1
|
Qin B, Yang G, Chen X, Wu X, Fang Y, Quan X, Zhuang L. Specific interaction of resorufin to outer-membrane cytochrome OmcE of Geobacter sulfurreducens: A new insight on artificial electron mediators in promoting extracellular electron transfer. WATER RESEARCH 2024; 266:122403. [PMID: 39278116 DOI: 10.1016/j.watres.2024.122403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/07/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
Bioelectrochemical system (BES) is a unique biotechnology for wastewater treatment and energy recovery, and extracellular electron transfer (EET) between microbe and electrode is the key to optimize the performance of BESs. Resazurin is an effective artificial compound that can promote EET in BESs, but the way how it transports electrons is not fully understood. In this study differential pulse voltammetry revealed that the redox potential of resorufin (RR) (intermediate of resazurin reduction, actual electron mediator) within Geobacter sulfurreducens biofilm was positively shifted by 100 mV than that of free RR, and this shift was attenuated by the mutation of outer-membrane cytochrome gene omcE but not by omcS and omcZ mutation, indicating that RR specifically interacted with OmcE. By using heterologously expressed OmcE monomers in Escherichia coli, it was found that RR bonded with OmcE monomers with a moderate intensity (dissociation constant of 720 nM), and their interaction obviously increased the content of α helix in OmcE monomers. Biomolecular analysis indicated that heme II of OmcE monomer might be the binding site for RR (binding energy of -7.01 kJ/mol), which were favorable for electron transfer within OmcE-RR complex. Comparative transcriptomics showed that RZ addition significantly upregulated the expression of omcE, periplasmic cytochrome gene ppcB, and outer-membrane genes omaB, ombB and omcB, thus, it was hypothesized that OmcE-bound RR might serve as potential electron acceptor of OmbB-OmaB-OmcB porin complex which passes electrons across outer membrane. Our work demonstrated a new pathway of artificial electron mediators in facilitating EET in Geobacter species, which may guide the application of electron mediator in improving the performance of BESs.
Collapse
Affiliation(s)
- Baoli Qin
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Guiqin Yang
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| | - Xiaochun Chen
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xian Wu
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Yanlun Fang
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xiaoyun Quan
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Li Zhuang
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
2
|
Dahl PJ, Malvankar NS. The Jekyll-and-Hyde electron transfer chemistry of hydrogen bonds. Nat Chem 2024; 16:1746-1747. [PMID: 39402253 DOI: 10.1038/s41557-024-01656-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Affiliation(s)
- Peter J Dahl
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, USA.
| | - Nikhil S Malvankar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
- Microbial Sciences Institute, Yale University, West Haven, CT, USA.
| |
Collapse
|
3
|
Soares R, Fonseca BM, Nash BW, Paquete CM, Louro RO. A survey of the Desulfuromonadia "cytochromome" provides a glimpse of the unexplored diversity of multiheme cytochromes in nature. BMC Genomics 2024; 25:982. [PMID: 39428470 PMCID: PMC11492766 DOI: 10.1186/s12864-024-10872-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Multiheme cytochromes c (MHC) provide prokaryotes with a broad metabolic versatility that contributes to their role in the biogeochemical cycling of the elements and in energy production in bioelectrochemical systems. However, MHC have only been isolated and studied in detail from a limited number of species. Among these, Desulfuromonadia spp. are particularly MHC-rich. To obtain a broad view of the diversity of MHC, we employed bioinformatic tools to study the cytochromome encoded in the genomes of the Desulfuromonadia class. RESULTS We found that the distribution of the MHC families follows a different pattern between the two orders of the Desulfuromonadia class and that there is great diversity in the number of heme-binding motifs in MHC. However, the vast majority of MHC have up to 12 heme-binding motifs. MHC predicted to be extracellular are the least conserved and show high diversity, whereas inner membrane MHC are well conserved and show lower diversity. Although the most prevalent MHC have homologues already characterized, nearly half of the MHC families in the Desulforomonadia class have no known characterized homologues. AlphaFold2 was employed to predict their 3D structures. This provides an atlas of novel MHC, including examples with high beta-sheet content and nanowire MHC with unprecedented high numbers of putative heme cofactors per polypeptide. CONCLUSIONS This work illuminates for the first time the universe of experimentally uncharacterized cytochromes that are likely to contribute to the metabolic versatility and to the fitness of Desulfuromonadia in diverse environmental conditions and to drive biotechnological applications of these organisms.
Collapse
Affiliation(s)
- Ricardo Soares
- Av da República (EAN), Instituto de Tecnologia Química e Bioloógica António Xavier da Universidade Nova de Lisboa, Oeiras, 2780-157, Portugal
- Instituto Nacional de Investigação Agrária e Veterinária, Oeiras, Portugal
| | - Bruno M Fonseca
- Av da República (EAN), Instituto de Tecnologia Química e Bioloógica António Xavier da Universidade Nova de Lisboa, Oeiras, 2780-157, Portugal
| | - Benjamin W Nash
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Catarina M Paquete
- Av da República (EAN), Instituto de Tecnologia Química e Bioloógica António Xavier da Universidade Nova de Lisboa, Oeiras, 2780-157, Portugal
| | - Ricardo O Louro
- Av da República (EAN), Instituto de Tecnologia Química e Bioloógica António Xavier da Universidade Nova de Lisboa, Oeiras, 2780-157, Portugal.
| |
Collapse
|
4
|
Wang P, Tan J, Xiao Z, Xu F, Jin Q, He D. New insights and enhancement mechanisms of activated carbon in autotrophic denitrification system utilizing zero-valent iron as indirect electron donors. BIORESOURCE TECHNOLOGY 2024; 410:131237. [PMID: 39127355 DOI: 10.1016/j.biortech.2024.131237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Zero-valent iron acts as an indirect electron donor, supplying ferrous iron for the nitrate-dependent ferrous oxidation (NDFO) process. The addition of activated carbon (AC) increased the specific NDFO activity in situ and ex situ by 0.4 mg-N/(d·g VSS) and 2.2 mg-N/(d·g VSS), respectively, due to the enrichment of NDFO bacteria. Furthermore, AC reduced the nitrous oxide emission potential of the sludge, a mechanism that metagenomic analysis suggests may act as a cellular energy storage strategy. During a 196-day experiment, a total nitrogen removal efficiency of 53.7 % was achieved, which may be attributed to the upregulation of key genes involved in iron oxidation and denitrification. Based on these findings, a model involving pilin, 'nanowires,' and a cyc2/?→/(FoxE→FoxY)/?→cymA/Complex III/?-mediated pathway for extracellular electron uptake was proposed. Overall, this work provides a feasible strategy for enhancing the nitrogen removal performance of the ZVI-NDFO process.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Jun Tan
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Zhenxiong Xiao
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Fei Xu
- Shenzhen Pangu Environmental Protection Technology Co. Ltd, Shenzhen 518055, PR China
| | - Qinghai Jin
- Shenzhen Pangu Environmental Protection Technology Co. Ltd, Shenzhen 518055, PR China
| | - Di He
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
5
|
Zhang L, Zhang Y, Liu Y, Wang S, Lee CK, Huang Y, Duan X. High power density redox-mediated Shewanella microbial flow fuel cells. Nat Commun 2024; 15:8302. [PMID: 39333111 PMCID: PMC11448506 DOI: 10.1038/s41467-024-52498-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 09/10/2024] [Indexed: 09/29/2024] Open
Abstract
Microbial fuel cells utilize exoelectrogenic microorganisms to directly convert organic matter into electricity, offering a compelling approach for simultaneous power generation and wastewater treatment. However, conventional microbial fuel cells typically require thick biofilms for sufficient metabolic electron production rate, which inevitably compromises mass and charge transport, posing a fundamental tradeoff that limits the achievable power density (<1 mW cm-2). Herein, we report a concept for redox-mediated microbial flow fuel cells that utilizes artificial redox mediators in a flowing medium to efficiently transfer metabolic electrons from planktonic bacteria to electrodes. This approach effectively overcomes mass and charge transport limitations, substantially reducing internal resistance. The biofilm-free microbial flow fuel cell thus breaks the inherent tradeoff in dense biofilms, resulting in a maximum current density surpassing 40 mA cm-2 and a highest power density exceeding 10 mW cm-2, approximately one order of magnitude higher than those of state-of-the-art microbial fuel cells.
