1
|
Peiper AM, Morales Aparicio J, Hu Z, Phophi L, Helm EW, Rubinstein RJ, Phillips M, Williams CG, Subramanian S, Cross M, Iyer N, Nguyen Q, Newsome R, Jobin C, Langel SN, Bucardo F, Becker-Dreps S, Tan XD, Dawson PA, Karst SM. Metabolic immaturity and breastmilk bile acid metabolites are central determinants of heightened newborn vulnerability to norovirus diarrhea. Cell Host Microbe 2024; 32:1488-1501.e5. [PMID: 39214086 PMCID: PMC11392616 DOI: 10.1016/j.chom.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
The pathogenic outcome of enteric virus infections is governed by a complex interplay between the virus, intestinal microbiota, and host immune factors, with metabolites serving as a key mediator. Noroviruses bind bile acid metabolites, which are produced by the host and then modified by commensal bacteria. Paradoxically, bile acids can have both proviral and antiviral roles during norovirus infections. Working in an infant mouse model of norovirus infection, we demonstrate that microbiota and their bile acid metabolites protect from norovirus diarrhea, whereas host bile acids promote disease. We also find that maternal bile acid metabolism determines the susceptibility of newborn mice to norovirus diarrhea during breastfeeding. Finally, targeting maternal and neonatal bile acid metabolism can protect newborn mice from norovirus disease. In summary, neonatal metabolic immaturity and breastmilk bile acids are central determinants of heightened newborn vulnerability to norovirus disease.
Collapse
Affiliation(s)
- Amy M Peiper
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Joyce Morales Aparicio
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Zhengzheng Hu
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Lufuno Phophi
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Emily W Helm
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Rebecca J Rubinstein
- Department of Family Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew Phillips
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Caroline G Williams
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Saravanan Subramanian
- Pediatric Mucosal Inflammation and Regeneration Research Program, Center for Pediatric Translational Research and Education, Department of Pediatrics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Michael Cross
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Neha Iyer
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Quyen Nguyen
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Rachel Newsome
- Department of Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Christian Jobin
- Department of Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Stephanie N Langel
- Department of Pathology, Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Filemon Bucardo
- Department of Family Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sylvia Becker-Dreps
- Department of Family Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xiao-Di Tan
- Pediatric Mucosal Inflammation and Regeneration Research Program, Center for Pediatric Translational Research and Education, Department of Pediatrics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Research & Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| | - Paul A Dawson
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Emory School of Medicine, Atlanta, GA 30329, USA
| | - Stephanie M Karst
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
2
|
Lu Z, Liu Z, Wang C, Jiang R, Wang Z, Liao W, Wang W, Chen J, Zhu X, Zhao J, Liu Q, Yang Y, Gong P. CD300LF + microglia impede the neuroinflammation following traumatic brain injury by inhibiting STING pathway. CNS Neurosci Ther 2024; 30:e14824. [PMID: 38965803 PMCID: PMC11224125 DOI: 10.1111/cns.14824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024] Open
Abstract
INTRODUCTION The diversity in microglial phenotypes and functions following traumatic brain injury (TBI) is poorly characterized. The aim of this study was to explore precise targets for improving the prognosis of TBI patients from a microglial perspective. OBJECTIVES To assess whether the prognosis of TBI can be improved by modulating microglia function. RESULTS In CD300LF-deficient mice, we observed an increase in glial cell proliferation, more extensive neuronal loss, and worsened neurological function post-TBI. Transcriptomic comparisons between CD300LF-positive and CD300LF-negative microglia illuminated that the neuroprotective role of CD300LF is principally mediated by the inhibition of the STING signaling pathway. In addition, this protective effect can be augmented using the STING pathway inhibitor C-176. CONCLUSIONS Our research indicates that CD300LF reduces neuroinflammation and promotes neurological recovery after TBI, and that microglia are integral to the protective effects of CD300LF in this context. In summary, our findings highlight CD300LF as a critical molecular regulator modulating the adverse actions of microglia following acute brain injury and propose a novel therapeutic approach to enhance outcomes for patients with TBI.
