1
|
Liu R, Wei G, Yang Y, Wang J, Zhao S, Zhang B, Hao X, Liu K, Shao Z. Discovery of potentially degrading microflora of different types of plastics based on long-term in-situ incubation in the deep sea. ENVIRONMENTAL RESEARCH 2025; 268:120812. [PMID: 39798661 DOI: 10.1016/j.envres.2025.120812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Plastic waste that ends up in the deep sea is becoming an increasing concern. However, it remains unclear whether there is any microflora capable of degrading plastic within this vast ecosystem. In this study, we investigated the bacterial communities associated with different types of plastic-polyamide-nylon 4, 6 (PA), polyethylene (PE), polyethylene terephthalate (PET), and polystyrene (PS)-after one year of in situ incubation in the pelagic deep sea of the Western Pacific. The study was conducted via a submarine mooring system, anchored at four sites with water depths ranging from 1,167 to 1,735 meters in an area of seamounts. High-throughput 16S rRNA gene sequencing revealed distinct bacterial diversities associated with specific plastic types and locations. The family Gordoniaceae was enriched by PS and PE plastics, while the abundance of Methyloligellaceae was significantly increased in the presence of PET. In the case of PA, Bdellovibrionaceae was enriched. Additionally, all plastic types promoted the relative abundance of Rhodobacteraceae and Sulfurimonadaceae families. Plastics appeared to stimulate bacterial communities involved in nitrate and sulfur cycling in seawater, suggesting that nitrogen and sulfur potentially play significant roles in plastic degradation in deep-sea environments. The dominant family Kordiimonadaceae was identified as a significantly different taxon in non-plastic seawater. Furthermore, the addition of plastics enhanced negative interactions among the bacterial communities in the surrounding seawater, with Proteobacteria and Bdellovibrionota selected for the core microbiome. Overall, this in situ deep-sea incubation revealed the response of indigenous microflora to man-made polymeric materials and highlighted the bacterial communities that may be involved in plastic degradation in oceanic areas.
Collapse
Affiliation(s)
- Renju Liu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China
| | - Guangshan Wei
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China
| | - Yongpeng Yang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China
| | - Jiannan Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China
| | - Sufang Zhao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China
| | - Benjuan Zhang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China
| | - Xun Hao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China
| | - Kaixin Liu
- School of Engineering, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China.
| |
Collapse
|
2
|
Li X, Cheng R, Zhang C, Shao Z. Genomic diversity of phages infecting the globally widespread genus Sulfurimonas. Commun Biol 2024; 7:1428. [PMID: 39488617 PMCID: PMC11531552 DOI: 10.1038/s42003-024-07079-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024] Open
Abstract
The widespread bacterial genus Sulfurimonas is metabolically versatile and occupies a key ecological niche in different habitats, but its interaction with bacteriophages remains unexplored. Here we systematically investigated the genetic diversity, taxonomy and interaction patterns of Sulfurimonas-associated phages based on sequenced microbial genomes and metagenomes. High-confidence phage contigs related to Sulfurimonas were retrieved from various ecosystems, clustered into 61 viral operational taxonomic units across three viral realms, including Duplodnaviria, Monodnaviria and Varidnaviria. Head-tail phages of Caudoviricetes were assigned to 19 genus-level viral clusters, the majority of which were distantly related to known viruses. Notably, diverse double jelly-roll viruses and inoviruses were also linked to Sulfurimonas, representing two commonly overlooked phage groups. Historical and current phage infections were revealed, implying viral impact on the evolution of host adaptive immunity. Additionally, phages carrying auxiliary metabolic genes might benefit hosts by compensating or augmenting sulfur metabolism. This study highlights the diversity and novelty of Sulfurimonas-associated phages with divergent tailless lineages, providing basis for further investigation of phage-host interactions within this genus.
Collapse
Affiliation(s)
- Xiaofeng Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products; Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources; State Key Laboratory Breeding Base of Marine Genetic Resource, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| | - Ruolin Cheng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources; State Key Laboratory Breeding Base of Marine Genetic Resource, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China.