Collapse
Affiliation(s)
- Leyuan Zhang
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yucheng Zhang
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yang Liu
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sibo Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Calvin K Lee
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yu Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
- NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.
- NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Papp E, Vattay G. Computation of biological conductance with Liouville quantum master equation. Sci Rep 2024; 14:19571. [PMID: 39174593 PMCID: PMC11341803 DOI: 10.1038/s41598-024-70348-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024] Open
Abstract
Recent experiments have revealed that single proteins can display high conductivity, which stays finite for low temperatures, decays slowly with distance, and exhibits a rich spatial structure featuring highly conducting and strongly insulating domains. Here, we intruduce a new formula by combining the density matrix of the Liouville-Master Equation simulating quantum transport in nanoscale devices, and the phenomenological model of electronic conductance through molecules, that can account for the observed distance- and temperature dependence of conductance in proteins. We demonstrate its efficacy on experimentally highly conductive extracellular cytochrome nanowires, which are good candidates to illustrate our new approach by calculating and visualizing their electronic wiring, given the interest in the arrangement of their conducting and insulating parts. As proteins and protein nanowires exhibit significant potential for diverse applications, including energy production and sensing, our computational technique can accelerate the design of nano-bioelectronic devices.
Collapse
Affiliation(s)
- Eszter Papp
- Department of Physics of Complex Systems, Eötvös Loránd University, Egyetem tér 1-3., Budapest, 1053, Hungary.
| | - Gábor Vattay
- Department of Physics of Complex Systems, Eötvös Loránd University, Egyetem tér 1-3., Budapest, 1053, Hungary
| |
Collapse
|
7
|
Liang J, Xiao K, Wang X, Hou T, Zeng C, Gao X, Wang B, Zhong C. Revisiting Solar Energy Flow in Nanomaterial-Microorganism Hybrid Systems. Chem Rev 2024; 124:9081-9112. [PMID: 38900019 DOI: 10.1021/acs.chemrev.3c00831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Nanomaterial-microorganism hybrid systems (NMHSs), integrating semiconductor nanomaterials with microorganisms, present a promising platform for broadband solar energy harvesting, high-efficiency carbon reduction, and sustainable chemical production. While studies underscore its potential in diverse solar-to-chemical energy conversions, prevailing NMHSs grapple with suboptimal energy conversion efficiency. Such limitations stem predominantly from an insufficient systematic exploration of the mechanisms dictating solar energy flow. This review provides a systematic overview of the notable advancements in this nascent field, with a particular focus on the discussion of three pivotal steps of energy flow: solar energy capture, cross-membrane energy transport, and energy conversion into chemicals. While key challenges faced in each stage are independently identified and discussed, viable solutions are correspondingly postulated. In view of the interplay of the three steps in affecting the overall efficiency of solar-to-chemical energy conversion, subsequent discussions thus take an integrative and systematic viewpoint to comprehend, analyze and improve the solar energy flow in the current NMHSs of different configurations, and highlighting the contemporary techniques that can be employed to investigate various aspects of energy flow within NMHSs. Finally, a concluding section summarizes opportunities for future research, providing a roadmap for the continued development and optimization of NMHSs.
Collapse
Affiliation(s)
- Jun Liang
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kemeng Xiao
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xinyu Wang
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tianfeng Hou
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Cuiping Zeng
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiang Gao
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Bo Wang
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chao Zhong
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
8
|
Wang W, Sessler CD, Wang X, Liu J. In Situ Synthesis and Assembly of Functional Materials and Devices in Living Systems. Acc Chem Res 2024; 57:2013-2026. [PMID: 39007720 DOI: 10.1021/acs.accounts.4c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
ConspectusIntegrating functional materials and devices with living systems enables novel methods for recording, manipulating, or augmenting organisms not accessible by traditional chemical, optical, or genetic approaches. (The term "device" refers to the fundamental components of complex electronic systems, such as transistors, capacitors, conductors, and electrodes.) Typically, these advanced materials and devices are synthesized, either through chemical or physical reactions, outside the biological systems (ex situ) before they are integrated. This is due in part to the more limited repertoire of biocompatible chemical transformations available for assembling functional materials in vivo. Given that most of the assembled bulk materials are impermeable to cell membranes and cannot go through the blood-brain barrier (BBB), the external synthesis poses challenges when trying to interface these materials and devices with cells precisely and in a timely manner and at the micro- and nanoscale─a crucial requirement for modulating cellular functions. In contrast to presynthesis in a separate location, in situ assembly, wherein small molecules or building blocks are directly assembled into functional materials within a biological system at the desired site of action, has offered a potential solution for spatiotemporal and genetic control of material synthesis and assembly.In this Account, we highlight recent advances in spatially and temporally targeted functional material synthesis and assembly in living cells, tissues and animals and provide perspective on how they may enable novel probing, modulation, or augmentation of fundamental biology. We discuss several strategies, starting from the traditional nontargeted methods to targeted assembly of functional materials and devices based on the endogenous markers of the biological system. We then focus on genetically targeted assembly of functional materials, which employs enzymatic catalysis centers expressed in living systems to assemble functional materials in specific molecular-defined cell types. We introduce the recent efforts of our group to modulate membrane capacitance and neuron excitability using in situ synthesized electrically functional polymers in a genetically targetable manner. These advances demonstrate the promise of in situ synthesis and assembly of functional materials and devices, including the optogenetic polymerization developed by our lab, to interface with cells in a cellular- or subcellular-specific manner by incorporating genetic and/or optical control over material assembly. Finally, we discuss remaining challenges, areas for improvement, potential applications to other biological systems, and novel methods for the in situ synthesis of functional materials that could be elevated by incorporating genetic or material design strategies. As researchers expand the toolkit of biocompatible in situ functional material synthetic techniques, we anticipate that these advancements could potentially offer valuable tools for exploring biological systems and developing therapeutic solutions.
Collapse
Affiliation(s)
- Wenbo Wang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts 02134, United States
| | - Chanan D Sessler
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Xiao Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Jia Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts 02134, United States
| |
Collapse
|
9
|
Bishara Robertson IL, Zhang H, Reisner E, Butt JN, Jeuken LJC. Engineering of bespoke photosensitiser-microbe interfaces for enhanced semi-artificial photosynthesis. Chem Sci 2024; 15:9893-9914. [PMID: 38966358 PMCID: PMC11220614 DOI: 10.1039/d4sc00864b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/20/2024] [Indexed: 07/06/2024] Open
Abstract
Biohybrid systems for solar fuel production integrate artificial light-harvesting materials with biological catalysts such as microbes. In this perspective, we discuss the rational design of the abiotic-biotic interface in biohybrid systems by reviewing microbes and synthetic light-harvesting materials, as well as presenting various approaches to coupling these two components together. To maximise performance and scalability of such semi-artificial systems, we emphasise that the interfacial design requires consideration of two important aspects: attachment and electron transfer. It is our perspective that rational design of this photosensitiser-microbe interface is required for scalable solar fuel production. The design and assembly of a biohybrid with a well-defined electron transfer pathway allows mechanistic characterisation and optimisation for maximum efficiency. Introduction of additional catalysts to the system can close the redox cycle, omitting the need for sacrificial electron donors. Studies that electronically couple light-harvesters to well-defined biological entities, such as emerging photosensitiser-enzyme hybrids, provide valuable knowledge for the strategic design of whole-cell biohybrids. Exploring the interactions between light-harvesters and redox proteins can guide coupling strategies when translated into larger, more complex microbial systems.