Collapse
Affiliation(s)
- Zhichao Lu
- Department of NeurosurgeryAffiliated Hospital of Nantong University, Medical School of Nantong UniversityNantongJiangsuChina
- Neuro‐Microscopy and Minimally Invasive Translational Medicine Innovation CenterAffiliated Hospital of Nantong UniversityNantongJiangsuChina
- Jiangsu Medical Innovation Centre, Neurological Disease Diagnosis and Treatment CenterAffiliated Hospital of Nantong UniversityNantongJiangsuChina
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityNantongJiangsuChina
| | - Zongheng Liu
- Department of Neurosurgery, Zhejiang Provincial Hospital of Chinese MedicineThe First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Chenxing Wang
- Department of NeurosurgeryAffiliated Hospital of Nantong University, Medical School of Nantong UniversityNantongJiangsuChina
- Neuro‐Microscopy and Minimally Invasive Translational Medicine Innovation CenterAffiliated Hospital of Nantong UniversityNantongJiangsuChina
- Jiangsu Medical Innovation Centre, Neurological Disease Diagnosis and Treatment CenterAffiliated Hospital of Nantong UniversityNantongJiangsuChina
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityNantongJiangsuChina
| | - Rui Jiang
- Department of NeurosurgeryAffiliated Hospital of Nantong University, Medical School of Nantong UniversityNantongJiangsuChina
- Neuro‐Microscopy and Minimally Invasive Translational Medicine Innovation CenterAffiliated Hospital of Nantong UniversityNantongJiangsuChina
- Jiangsu Medical Innovation Centre, Neurological Disease Diagnosis and Treatment CenterAffiliated Hospital of Nantong UniversityNantongJiangsuChina
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityNantongJiangsuChina
| | - Ziheng Wang
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityNantongJiangsuChina
- Department of BiobankAffiliated Hospital of Nantong UniversityNantongJiangsuChina
| | - Weiquan Liao
- Department of NeurosurgeryAffiliated Hospital of Nantong University, Medical School of Nantong UniversityNantongJiangsuChina
- Neuro‐Microscopy and Minimally Invasive Translational Medicine Innovation CenterAffiliated Hospital of Nantong UniversityNantongJiangsuChina
- Jiangsu Medical Innovation Centre, Neurological Disease Diagnosis and Treatment CenterAffiliated Hospital of Nantong UniversityNantongJiangsuChina
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityNantongJiangsuChina
| | - Wei Wang
- Department of PathologyAffiliated Hospital of Nantong UniversityNantongJiangsuChina
| | - Jianfeng Chen
- Department of Orthopedics and TraumatologyWuxi TCM Hospital Affiliated to Nanjing University of Chinese MedicineWuxiJiangsuChina
| | - Xingjia Zhu
- Department of NeurosurgeryAffiliated Hospital of Nantong University, Medical School of Nantong UniversityNantongJiangsuChina
- Neuro‐Microscopy and Minimally Invasive Translational Medicine Innovation CenterAffiliated Hospital of Nantong UniversityNantongJiangsuChina
- Jiangsu Medical Innovation Centre, Neurological Disease Diagnosis and Treatment CenterAffiliated Hospital of Nantong UniversityNantongJiangsuChina
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityNantongJiangsuChina
| | - Jingwei Zhao
- Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, Research Institute of Biliary Tract DiseaseXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qianqian Liu
- Department of NeurosurgeryAffiliated Hospital of Nantong University, Medical School of Nantong UniversityNantongJiangsuChina
- Neuro‐Microscopy and Minimally Invasive Translational Medicine Innovation CenterAffiliated Hospital of Nantong UniversityNantongJiangsuChina
- Jiangsu Medical Innovation Centre, Neurological Disease Diagnosis and Treatment CenterAffiliated Hospital of Nantong UniversityNantongJiangsuChina
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityNantongJiangsuChina
| | - Yang Yang
- Department of NeurosurgeryWuxi Taihu HosptialWuxiChina
| | - Peipei Gong
- Department of NeurosurgeryAffiliated Hospital of Nantong University, Medical School of Nantong UniversityNantongJiangsuChina
- Neuro‐Microscopy and Minimally Invasive Translational Medicine Innovation CenterAffiliated Hospital of Nantong UniversityNantongJiangsuChina
- Jiangsu Medical Innovation Centre, Neurological Disease Diagnosis and Treatment CenterAffiliated Hospital of Nantong UniversityNantongJiangsuChina
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityNantongJiangsuChina
| |
Collapse
|
3
|