| | - Chuanxi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products; Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources; State Key Laboratory Breeding Base of Marine Genetic Resource, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| |
Collapse
|
3
|
Wegener G, Molari M, Purser A, Diehl A, Albers E, Walter M, Mertens C, German CR, Boetius A. Hydrothermal vents supporting persistent plumes and microbial chemoautotrophy at Gakkel Ridge (Arctic Ocean). Front Microbiol 2024; 15:1473822. [PMID: 39421557 PMCID: PMC11484012 DOI: 10.3389/fmicb.2024.1473822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Hydrothermal vents emit hot fluids enriched in energy sources for microbial life. Here, we compare the ecological and biogeochemical effects of hydrothermal venting of two recently discovered volcanic seamounts, Polaris and Aurora of the Gakkel Ridge, in the ice-covered Central Arctic Ocean. At both sites, persistent hydrothermal plumes increased up to 800 m into the deep Arctic Ocean. In the two non-buoyant plumes, rates of microbial carbon fixation were strongly elevated compared to background values of 0.5-1 μmol m-3 day-1 in the Arctic deep water, which suggests increased chemoautotrophy on vent-derived energy sources. In the Polaris plume, free sulfide and up to 360 nM hydrogen enabled microorganisms to fix up to 46 μmol inorganic carbon (IC) m-3 day-1. This energy pulse resulted in a strong increase in the relative abundance of SUP05 by 25% and Candidatus Sulfurimonas pluma by 7% of all bacteria. At Aurora, microorganisms fixed up to 35 μmol IC m-3 day-1. Here, metal sulfides limited the bioavailability of reduced sulfur species, and the putative hydrogen oxidizer Ca. S. pluma constituted 35% and SUP05 10% of all bacteria. In accordance with this data, transcriptomic analysis showed a high enrichment of hydrogenase-coding transcripts in Aurora and an enrichment of transcripts coding for sulfur oxidation in Polaris. There was neither evidence for methane consumption nor a substantial increase in the abundance of putative methanotrophs or their transcripts in either plume. Together, our results demonstrate the dominance of hydrogen and sulfide as energy sources in Arctic hydrothermal vent plumes.
Collapse
Affiliation(s)
- Gunter Wegener
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Massimiliano Molari
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Autun Purser
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Alexander Diehl
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Department of Geosciences, University of Bremen, Bremen, Germany
| | - Elmar Albers
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Department of Geosciences, University of Bremen, Bremen, Germany
- Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Maren Walter
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Institute of Environmental Physics, University of Bremen, Bremen, Germany
| | - Christian Mertens
- Institute of Environmental Physics, University of Bremen, Bremen, Germany
| | | | - Antje Boetius
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| |
Collapse
|
4
|
Rubin-Blum M, Makovsky Y, Rahav E, Belkin N, Antler G, Sisma-Ventura G, Herut B. Active microbial communities facilitate carbon turnover in brine pools found in the deep Southeastern Mediterranean Sea. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106497. [PMID: 38631226 DOI: 10.1016/j.marenvres.2024.106497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024]
Abstract
Discharge of gas-rich brines fuels productive chemosynthetic ecosystems in the deep sea. In these salty, methanic and sulfidic brines, microbial communities adapt to specific niches along the physicochemical gradients. However, the molecular mechanisms that underpin these adaptations are not fully known. Using metagenomics, we investigated the dense (∼106 cell ml-1) microbial communities that occupy small deep-sea brine pools found in the Southeastern Mediterranean Sea (1150 m water depth, ∼22 °C, ∼60 PSU salinity, sulfide, methane, ammonia reaching millimolar levels, and oxygen usually depleted), reaching high productivity rates of 685 μg C L-1 d-1 ex-situ. We curated 266 metagenome-assembled genomes of bacteria and archaea from the several pools and adjacent sediment-water interface, highlighting the dominance of a single Sulfurimonas, which likely fuels its autotrophy using sulfide oxidation or inorganic sulfur disproportionation. This lineage may be dominant in its niche due to genome streamlining, limiting its metabolic repertoire, particularly by using a single variant of sulfide: quinone oxidoreductase. These primary producers co-exist with ANME-2c archaea that catalyze the anaerobic oxidation of methane. Other lineages can degrade the necromass aerobically (Halomonas and Alcanivorax), or anaerobically through fermentation of macromolecules (e.g., Caldatribacteriota, Bipolaricaulia, Chloroflexota, etc). These low-abundance organisms likely support the autotrophs, providing energy-rich H2, and vital organics such as vitamin B12.
Collapse
Affiliation(s)
- Maxim Rubin-Blum
- National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa, Israel; The Department of Marine Biology, Charney School of Marine Sciences, University of Haifa, Haifa, Israel.