Collapse
Affiliation(s)
| | - Huijie Zhang
- Leiden Institute of Chemistry, Leiden University PO Box 9502 Leiden 2300 RA the Netherlands
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Julea N Butt
- School of Chemistry and School of Biological Sciences, University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Lars J C Jeuken
- Leiden Institute of Chemistry, Leiden University PO Box 9502 Leiden 2300 RA the Netherlands
| |
Collapse
|
10
|
Khan SS, Kour D, Kaur T, Sharma A, Kumar S, Kumari S, Ramniwas S, Singh S, Negi R, Sharma B, Devi T, Kumari C, Kour H, Kaur M, Rai AK, Singh S, Rasool S, Yadav AN. Microbial Nanotechnology for Precision Nanobiosynthesis: Innovations, Current Opportunities and Future Perspectives for Industrial Sustainability. Curr Microbiol 2024; 81:251. [PMID: 38954017 DOI: 10.1007/s00284-024-03772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024]
Abstract
A new area of biotechnology is nanotechnology. Nanotechnology is an emerging field that aims to develope various substances with nano-dimensions that have utilization in the various sectors of pharmaceuticals, bio prospecting, human activities and biomedical applications. An essential stage in the development of nanotechnology is the creation of nanoparticles. To increase their biological uses, eco-friendly material synthesis processes are becoming increasingly important. Recent years have shown a lot of interest in nanostructured materials due to their beneficial and unique characteristics compared to their polycrystalline counterparts. The fascinating performance of nanomaterials in electronics, optics, and photonics has generated a lot of interest. An eco-friendly approach of creating nanoparticles has emerged in order to get around the drawbacks of conventional techniques. Today, a wide range of nanoparticles have been created by employing various microbes, and their potential in numerous cutting-edge technological fields have been investigated. These particles have well-defined chemical compositions, sizes, and morphologies. The green production of nanoparticles mostly uses plants and microbes. Hence, the use of microbial nanotechnology in agriculture and plant science is the main emphasis of this review. The present review highlights the methods of biological synthesis of nanoparticles available with a major focus on microbially synthesized nanoparticles, parameters and biochemistry involved. Further, it takes into account the genetic engineering and synthetic biology involved in microbial nanobiosynthesis to the construction of microbial nanofactories.
Collapse
Affiliation(s)
- Sofia Sharief Khan
- Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, 182320, Jammu and Kashmir, India
| | - Divjot Kour
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Tanvir Kaur
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Anjali Sharma
- Department of Biotechnology and Genetics, Jain University, Bengaluru, 560069, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, 303012, Rajasthan, India
| | - Sanjeev Kumar
- Department of Genetics and Plant Breeding, Faculty of Agricultural Sciences, GLA University, Mathura, Uttar Pradesh, India
| | - Shilpa Kumari
- Department of Physics, Rayat Bahra University, Mohali, 140105, Punjab, India
| | - Seema Ramniwas
- Department of Biotechnology, University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Shaveta Singh
- Dolphin PG College of Life Sciences, Chunni Kalan, Fatehgarh Sahib, Punjab, India
| | - Rajeshwari Negi
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Babita Sharma
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Tishu Devi
- Government College for Women, Parade, Jammu, Jammu and Kashmir, India
| | - Chandresh Kumari
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Vill-Bhajhol, Solan, 173229, Himachal Pradesh, India
| | - Harpreet Kour
- Department of Botany, University of Jammu, Jammu, 180006, Jammu and Kashmir, India
| | - Manpreet Kaur
- Department of Physics, IEC University, Baddi, Solan, 174103, Himachal Pradesh, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Sangram Singh
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Faizabad, Uttar Pradesh, India
| | - Shafaq Rasool
- Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, 182320, Jammu and Kashmir, India
| | - Ajar Nath Yadav
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India.
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, 71800, Nilai, Negeri Sembilan, Malaysia.
| |
Collapse
|
11
|
Schoelmerich MC, Ly L, West-Roberts J, Shi LD, Shen C, Malvankar NS, Taib N, Gribaldo S, Woodcroft BJ, Schadt CW, Al-Shayeb B, Dai X, Mozsary C, Hickey S, He C, Beaulaurier J, Juul S, Sachdeva R, Banfield JF. Borg extrachromosomal elements of methane-oxidizing archaea have conserved and expressed genetic repertoires. Nat Commun 2024; 15:5414. [PMID: 38926353 PMCID: PMC11208441 DOI: 10.1038/s41467-024-49548-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Borgs are huge extrachromosomal elements (ECE) of anaerobic methane-consuming "Candidatus Methanoperedens" archaea. Here, we used nanopore sequencing to validate published complete genomes curated from short reads and to reconstruct new genomes. 13 complete and four near-complete linear genomes share 40 genes that define a largely syntenous genome backbone. We use these conserved genes to identify new Borgs from peatland soil and to delineate Borg phylogeny, revealing two major clades. Remarkably, Borg genes encoding nanowire-like electron-transferring cytochromes and cell surface proteins are more highly expressed than those of host Methanoperedens, indicating that Borgs augment the Methanoperedens activity in situ. We reconstructed the first complete 4.00 Mbp genome for a Methanoperedens that is inferred to be a Borg host and predicted its methylation motifs, which differ from pervasive TC and CC methylation motifs of the Borgs. Thus, methylation may enable Methanoperedens to distinguish their genomes from those of Borgs. Very high Borg to Methanoperedens ratios and structural predictions suggest that Borgs may be capable of encapsulation. The findings clearly define Borgs as a distinct class of ECE with shared genomic signatures, establish their diversification from a common ancestor with genetic inheritance, and raise the possibility of periodic existence outside of host cells.
Collapse
Affiliation(s)
- Marie C Schoelmerich
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Environmental Systems Sciences, ETH Zurich, 8092, Zurich, Switzerland
| | - Lynn Ly
- Oxford Nanopore Technologies Inc, New York, NY, USA
| | - Jacob West-Roberts
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Ling-Dong Shi
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Cong Shen
- Microbial Sciences Institute, Yale University, New Haven, CT, USA
- Deptartment of Molecular Biophysics and Biochemistry, Yale University, West Haven, CT, USA
| | - Nikhil S Malvankar
- Microbial Sciences Institute, Yale University, New Haven, CT, USA
- Deptartment of Molecular Biophysics and Biochemistry, Yale University, West Haven, CT, USA
| | - Najwa Taib
- Institut Pasteur, Université de Paris cité, Unit Evolutionary Biology of the Microbial Cell, Paris, France
| | - Simonetta Gribaldo
- Institut Pasteur, Université de Paris cité, Unit Evolutionary Biology of the Microbial Cell, Paris, France
| | - Ben J Woodcroft
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD, Australia
| | - Christopher W Schadt
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Basem Al-Shayeb
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | | | | | - Scott Hickey
- Oxford Nanopore Technologies Inc, New York, NY, USA
| | - Christine He
- Oxford Nanopore Technologies Inc, New York, NY, USA
| | | | - Sissel Juul
- Oxford Nanopore Technologies Inc, New York, NY, USA
| | - Rohan Sachdeva
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA.
- Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA.
| |
Collapse
|
12
|
Ma Y, Qu Y, Yao X, Xia C, Lv M, Lin X, Zhang L, Zhang M, Hu B. Unveiling the unique role of iron in the metabolism of methanogens: A review. ENVIRONMENTAL RESEARCH 2024; 250:118495. [PMID: 38367837 DOI: 10.1016/j.envres.2024.118495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Methanogens are the main participants in the carbon cycle, catalyzing five methanogenic pathways. Methanogens utilize different iron-containing functional enzymes in different methanogenic processes. Iron is a vital element in methanogens, which can serve as a carrier or reactant in electron transfer. Therefore, iron plays an important role in the growth and metabolism of methanogens. In this paper, we cast light on the types and functions of iron-containing functional enzymes involved in different methanogenic pathways, and the roles iron play in energy/substance metabolism of methanogenesis. Furthermore, this review provides certain guiding significance for lowering CH4 emissions, boosting the carbon sink capacity of ecosystems and promoting green and low-carbon development in the future.
Collapse
Affiliation(s)
- Yuxin Ma
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying Qu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiangwu Yao
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, Zhejiang, China; Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chujun Xia
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mengjie Lv
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao Lin
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lili Zhang
- Beijing Enterprises Water Group Limited, Beijing, China
| | - Meng Zhang
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, Zhejiang, China; Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Baolan Hu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, Zhejiang, China; Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
13
|
Rodríguez-Torres LM, Huerta-Miranda GA, Martínez-García AL, Mazón-Montijo DA, Hernández-Eligio A, Miranda-Hernández M, Juárez K. Influence of support materials on the electroactive behavior, structure and gene expression of wild type and GSU1771-deficient mutant of Geobacter sulfurreducens biofilms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33612-3. [PMID: 38758442 DOI: 10.1007/s11356-024-33612-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/05/2024] [Indexed: 05/18/2024]
Abstract
Geobacter sulfurreducens DL1 is a metal-reducing dissimilatory bacterium frequently used to produce electricity in bioelectrochemical systems (BES). The biofilm formed on electrodes is one of the most important factors for efficient electron transfer; this is possible due to the production of type IV pili and c-type cytochromes that allow it to carry out extracellular electron transfer (EET) to final acceptors. In this study, we analyzed the biofilm formed on different support materials (glass, hematite (Fe2O3) on glass, fluorine-doped tin oxide (FTO) semiconductor glass, Fe2O3 on FTO, graphite, and stainless steel) by G. sulfurreducens DL1 (WT) and GSU1771-deficient strain mutant (Δgsu1771). GSU1771 is a transcriptional regulator that controls the expression of several genes involved in electron transfer. Different approaches and experimental tests were carried out with the biofilms grown on the different support materials including structure analysis by confocal laser scanning microscopy (CLSM), characterization of electrochemical activity, and quantification of relative gene expression by RT-qPCR. The gene expression of selected genes involved in EET was analyzed, observing an overexpression of pgcA, omcS, omcM, and omcF from Δgsu1771 biofilms compared to those from WT, also the overexpression of the epsH gene, which is involved in exopolysaccharide synthesis. Although we observed that for the Δgsu1771 mutant strain, the associated redox processes are similar to the WT strain, and more current is produced, we think that this could be associated with a higher relative expression of certain genes involved in EET and in the production of exopolysaccharides despite the chemical environment where the biofilm develops. This study supports that G. sulfurreducens is capable of adapting to the electrochemical environment where it grows.
Collapse
Affiliation(s)
- Luis Miguel Rodríguez-Torres
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001. Col. Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Guillermo Antonio Huerta-Miranda
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001. Col. Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Ana Luisa Martínez-García
- Centro de Investigación en Materiales Avanzados S. C., Subsede Monterrey, Grupo de Investigación DORA-Lab, 66628, Apodaca, N. L, México
- Centro de Investigación e Innovación Tecnológica (CIIT), Grupo de Investigación DORA-Lab, Tecnológico Nacional de México Campus Nuevo León (TECNL), 66629, Apodaca, N. L, México
| | - Dalia Alejandra Mazón-Montijo
- Centro de Investigación en Materiales Avanzados S. C., Subsede Monterrey, Grupo de Investigación DORA-Lab, 66628, Apodaca, N. L, México
- Centro de Investigación e Innovación Tecnológica (CIIT), Grupo de Investigación DORA-Lab, Tecnológico Nacional de México Campus Nuevo León (TECNL), 66629, Apodaca, N. L, México
- Investigadores Por México, CONAHCYT, Ciudad de México, México
| | - Alberto Hernández-Eligio
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001. Col. Chamilpa, 62210, Cuernavaca, Morelos, México
- Investigadores Por México, CONAHCYT, Ciudad de México, México
| | - Margarita Miranda-Hernández
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco, 62580, Temixco, Morelos, México
| | - Katy Juárez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001. Col. Chamilpa, 62210, Cuernavaca, Morelos, México.
| |
Collapse
|
14
|
Schwarz IA, Alsaqri B, Lekbach Y, Henry K, Gorman S, Woodard T, Dion L, Real L, Holmes DE, Smith JA, Lovley DR. Lack of physiological evidence for cytochrome filaments functioning as conduits for extracellular electron transfer. mBio 2024; 15:e0069024. [PMID: 38717196 PMCID: PMC11077965 DOI: 10.1128/mbio.00690-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 05/12/2024] Open
Abstract
Extracellular cytochrome filaments are proposed to serve as conduits for long-range extracellular electron transfer. The primary functional physiological evidence has been the reported inhibition of Geobacter sulfurreducens Fe(III) oxide reduction when the gene for the filament-forming cytochrome OmcS is deleted. Here we report that the OmcS-deficient strain from that original report reduces Fe(III) oxide as well as the wild-type, as does a triple mutant in which the genes for the other known filament-forming cytochromes were also deleted. The triple cytochrome mutant displayed filaments with the same 3 nm diameter morphology and conductance as those produced by Escherichia coli heterologously expressing the G. sulfurreducens PilA pilin gene. Fe(III) oxide reduction was inhibited when the pilin gene in cytochrome-deficient mutants was modified to yield poorly conductive 3 nm diameter filaments. The results are consistent with the concept that 3 nm diameter electrically conductive pili (e-pili) are required for G. sulfurreducens long-range extracellular electron transfer. In contrast, rigorous physiological functional evidence is lacking for cytochrome filaments serving as conduits for long-range electron transport. IMPORTANCE Unraveling microbial extracellular electron transfer mechanisms has profound implications for environmental processes and advancing biological applications. This study on Geobacter sulfurreducens challenges prevailing beliefs on cytochrome filaments as crucial components thought to facilitate long-range electron transport. The discovery of an OmcS-deficient strain's unexpected effectiveness in Fe(III) oxide reduction prompted a reevaluation of the key conduits for extracellular electron transfer. By exploring the impact of genetic modifications on G. sulfurreducens' performance, this research sheds light on the importance of 3-nm diameter electrically conductive pili in Fe(III) oxide reduction. Reassessing these mechanisms is essential for uncovering the true drivers of extracellular electron transfer in microbial systems, offering insights that could revolutionize applications across diverse fields.