Zheng Y, Feng J, Ling M, Yu Y, Tao Y, Wang X. A comprehensive review on targeting cluster of differentiation: An attractive strategy for inhibiting viruses through host proteins. Int J Biol Macromol 2024; 269:132200. [PMID: 38723834 DOI: 10.1016/j.ijbiomac.2024.132200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/20/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Viral infections continue to pose a significant global public health threat. Targeting host proteins, such as cluster of differentiation (CD) macromolecules, may offer a promising alternative approach to developing antiviral treatments. CDs are cell-surface biological macromolecules mainly expressed on leukocytes that viruses can use to enter cells, thereby evading immune detection and promoting their replication. The manipulation of CDs by viruses may represent an effective and clever means of survival through the prolonged co-evolution of hosts and viruses. Targeting of CDs is anticipated to hinder the invasion of related viruses, modulate the body's immune system, and diminish the incidence of subsequent inflammation. They have become crucial for biomedical diagnosis, and some have been used as valuable tools for resisting viral infections. However, a summary of the structures and functions of CDs involved in viral infection is currently lacking. The development of drugs targeting these biological macromolecules is restricted both in terms of their availability and the number of compounds currently identified. This review provides a comprehensive analysis of the critical role of CD proteins in virus invasion and a list of relevant targeted antiviral agents, which will serve as a valuable reference for future research in this field.
Collapse
Affiliation(s)
- Youle Zheng
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jin Feng
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Min Ling
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yixin Yu
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yanfei Tao
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
4
|
Budicini MR, Rodriguez-Irizarry VJ, Maples RW, Pfeiffer JK. Murine norovirus mutants adapted to replicate in human cells reveal a post-entry restriction. J Virol 2024; 98:e0004724. [PMID: 38651898 PMCID: PMC11092334 DOI: 10.1128/jvi.00047-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/01/2024] [Indexed: 04/25/2024] Open
Abstract
RNA viruses lack proofreading in their RNA polymerases and therefore exist as genetically diverse populations. By exposing these diverse viral populations to selective pressures, viruses with mutations that confer fitness advantages can be enriched. To examine factors important for viral tropism and host restriction, we passaged murine norovirus (MNV) in a human cell line, HeLa cells, to select mutant viruses with increased fitness in non-murine cells. A major determinant of host range is expression of the MNV receptor CD300lf on mouse cells, but additional host factors may limit MNV replication in human cells. We found that viruses passaged six times in HeLa cells had enhanced replication compared with the parental virus. The passaged viruses had several mutations throughout the viral genome, which were primarily located in the viral non-structural coding regions. Although viral attachment was not altered for the passaged viruses, their replication was higher than the parental virus when the entry was bypassed, suggesting that the mutant viruses overcame a post-entry block in human cells. Three mutations in the viral NS1 protein were sufficient for enhanced post-entry replication in human cells. We found that the human cell-adapted MNV variants had reduced fitness in murine BV2 cells and infected mice, with reduced viral titers. These results suggest a fitness tradeoff, where increased fitness in a non-native host cell reduces fitness in a natural host environment. Overall, this work suggests that MNV tropism is determined by the presence of not only the viral receptor but also post-entry factors. IMPORTANCE Viruses infect specific species and cell types, which is dictated by the expression of host factors required for viral entry as well as downstream replication steps. Murine norovirus (MNV) infects mouse cells, but not human cells. However, human cells expressing the murine CD300lf receptor support MNV replication, suggesting that receptor expression is a major determinant of MNV tropism. To determine whether other factors influence MNV tropism, we selected for variants with enhanced replication in human cells. We identified mutations that enhance MNV replication in human cells and demonstrated that these mutations enhance infection at a post-entry replication step. Therefore, MNV infection of human cells is restricted at both entry and post-entry stages. These results shed new light on factors that influence viral tropism and host range.