| | - Yizhaq Makovsky
- The Dr. Moses Strauss Department of Marine Geosciences, Charney School of Marine Sciences , University of Haifa, Haifa, Israel; The Hatter Department of Marine Technologies, Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Eyal Rahav
- National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa, Israel
| | - Natalia Belkin
- National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa, Israel
| | - Gilad Antler
- Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel; The Interuniversity Institute for Marine Sciences, Eilat, Israel
| | - Guy Sisma-Ventura
- National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa, Israel
| | - Barak Herut
- National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa, Israel; The Dr. Moses Strauss Department of Marine Geosciences, Charney School of Marine Sciences , University of Haifa, Haifa, Israel
| |
Collapse
|
5
|
Lu T, Zheng Q, Huang A, Chen J, Liu X, Qin Y. Investigation of denitrification to Anammox phase transformation performance of Up-Flow anaerobic sludge blanket reactor. BIORESOURCE TECHNOLOGY 2024; 394:130190. [PMID: 38096996 DOI: 10.1016/j.biortech.2023.130190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
For investigating the microbial community and nitrogen removal performance during the transformation from heterotrophic denitrification (HtDn), mixotrophic denitrification (MtDn), and autotrophic denitrification (AtDn) to anaerobic ammonia oxidation (Anammox), an up-flow anaerobic sludge blanket reactor was constructed by changing the influent substrates and their ratios. The reactor got a total nitrogen removal efficiency (TNRE) of 98.0 % at the molar ratio of carbon, nitrogen, and sulfur sources was 5:8:4 in the MtDn process. In the last phase, the conversion of AtDn to Anammox was successful in 33 days, and a stable TNRE was 87.7 %. The dominant functional bacteria of the microbial communities were Thauera and unclassified_Comamonadaceae in the HtDn process; Thiobacillus, Thauera, Denitratisoma, and Pseudoxanthomonas in the MtDn process; Thiobacillus and Sulfurimonas in the AtDn process; and unclassified_Gemmatimonadaceae, unclassified_SBR1031, and Candidatus_Brocadia in the Anammox process.
Collapse
Affiliation(s)
- Tiansheng Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Qiaoyue Zheng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Angui Huang
- Guizhou Ruijinfang Brewing Co., LTD, Guiyang 551199, China
| | - Jiannv Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiangyin Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yujie Qin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.
| |
Collapse
|
6
|
Wang S, Jiang L, Zhao Z, Chen Z, Wang J, Alain K, Cui L, Zhong Y, Peng Y, Lai Q, Dong X, Shao Z. Chemolithoautotrophic diazotrophs dominate dark nitrogen fixation in mangrove sediments. THE ISME JOURNAL 2024; 18:wrae119. [PMID: 38916247 PMCID: PMC11474244 DOI: 10.1093/ismejo/wrae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/21/2024] [Accepted: 06/22/2024] [Indexed: 06/26/2024]
Abstract
Diazotrophic microorganisms regulate marine productivity by alleviating nitrogen limitation. So far chemolithoautotrophic bacteria are widely recognized as the principal diazotrophs in oligotrophic marine and terrestrial ecosystems. However, the contribution of chemolithoautotrophs to nitrogen fixation in organic-rich habitats remains unclear. Here, we utilized metagenomic and metatranscriptomic approaches integrated with cultivation assays to investigate the diversity, distribution, and activity of diazotrophs residing in Zhangzhou mangrove sediments. Physicochemical assays show that the studied mangrove sediments are typical carbon-rich, sulfur-rich, nitrogen-limited, and low-redox marine ecosystems. These sediments host a wide phylogenetic variety of nitrogenase genes, including groups I-III and VII-VIII. Unexpectedly diverse chemolithoautotrophic taxa including Campylobacteria, Gammaproteobacteria, Zetaproteobacteria, and Thermodesulfovibrionia are the predominant and active nitrogen fixers in the 0-18 cm sediment layer. In contrast, the 18-20 cm layer is dominated by active diazotrophs from the chemolithoautotrophic taxa Desulfobacterota and Halobacteriota. Further analysis of MAGs shows that the main chemolithoautotrophs can fix nitrogen by coupling the oxidation of hydrogen, reduced sulfur, and iron, with the reduction of oxygen, nitrate, and sulfur. Culture experiments further demonstrate that members of chemolithoautotrophic Campylobacteria have the nitrogen-fixing capacity driven by hydrogen and sulfur oxidation. Activity measurements confirm that the diazotrophs inhabiting mangrove sediments preferentially drain energy from diverse reduced inorganic compounds other than from organics. Overall, our results suggest that chemolithoautotrophs rather than heterotrophs are dominant nitrogen fixers in mangrove sediments. This study underscores the significance of chemolithoautotrophs in carbon-dominant ecosystems.