Collapse
Affiliation(s)
- Ingrid A. Schwarz
- Department of Biomolecular Sciences, Central Connecticut State University, New Britain, Connecticut, USA
| | - Baha Alsaqri
- Department of Biomolecular Sciences, Central Connecticut State University, New Britain, Connecticut, USA
| | - Yassir Lekbach
- Department of Microbiology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Kathryn Henry
- Department of Physical and Biological Sciences, Western New England University, Springfield, Massachusetts, USA
| | - Sydney Gorman
- Department of Physical and Biological Sciences, Western New England University, Springfield, Massachusetts, USA
| | - Trevor Woodard
- Department of Microbiology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Laura Dion
- Department of Physical and Biological Sciences, Western New England University, Springfield, Massachusetts, USA
| | - Lauren Real
- Department of Biomolecular Sciences, Central Connecticut State University, New Britain, Connecticut, USA
| | - Dawn E. Holmes
- Department of Microbiology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
- Department of Physical and Biological Sciences, Western New England University, Springfield, Massachusetts, USA
| | - Jessica A. Smith
- Department of Biomolecular Sciences, Central Connecticut State University, New Britain, Connecticut, USA
- Department of Microbiology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Derek R. Lovley
- Department of Microbiology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
15
|
Guberman-Pfeffer MJ. To be or not to be a cytochrome: electrical characterizations are inconsistent with Geobacter cytochrome 'nanowires'. Front Microbiol 2024; 15:1397124. [PMID: 38633696 PMCID: PMC11021709 DOI: 10.3389/fmicb.2024.1397124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
Geobacter sulfurreducens profoundly shapes Earth's biogeochemistry by discharging respiratory electrons to minerals and other microbes through filaments of a two-decades-long debated identity. Cryogenic electron microscopy has revealed filaments of redox-active cytochromes, but the same filaments have exhibited hallmarks of organic metal-like conductivity under cytochrome denaturing/inhibiting conditions. Prior structure-based calculations and kinetic analyses on multi-heme proteins are synthesized herein to propose that a minimum of ~7 cytochrome 'nanowires' can carry the respiratory flux of a Geobacter cell, which is known to express somewhat more (≥20) filaments to increase the likelihood of productive contacts. By contrast, prior electrical and spectroscopic structural characterizations are argued to be physiologically irrelevant or physically implausible for the known cytochrome filaments because of experimental artifacts and sample impurities. This perspective clarifies our mechanistic understanding of physiological metal-microbe interactions and advances synthetic biology efforts to optimize those interactions for bioremediation and energy or chemical production.
Collapse
|
16
|
Portela PC, Shipps CC, Shen C, Srikanth V, Salgueiro CA, Malvankar NS. Widespread extracellular electron transfer pathways for charging microbial cytochrome OmcS nanowires via periplasmic cytochromes PpcABCDE. Nat Commun 2024; 15:2434. [PMID: 38509081 PMCID: PMC10954620 DOI: 10.1038/s41467-024-46192-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
Extracellular electron transfer (EET) via microbial nanowires drives globally-important environmental processes and biotechnological applications for bioenergy, bioremediation, and bioelectronics. Due to highly-redundant and complex EET pathways, it is unclear how microbes wire electrons rapidly (>106 s-1) from the inner-membrane through outer-surface nanowires directly to an external environment despite a crowded periplasm and slow (<105 s-1) electron diffusion among periplasmic cytochromes. Here, we show that Geobacter sulfurreducens periplasmic cytochromes PpcABCDE inject electrons directly into OmcS nanowires by binding transiently with differing efficiencies, with the least-abundant cytochrome (PpcC) showing the highest efficiency. Remarkably, this defined nanowire-charging pathway is evolutionarily conserved in phylogenetically-diverse bacteria capable of EET. OmcS heme reduction potentials are within 200 mV of each other, with a midpoint 82 mV-higher than reported previously. This could explain efficient EET over micrometres at ultrafast (<200 fs) rates with negligible energy loss. Engineering this minimal nanowire-charging pathway may yield microbial chassis with improved performance.
Collapse
Affiliation(s)
- Pilar C Portela
- Microbial Sciences Institute, Yale University, West Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Catharine C Shipps
- Microbial Sciences Institute, Yale University, West Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Cong Shen
- Microbial Sciences Institute, Yale University, West Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Vishok Srikanth
- Microbial Sciences Institute, Yale University, West Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Carlos A Salgueiro
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal.
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal.
| | - Nikhil S Malvankar
- Microbial Sciences Institute, Yale University, West Haven, CT, USA.
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
17
|
Ouboter HT, Mesman R, Sleutels T, Postma J, Wissink M, Jetten MSM, Ter Heijne A, Berben T, Welte CU. Mechanisms of extracellular electron transfer in anaerobic methanotrophic archaea. Nat Commun 2024; 15:1477. [PMID: 38368447 PMCID: PMC10874420 DOI: 10.1038/s41467-024-45758-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/01/2024] [Indexed: 02/19/2024] Open
Abstract
Anaerobic methanotrophic (ANME) archaea are environmentally important, uncultivated microorganisms that oxidize the potent greenhouse gas methane. During methane oxidation, ANME archaea engage in extracellular electron transfer (EET) with other microbes, metal oxides, and electrodes through unclear mechanisms. Here, we cultivate ANME-2d archaea ('Ca. Methanoperedens') in bioelectrochemical systems and observe strong methane-dependent current (91-93% of total current) associated with high enrichment of 'Ca. Methanoperedens' on the anode (up to 82% of the community), as determined by metagenomics and transmission electron microscopy. Electrochemical and metatranscriptomic analyses suggest that the EET mechanism is similar at various electrode potentials, with the possible involvement of an uncharacterized short-range electron transport protein complex and OmcZ nanowires.
Collapse
Affiliation(s)
- Heleen T Ouboter
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands
| | - Rob Mesman
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands
| | - Tom Sleutels
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, The Netherlands
- Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| | - Jelle Postma
- Department of General Instrumentation, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands
| | - Martijn Wissink
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands
| | - Annemiek Ter Heijne
- Environmental Technology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Tom Berben
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands
| | - Cornelia U Welte
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands.
| |
Collapse
|
18
|
Chen JJ. Interfacial Electron Transfer in Chemical and Biological Transformation of Pollutants in Environmental Catalysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21540-21549. [PMID: 38086095 DOI: 10.1021/acs.est.3c05608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Interfacial electron transfer (IET) is essential for chemical and biological transformation of pollutants, operative across diverse lengths and time scales. This Perspective presents an array of multiscale molecular simulation methodologies, supplemented by in situ monitoring and imaging techniques, serving as robust tools to decode IET enhancement mechanisms such as interface molecular modification, catalyst coordination mode, and atomic composition regulation. In addition, three IET-based pollutant transformation systems, an electrocatalytic oxidation system, a bioelectrochemical spatial coupling system, and an enzyme-inspired electrocatalytic system, were developed, demonstrating a high effect in transforming and degrading pollutants. To improve the effectiveness and scalability of IET-based strategies, the refinement of these systems is necessitated through rigorous research and theoretical exploration, particularly in the context of practical wastewater treatment scenarios. Future endeavors aim to elucidate the synergy between biological and chemical modules, edit the environmental functional microorganisms, and harness machine learning for designing advanced environmental catalysts to boost efficiency. This Perspective highlights the powerful potential of IET-focused environmental remediation strategies, emphasizing the critical role of interdisciplinary research in addressing the urgent global challenge of water pollution.
