In this review, we would like to focus on the flagella-related researches conducted by the authors and the flagellar research on Vibrio spp.
Collapse
Affiliation(s)
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University
| |
Collapse
|
48
|
Milne-Davies B, Wimmi S, Diepold A. Adaptivity and dynamics in type III secretion systems. Mol Microbiol 2020; 115:395-411. [PMID: 33251695 DOI: 10.1111/mmi.14658] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 01/07/2023]
Abstract
The type III secretion system is the common core of two bacterial molecular machines: the flagellum and the injectisome. The flagellum is the most widely distributed prokaryotic locomotion device, whereas the injectisome is a syringe-like apparatus for inter-kingdom protein translocation, which is essential for virulence in important human pathogens. The successful concept of the type III secretion system has been modified for different bacterial needs. It can be adapted to changing conditions, and was found to be a dynamic complex constantly exchanging components. In this review, we highlight the flexibility, adaptivity, and dynamic nature of the type III secretion system.
Collapse
Affiliation(s)
- Bailey Milne-Davies
- Department of Ecophysiology, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | - Stephan Wimmi
- Department of Ecophysiology, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | - Andreas Diepold
- Department of Ecophysiology, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
49
|
Umrekar TR, Cohen E, Drobnič T, Gonzalez-Rodriguez N, Beeby M. CryoEM of bacterial secretion systems: A primer for microbiologists. Mol Microbiol 2020; 115:366-382. [PMID: 33140482 DOI: 10.1111/mmi.14637] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022]
Abstract
"CryoEM" has come of age, enabling considerable structural insights into many facets of molecular biology. Here, we present a primer for microbiologists to understand the capabilities and limitations of two complementary cryoEM techniques for studying bacterial secretion systems. The first, single particle analysis, determines the structures of purified protein complexes to resolutions sufficient for molecular modeling, while the second, electron cryotomography and subtomogram averaging, tends to determine more modest resolution structures of protein complexes in intact cells. We illustrate these abilities with examples of insights provided into how secretion systems work by cryoEM, with a focus on type III secretion systems.
Collapse
Affiliation(s)
| | - Eli Cohen
- Department of Life Sciences, Imperial College London, London, UK
| | - Tina Drobnič
- Department of Life Sciences, Imperial College London, London, UK
| | | | - Morgan Beeby
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
50
|
Deme JC, Johnson S, Vickery O, Aron A, Monkhouse H, Griffiths T, James RH, Berks BC, Coulton JW, Stansfeld PJ, Lea SM. Structures of the stator complex that drives rotation of the bacterial flagellum. Nat Microbiol 2020; 5:1553-1564. [PMID: 32929189 PMCID: PMC7610383 DOI: 10.1038/s41564-020-0788-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/11/2020] [Indexed: 01/17/2023]
Abstract
The bacterial flagellum is the prototypical protein nanomachine and comprises a rotating helical propeller attached to a membrane-embedded motor complex. The motor consists of a central rotor surrounded by stator units that couple ion flow across the cytoplasmic membrane to generate torque. Here, we present the structures of the stator complexes from Clostridium sporogenes, Bacillus subtilis and Vibrio mimicus, allowing interpretation of the extensive body of data on stator mechanism. The structures reveal an unexpected asymmetric A5B2 subunit assembly where the five A subunits enclose the two B subunits. Comparison to structures of other ion-driven motors indicates that this A5B2 architecture is fundamental to bacterial systems that couple energy from ion flow to generate mechanical work at a distance and suggests that such events involve rotation in the motor structures.
Collapse
Affiliation(s)
- Justin C Deme
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Central Oxford Structural Molecular Imaging Centre, University of Oxford, Oxford, UK
| | - Steven Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Owen Vickery
- Department of Biochemistry, University of Oxford, Oxford, UK
- School of Life Sciences & Department of Chemistry, University of Warwick, Coventry, UK
| | - Amy Aron
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Holly Monkhouse
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Thomas Griffiths
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Ben C Berks
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - James W Coulton
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Département de Biochemie et Médecine Moleculaire, Université de Montréal, Montréal, Quebec, Canada
| | - Phillip J Stansfeld
- Department of Biochemistry, University of Oxford, Oxford, UK
- School of Life Sciences & Department of Chemistry, University of Warwick, Coventry, UK
| | - Susan M Lea
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
- Central Oxford Structural Molecular Imaging Centre, University of Oxford, Oxford, UK.
| |
Collapse
|