Collapse
Affiliation(s)
- Shasha Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Lijing Jiang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Zhuoming Zhao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Zhen Chen
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Jun Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Karine Alain
- Univ Brest, CNRS, Ifremer, EMR6002 BIOMEX, Biologie Interactions et adaptations des Organismes en Milieu EXtrême, IRP 1211 MicrobSea, F-29280 Plouzané, France
| | - Liang Cui
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Yangsheng Zhong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Yongyi Peng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, PR China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, PR China
| |
Collapse
|
7
|
Dede B, Reeves EP, Walter M, Bach W, Amann R, Meyerdierks A. Bacterial chemolithoautotrophy in ultramafic plumes along the Mid-Atlantic Ridge. THE ISME JOURNAL 2024; 18:wrae165. [PMID: 39163484 PMCID: PMC11411561 DOI: 10.1093/ismejo/wrae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/10/2024] [Accepted: 08/19/2024] [Indexed: 08/22/2024]
Abstract
Hydrothermal vent systems release reduced chemical compounds that act as an important energy source in the deep sea. Chemolithoautotrophic microbes inhabiting hydrothermal plumes oxidize these compounds, in particular, hydrogen and reduced sulfur, to obtain the energy required for CO2 fixation. Here, we analysed the planktonic communities of four hydrothermal systems located along the Mid-Atlantic Ridge: Irinovskoe, Semenov-2, Logatchev-1, and Ashadze-2, by combining long-read 16S rRNA gene analysis, fluorescence in situ hybridization, meta-omics, and thermodynamic calculations. Sulfurimonas and SUP05 dominated the microbial communities in these hydrothermal plumes. Investigation of Sulfurimonas and SUP05 MAGs, and their gene transcription in plumes indicated a niche partitioning driven by hydrogen and sulfur. In addition to sulfur and hydrogen oxidation, a novel SAR202 clade inhabiting the plume, here referred to as genus Carboxydicoccus, harbours the capability for CO oxidation and CO2 fixation via reverse TCA cycle. Both pathways were also highly transcribed in other hydrogen-rich plumes, including the Von Damm vent field. Carboxydicoccus profundi reached up to 4% relative abundance (1.0 x 103 cell ml- 1) in Irinovskoe non-buoyant plume and was also abundant in non-hydrothermally influenced deep-sea metagenomes (up to 5 RPKM). Therefore, CO, which is probably not sourced from the hydrothermal fluids (1.9-5.8 μM), but rather from biological activities within the rising fluid, may serve as a significant energy source in hydrothermal plumes. Taken together, this study sheds light on the chemolithoautotrophic potential of the bacterial community in Mid-Atlantic Ridge plumes.
Collapse
Affiliation(s)
- Bledina Dede
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Eoghan P Reeves
- Department of Earth Science and Centre for Deep Sea Research, University of Bergen, Bergen, Norway
| | - Maren Walter
- Institute of Environmental Physics, University of Bremen, Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Wolfgang Bach
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Geoscience Department, University of Bremen, Bremen, Germany
| | - Rudolf Amann
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | |
Collapse
|
8
|
Liu X, Zhao C, Xu T, Liu W, Chen Q, Li L, Tan Y, Wang X, Dong Y. Pyrite and sulfur-coupled autotrophic denitrification system for efficient nitrate and phosphate removal. BIORESOURCE TECHNOLOGY 2023; 384:129363. [PMID: 37336446 DOI: 10.1016/j.biortech.2023.129363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
The inefficiency of nitrogen removal in pyrite autotrophic denitrification (PAD) and the low efficiency of PO43--P removal in sulfur autotrophic denitrification (SAD) limit their potential for engineering applications. This study examined the use of pyrite and sulfur coupled autotrophic denitrification (PSAD) in batch and column experiments to remove NO3--N and PO43--P from sewage. The effluent concentration of NO3--N was 0.32 ± 0.11 mg/L, with an average Total nitrogen (TN) removal efficiency of 99.14%. The highest PO43--P removal efficiency was 100% on day 18. There was a significant correlation between pH and the efficiency of PO43--P removal. Thiobacillus, Thiomonas and Thermomonas were found to be dominant at the bacterial genus level in PSAD. Additionally, the abundance of Thermomonas in the PSAD was greater than that observed in the SAD reactor. This result indirectly indicates that the PSAD system has more advantages in reducing N2O.
Collapse
Affiliation(s)
- Xuzhen Liu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, Shandong 250014, PR China
| | - Changsheng Zhao
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, Shandong 250014, PR China.
| | - Tongtong Xu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, Shandong 250014, PR China
| | - Wei Liu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, Shandong 250014, PR China
| | - Qingfeng Chen
- College of Geography and Environment, Shandong Normal University, Jinan 250014, PR China
| | - Luzhen Li
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, Shandong 250014, PR China
| | - Yu Tan
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, Shandong 250014, PR China
| | - Xiaokai Wang
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, Shandong 250014, PR China
| | - Yanan Dong
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, Shandong 250014, PR China
| |
Collapse
|