Collapse
Affiliation(s)
- Jie-Jie Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
19
|
Wu Y, Zhang B, Wan Y, Jiang Y, Li N, Jiang X, Liao C, Wang X. Fe(0)-Dissimilatory Nitrate Reduction to Ammonium for Autotrophic Recovery of Reactive Nitrogen. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17353-17362. [PMID: 37917951 DOI: 10.1021/acs.est.3c06280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Bioreduction of nitrate to value-added ammonium is a potentially sustainable strategy to recycle nutrients from wastewater. Here, we have proven the feasibility of the reduction of autotrophic nitrate to ammonium with electrons extracted from Fe(0). Using a Geobacter-dominated anodic biofilm as an inoculum, we achieved nitrate-to-ammonium efficiency up to 90 ± 3% with a nitrate reduction rate of 35 ± 1.3 mg N/d/L. An electron acceptor instead of an inoculum greatly influenced the Fe(0)-dissimilatory nitrate reduction to ammonium (DNRA), where nitrite as the electron acceptor provided an effective selective pressure to enrich Geobacter from initial 5 to 56%. The DNRA repressing denitrification was demonstrated by the reverse tendencies of upregulated nrfA and downregulated nirS gene transcription. This finding provides a new route for autotrophic nitrate removal and recycling from water, which has a broader implication on biogeochemical nitrogen and iron cycling.
Collapse
Affiliation(s)
- Yue Wu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Baocai Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, No. 35 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Yuxuan Wan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Yongheng Jiang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 35 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Xinlei Jiang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Chengmei Liao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| |
Collapse
|
20
|
Pimenta AI, Paquete CM, Morgado L, Edwards MJ, Clarke TA, Salgueiro CA, Pereira IAC, Duarte AG. Characterization of the inner membrane cytochrome ImcH from Geobacter reveals its importance for extracellular electron transfer and energy conservation. Protein Sci 2023; 32:e4796. [PMID: 37779214 PMCID: PMC10601379 DOI: 10.1002/pro.4796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/30/2023] [Accepted: 09/16/2023] [Indexed: 10/03/2023]
Abstract
Electroactive bacteria combine the oxidation of carbon substrates with an extracellular electron transfer (EET) process that discharges electrons to an electron acceptor outside the cell. This process involves electron transfer through consecutive redox proteins that efficiently connect the inner membrane to the cell exterior. In this study, we isolated and characterized the quinone-interacting membrane cytochrome c ImcH from Geobacter sulfurreducens, which is involved in the EET process to high redox potential acceptors. Spectroscopic and electrochemical studies show that ImcH hemes have low midpoint redox potentials, ranging from -150 to -358 mV, and connect the oxidation of the quinol-pool to EET, transferring electrons to the highly abundant periplasmic cytochrome PpcA with higher affinity than to its homologues. Despite the larger number of hemes and transmembrane helices, the ImcH structural model has similarities with the NapC/NirT/NrfH superfamily, namely the presence of a quinone-binding site on the P-side of the membrane. In addition, the first heme, likely involved on the quinol oxidation, has apparently an unusual His/Gln coordination. Our work suggests that ImcH is electroneutral and transfers electrons and protons to the same side of the membrane, contributing to the maintenance of a proton motive force and playing a central role in recycling the menaquinone pool.
Collapse
Affiliation(s)
- Andreia I. Pimenta
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Catarina M. Paquete
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Leonor Morgado
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and TechnologyUniversidade NOVA de LisboaCaparicaPortugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and TechnologyUniversidade NOVA de LisboaCaparicaPortugal
| | | | - Thomas A. Clarke
- Centre for Molecular and Structural Biochemistry, School of Biological SciencesUniversity of East AngliaNorwichUK
| | - Carlos A. Salgueiro
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and TechnologyUniversidade NOVA de LisboaCaparicaPortugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and TechnologyUniversidade NOVA de LisboaCaparicaPortugal
| | - Inês A. C. Pereira
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Américo G. Duarte
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| |
Collapse
|
21
|
Jaramillo-Rodríguez JB, Vega-Alvarado L, Rodríguez-Torres LM, Huerta-Miranda GA, Hernández-Eligio A, Juarez K. Global transcriptional analysis of Geobacter sulfurreducens gsu1771 mutant biofilm grown on two different support structures. PLoS One 2023; 18:e0293359. [PMID: 37878651 PMCID: PMC10599522 DOI: 10.1371/journal.pone.0293359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/28/2023] [Indexed: 10/27/2023] Open
Abstract
Electroactive biofilms formation by the metal-reducing bacterium Geobacter sulfurreducens is a step crucial for bioelectricity generation and bioremediation. The transcriptional regulator GSU1771 controls the expression of essential genes involved in electron transfer and biofilm formation in G. sulfurreducens, with GSU1771-deficient producing thicker and more electroactive biofilms. Here, RNA-seq analyses were conducted to compare the global gene expression patterns of wild-type and Δgsu1771 mutant biofilms grown on non-conductive (glass) and conductive (graphite electrode) materials. The Δgsu1771 biofilm grown on the glass surface exhibited 467 differentially expressed (DE) genes (167 upregulated and 300 downregulated) versus the wild-type biofilm. In contrast, the Δgsu1771 biofilm grown on the graphite electrode exhibited 119 DE genes (79 upregulated and 40 downregulated) versus the wild-type biofilm. Among these DE genes, 67 were also differentially expressed in the Δgsu1771 biofilm grown on glass (56 with the same regulation and 11 exhibiting counter-regulation). Among the upregulated genes in the Δgsu1771 biofilms, we identified potential target genes involved in exopolysaccharide synthesis (gsu1961-63, gsu1959, gsu1972-73, gsu1976-77). RT-qPCR analyses were then conducted to confirm the differential expression of a selection of genes of interest. DNA-protein binding assays demonstrated the direct binding of the GSU1771 regulator to the promoter region of pgcA, pulF, relA, and gsu3356. Furthermore, heme-staining and western blotting revealed an increase in c-type cytochromes including OmcS and OmcZ in Δgsu1771 biofilms. Collectively, our findings demonstrated that GSU1771 is a global regulator that controls extracellular electron transfer and exopolysaccharide synthesis in G. sulfurreducens, which is crucial for electroconductive biofilm development.
Collapse
Affiliation(s)
- Juan B. Jaramillo-Rodríguez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Leticia Vega-Alvarado
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
| | - Luis M. Rodríguez-Torres
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Guillermo A. Huerta-Miranda
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Alberto Hernández-Eligio
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- Investigador por México, Consejo Nacional de Ciencia y Tecnología, Ciudad de México, México
| | - Katy Juarez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
22
|
Jiang J, He P, Luo Y, Peng Z, Jiang Y, Hu Y, Qi L, Dong X, Dong Y, Shi L. The varied roles of pilA-N, omcE, omcS, omcT, and omcZ in extracellular electron transfer by Geobacter sulfurreducens. Front Microbiol 2023; 14:1251346. [PMID: 37881251 PMCID: PMC10597711 DOI: 10.3389/fmicb.2023.1251346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023] Open
Abstract
Geobacter sulfurreducens mediates extracellular electron transfer (EET) reactions with different substrates, such as solid-phase Fe(III)-containing minerals, anodes and the cells of Geobacter metallireducens. To compare their roles in EET, the pilA-N, omcE, omcS, omcT and omcZ genes of G. sulfurreducens were systematically deleted. All mutants showed impaired and varied ability to form biofilms on nonconductive surface. Deletion of omcE also impaired bacterial ability to reduce ferrihydrite, but its impacts on the ability for anode reduction and the co-culture of G. metallireducens-G. sulfurreducens were minimal. The mutant without omcS showed diminished ability to reduce ferrihydrite and to form the co-culture, but was able to regain its ability to reduce anodes. Deletion of omcT, omcZ or pilA-N alone impaired bacterial ability to reduce ferrihydrite and anodes and to form the co-culture. Deletion of all tested genes abolished bacterial ability to reduce ferrihydrite and anodes. Triple-deletion of all omcS, omcT and omcZ abolished the ability of G. sulfurreducens to co-culture with G. metallireducens. However, deletion of only omcZ or pilA-N or both omcS and omcT abolished the ability of G. sulfurreducens without hydrogenase gene hybL to co-culture with G. metallireducens, which show their indispensable roles in direct electron transfer from G. metallireducens to G. sulfurreducens. Thus, the roles of pilA-N, omcE, omcS, omcT and omcZ for G. sulfurreducens in EET vary substantially, which also suggest that possession of PilA-N and multiple cytochromes of different structures enables G. sulfurreducens to mediate EET reactions efficiently with substrates of different properties.
Collapse
Affiliation(s)
- Jie Jiang
- School of Environmental Studies, China University of Geosciences-Wuhan, Wuhan, China
| | - Pengchen He
- School of Environmental Studies, China University of Geosciences-Wuhan, Wuhan, China
| | - Ying Luo
- School of Environmental Studies, China University of Geosciences-Wuhan, Wuhan, China
| | - Zhaofeng Peng
- School of Environmental Studies, China University of Geosciences-Wuhan, Wuhan, China
| | - Yongguang Jiang
- School of Environmental Studies, China University of Geosciences-Wuhan, Wuhan, China
| | - Yidan Hu
- School of Environmental Studies, China University of Geosciences-Wuhan, Wuhan, China
| | - Lei Qi
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yiran Dong
- School of Environmental Studies, China University of Geosciences-Wuhan, Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences-Wuhan, Wuhan, China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China University of Geosciences-Wuhan, Wuhan, China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences-Wuhan, Wuhan, China
| | - Liang Shi
- School of Environmental Studies, China University of Geosciences-Wuhan, Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences-Wuhan, Wuhan, China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China University of Geosciences-Wuhan, Wuhan, China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences-Wuhan, Wuhan, China
| |
Collapse
|
23
|
Portela PC, Morgado L, Silva MA, Denkhaus L, Einsle O, Salgueiro CA. Exploring oxidative stress pathways in Geobacter sulfurreducens: the redox network between MacA peroxidase and triheme periplasmic cytochromes. Front Microbiol 2023; 14:1253114. [PMID: 37860142 PMCID: PMC10582990 DOI: 10.3389/fmicb.2023.1253114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023] Open
Abstract
The recent reclassification of the strict anaerobe Geobacter sulfurreducens bacterium as aerotolerant brought attention for oxidative stress protection pathways. Although the electron transfer pathways for oxygen detoxification are not well established, evidence was obtained for the formation of a redox complex between the periplasmic triheme cytochrome PpcA and the diheme cytochrome peroxidase MacA. In the latter, the reduction of the high-potential heme triggers a conformational change that displaces the axial histidine of the low-potential heme with peroxidase activity. More recently, a possible involvement of the triheme periplasmic cytochrome family (PpcA-E) in the protection from oxidative stress in G. sulfurreducens was suggested. To evaluate this hypothesis, we investigated the electron transfer reaction and the biomolecular interaction between each PpcA-E cytochrome and MacA. Using a newly developed method that relies on the different NMR spectral signatures of the heme proteins, we directly monitored the electron transfer reaction from reduced PpcA-E cytochromes to oxidized MacA. The results obtained showed a complete electron transfer from the cytochromes to the high-potential heme of MacA. This highlights PpcA-E cytochromes' efficient role in providing the necessary reducing power to mitigate oxidative stress situations, hence contributing to a better knowledge of oxidative stress protection pathways in G. sulfurreducens.
Collapse
Affiliation(s)
- Pilar C. Portela
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Leonor Morgado
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Marta A. Silva
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Lukas Denkhaus
- Institut für Biochemie, Albert-Ludwigs-Universität, Freiburg, Germany
| | - Oliver Einsle
- Institut für Biochemie, Albert-Ludwigs-Universität, Freiburg, Germany
| | - Carlos A. Salgueiro
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
24
|
Fernandes TM, Silva MA, Morgado L, Salgueiro CA. Hemes on a string: insights on the functional mechanisms of PgcA from Geobacter sulfurreducens. J Biol Chem 2023; 299:105167. [PMID: 37595873 PMCID: PMC10570954 DOI: 10.1016/j.jbc.2023.105167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023] Open
Abstract
Microbial extracellular reduction of insoluble compounds requires soluble electron shuttles that diffuse in the environment, freely diffusing cytochromes, or direct contact with cellular conductive appendages that release or harvest electrons to assure a continuous balance between cellular requirements and environmental conditions. In this work, we produced and characterized the three cytochrome domains of PgcA, an extracellular triheme cytochrome that contributes to Fe(III) and Mn(IV) oxides reduction in Geobacter sulfurreducens. The three monoheme domains are structurally homologous, but their heme groups show variable axial coordination and reduction potential values. Electron transfer experiments monitored by NMR and visible spectroscopy show the variable extent to which the domains promiscuously exchange electrons while reducing different electron acceptors. The results suggest that PgcA is part of a new class of cytochromes - microbial heme-tethered redox strings - that use low-complexity protein stretches to bind metals and promote intra- and intermolecular electron transfer events through its cytochrome domains.
Collapse
Affiliation(s)
- Tomás M Fernandes
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Marta A Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Leonor Morgado
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal.
| | - Carlos A Salgueiro
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal.
| |
Collapse
|
25
|
Yu S, Zhang X, Yuan S, Jiang S, Zhang Q, Chen J, Yu H. Electron Transfer Mechanism at the Interface of Multi-Heme Cytochromes and Metal Oxide. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302670. [PMID: 37587775 PMCID: PMC10582406 DOI: 10.1002/advs.202302670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Indexed: 08/18/2023]
Abstract
Electroactive microbial cells have evolved unique extracellular electron transfer to conduct the reactions via redox outer-membrane (OM) proteins. However, the electron transfer mechanism at the interface of OM proteins and nanomaterial remains unclear. In this study, the mechanism for the electron transfer at biological/inorganic interface is investigated by integrating molecular modeling with electrochemical and spectroscopic measurements. For this purpose, a model system composed of OmcA, a typical OM protein, and the hexagonal tungsten trioxide (h-WO3 ) with good biocompatibility is selected. The interfacial electron transfer is dependent mainly on the special molecular configuration of OmcA and the microenvironment of the solvent exposed active center. Also, the apparent electron transfer rate can be tuned by site-directed mutagenesis at the axial ligand of the active center. Furthermore, the equilibrium state of the OmcA/h-WO3 systems suggests that their attachment is attributed to the limited number of residues. The electrochemical analysis of OmcA and its variants reveals that the wild type exhibits the fastest electron transfer rate, and the transient absorption spectroscopy further shows that the axial histidine plays an important role in the interfacial electron transfer process. This study provides a useful approach to promote the site-directed mutagenesis and nanomaterial design for bioelectrocatalytic applications.
Collapse
Affiliation(s)
- Sheng‐Song Yu
- Department of Environmental Science and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Xin‐Yu Zhang
- Department of Environmental Science and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Shi‐Jie Yuan
- State Key Laboratory of Pollution Control and Resource ReuseCollege of Environmental Science and EngineeringTongji UniversityShanghai200092China
| | - Shen‐Long Jiang
- Department of Chemical PhysicsUniversity of Science and Technology of ChinaHefei230026China
| | - Qun Zhang
- Department of Chemical PhysicsUniversity of Science and Technology of ChinaHefei230026China
| | - Jie‐Jie Chen
- Department of Environmental Science and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Han‐Qing Yu
- Department of Environmental Science and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| |
Collapse
|
26
|
Zhang X, Joyce GH, Leu AO, Zhao J, Rabiee H, Virdis B, Tyson GW, Yuan Z, McIlroy SJ, Hu S. Multi-heme cytochrome-mediated extracellular electron transfer by the anaerobic methanotroph 'Candidatus Methanoperedens nitroreducens'. Nat Commun 2023; 14:6118. [PMID: 37777538 PMCID: PMC10542353 DOI: 10.1038/s41467-023-41847-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023] Open
Abstract
Anaerobic methanotrophic archaea (ANME) carry out anaerobic oxidation of methane, thus playing a crucial role in the methane cycle. Previous genomic evidence indicates that multi-heme c-type cytochromes (MHCs) may facilitate the extracellular electron transfer (EET) from ANME to different electron sinks. Here, we provide experimental evidence supporting cytochrome-mediated EET for the reduction of metals and electrodes by 'Candidatus Methanoperedens nitroreducens', an ANME acclimated to nitrate reduction. Ferrous iron-targeted fluorescent assays, metatranscriptomics, and single-cell imaging suggest that 'Ca. M. nitroreducens' uses surface-localized redox-active cytochromes for metal reduction. Electrochemical and Raman spectroscopic analyses also support the involvement of c-type cytochrome-mediated EET for electrode reduction. Furthermore, several genes encoding menaquinone cytochrome type-c oxidoreductases and extracellular MHCs are differentially expressed when different electron acceptors are used.
Collapse
Affiliation(s)
- Xueqin Zhang
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, University of Queensland, Brisbane, Australia
| | - Georgina H Joyce
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Australia
| | - Andy O Leu
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Australia
| | - Jing Zhao
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, University of Queensland, Brisbane, Australia
- Ecological Engineering of Mine Wastes, Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Hesamoddin Rabiee
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, University of Queensland, Brisbane, Australia
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, Australia
- Centre for Future Materials, University of Southern Queensland, Springfield, QLD, Australia
| | - Bernardino Virdis
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, University of Queensland, Brisbane, Australia
| | - Gene W Tyson
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Australia
| | - Zhiguo Yuan
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, University of Queensland, Brisbane, Australia
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Simon J McIlroy
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Australia
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, University of Queensland, Brisbane, Australia.
| |
Collapse
|
27
|
Guberman-Pfeffer MJ. Structural Determinants of Redox Conduction Favor Robustness over Tunability in Microbial Cytochrome Nanowires. J Phys Chem B 2023; 127:7148-7161. [PMID: 37552847 DOI: 10.1021/acs.jpcb.3c02912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Structural determinants of a 103-fold variation in electrical conductivity for helical homopolymers of tetra-, hexa-, and octa-heme cytochromes (named Omc- E, S, and Z, respectively) from Geobacter sulfurreducens are investigated with the Pathways model for electron tunneling, classical molecular dynamics, and hybrid quantum/classical molecular mechanics. Thermally averaged electronic couplings for through-space heme-to-heme electron transfer in the "nanowires" computed with density functional theory are ≤0.015 eV. Pathways analyses also indicate that couplings match within a factor of 5 for all "nanowires", but some alternative tunneling routes are found involving covalent protein backbone bonds (Omc- S and Z) or propionic acid-ligating His H-bonds on adjacent hemes (OmcZ). Reorganization energies computed from electrostatic vertical energy gaps or a version of the Marcus continuum expression parameterized on the total (donor + acceptor) solvent-accessible surface area typically agree within 20% and fall within the range 0.48-0.98 eV. Reaction free energies in all three "nanowires" are ≤|0.28| eV, even though Coulombic interactions primarily tune the site redox energies by 0.7-1.2 eV. Given the conserved energetic parameters, redox conductivity differs by < 103-fold among the cytochrome "nanowires". Redox currents do not exceed 3.0 × 10-3 pA at a physiologically relevant 0.1 V bias, with the slowest electron transfers being on a (μs) timescale much faster than typical (ms) enzymatic turnovers. Thus, the "nanowires" are proposed to be functionally robust to variations in structure that provide a habitat-customized protein interface. The 30 pA to 30 nA variation in conductivity previously reported from atomic force microscopy experiments is not intrinsic to the structures and/or does not result from the physiologically relevant redox conduction mechanism.
Collapse
Affiliation(s)
- Matthew J Guberman-Pfeffer
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, Connecticut 06510, United States
- Microbial Sciences Institute, Yale University, 840 West Campus Drive, West Haven, Connecticut 06516, United States
| |
Collapse
|
28
|
Raya D, Peta V, Bomgni A, Du Do T, Kalimuthu J, Salem DR, Gadhamshetty V, Gnimpieba EZ, Dhiman SS. Classification of bacterial nanowire proteins using Machine Learning and Feature Engineering model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539336. [PMID: 37205598 PMCID: PMC10187271 DOI: 10.1101/2023.05.03.539336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nanowires (NW) have been extensively studied for Shewanella spp. and Geobacter spp. and are mostly produced by Type IV pili or multiheme c-type cytochrome. Electron transfer via NW is the most studied mechanism in microbially induced corrosion, with recent interest in application in bioelectronics and biosensor. In this study, a machine learning (ML) based tool was developed to classify NW proteins. A manually curated 999 protein collection was developed as an NW protein dataset. Gene ontology analysis of the dataset revealed microbial NW is part of membranal proteins with metal ion binding motifs and plays a central role in electron transfer activity. Random Forest (RF), support vector machine (SVM), and extreme gradient boost (XGBoost) models were implemented in the prediction model and were observed to identify target proteins based on functional, structural, and physicochemical properties with 89.33%, 95.6%, and 99.99% accuracy. Dipetide amino acid composition, transition, and distribution protein features of NW are key important features aiding in the model's high performance.
Collapse
|
29
|
You Z, Li J, Wang Y, Wu D, Li F, Song H. Advances in mechanisms and engineering of electroactive biofilms. Biotechnol Adv 2023; 66:108170. [PMID: 37148984 DOI: 10.1016/j.biotechadv.2023.108170] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/22/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Electroactive biofilms (EABs) are electroactive microorganisms (EAMs) encased in conductive polymers that are secreted by EAMs and formed by the accumulation and cross-linking of extracellular polysaccharides, proteins, nucleic acids, lipids, and other components. EABs are present in the form of multicellular aggregates and play a crucial role in bioelectrochemical systems (BESs) for diverse applications, including biosensors, microbial fuel cells for renewable bioelectricity production and remediation of wastewaters, and microbial electrosynthesis of valuable chemicals. However, naturally occurred EABs are severely limited owing to their low electrical conductivity that seriously restrict the electron transfer efficiency and practical applications. In the recent decade, synthetic biology strategies have been adopted to elucidate the regulatory mechanisms of EABs, and to enhance the formation and electrical conductivity of EABs. Based on the formation of EABs and extracellular electron transfer (EET) mechanisms, the synthetic biology-based engineering strategies of EABs are summarized and reviewed as follows: (i) Engineering the structural components of EABs, including strengthening the synthesis and secretion of structural elements such as polysaccharides, eDNA, and structural proteins, to improve the formation of biofilms; (ii) Enhancing the electron transfer efficiency of EAMs, including optimizing the distribution of c-type cytochromes and conducting nanowire assembly to promote contact-based EET, and enhancing electron shuttles' biosynthesis and secretion to promote shuttle-mediated EET; (iii) Incorporating intracellular signaling molecules in EAMs, including quorum sensing systems, secondary messenger systems, and global regulatory systems, to increase the electron transfer flux in EABs. This review lays a foundation for the design and construction of EABs for diverse BES applications.
Collapse
Affiliation(s)
- Zixuan You
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jianxun Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yuxuan Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Deguang Wu
- Department of Brewing Engineering, Moutai Institute, Luban Ave, Renhuai 564507, Guizhou, PR China
| | - Feng Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Hao Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|