Collapse
Affiliation(s)
- Melissa R. Budicini
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Robert W. Maples
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Julie K. Pfeiffer
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
5
|
Ishiyama R, Yoshida K, Oikawa K, Takai-Todaka R, Kato A, Kanamori K, Nakanishi A, Haga K, Katayama K. Production of infectious reporter murine norovirus by VP2 trans-complementation. J Virol 2024; 98:e0126123. [PMID: 38226813 PMCID: PMC10878090 DOI: 10.1128/jvi.01261-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024] Open
Abstract
Human norovirus (HuNoV) causes gastroenteritis, a disease with no effective therapy or vaccine, and does not grow well in culture. Murine norovirus (MNV) easily replicates in cell cultures and small animals and has often been used as a model to elucidate the structural and functional characteristics of HuNoV. An MNV plasmid-based reverse genetics system was developed to produce the modified recombinant virus. In this study, we attempted to construct the recombinant virus by integrating a foreign gene into MNV ORF3, which encodes the minor structural protein VP2. Deletion of VP2 expression abolished infectious particles from MNV cDNA clones, and supplying exogenous VP2 to the cells rescued the infectivity of cDNA clones without VP2 expression. In addition, the coding sequence of C-terminal ORF3 was essential for cDNA clones compensated with VP2 to produce infectious particles. Furthermore, the recombinant virus with exogenous reporter genes in place of the dispensable region of ORF3 was propagated when VP2 was constitutively supplied. Our findings indicate that foreign genes can be transduced into the norovirus ORF3 region when VP2 is supplied and that successive propagation of modified recombinant norovirus could lead to the development of norovirus-based vaccines or therapeutics.IMPORTANCEIn this study, we revealed that some of the coding regions of ORF3 could be replaced by a foreign gene and infectious virus could be produced when VP2 was supplied. Propagation of this virus depended on VP2 being supplied in trans, indicating that this virus could infect only once. Our findings help to elucidate the functions of VP2 in the virus lifecycle and to develop other caliciviral vectors for recombinant attenuated live enteric virus vaccines or therapeutics tools.
Collapse
Affiliation(s)
- Ryoka Ishiyama
- Department of Infection Control and Immunology, Laboratory of Viral Infection, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Kazuhiro Yoshida
- Department of Aging Intervention, National Center for Geriatrics and Gerontology, Laboratory of Gene Therapy, and Laboratory for Radiation Safety, Aichi, Japan
| | - Kazuki Oikawa
- Department of Infection Control and Immunology, Laboratory of Viral Infection, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Reiko Takai-Todaka
- Department of Infection Control and Immunology, Laboratory of Viral Infection, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Akiko Kato
- Department of Aging Intervention, National Center for Geriatrics and Gerontology, Laboratory of Gene Therapy, and Laboratory for Radiation Safety, Aichi, Japan
| | - Kumiko Kanamori
- Department of Aging Intervention, National Center for Geriatrics and Gerontology, Laboratory of Gene Therapy, and Laboratory for Radiation Safety, Aichi, Japan
| | - Akira Nakanishi
- Department of Aging Intervention, National Center for Geriatrics and Gerontology, Laboratory of Gene Therapy, and Laboratory for Radiation Safety, Aichi, Japan
- Department of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | - Kei Haga
- Department of Infection Control and Immunology, Laboratory of Viral Infection, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Kazuhiko Katayama
- Department of Infection Control and Immunology, Laboratory of Viral Infection, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| |
Collapse
|
6
|
Budicini MR, Rodriguez-Irizarry VJ, Maples RW, Pfeiffer JK. Murine norovirus mutants adapted to replicate in human cells reveal a post-entry restriction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575274. [PMID: 38260699 PMCID: PMC10802625 DOI: 10.1101/2024.01.11.575274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
RNA viruses lack proofreading in their RNA polymerases and therefore exist as genetically diverse populations. By exposing these diverse viral populations to selective pressures, viruses with mutations that confer fitness advantages can be enriched. To examine factors important for viral tropism and host restriction, we passaged murine norovirus (MNV) in a human cell line, HeLa cells, to select for mutant viruses with increased fitness in non-murine cells. A major determinant of host range is expression of the MNV receptor CD300lf on mouse cells, but additional host factors may limit MNV replication in human cells. We found that viruses passaged six times in HeLa cells had enhanced replication compared with the parental virus. The passaged viruses had several mutations throughout the viral genome, which were primarily located in the viral non-structural coding regions. While viral attachment was not altered for the passaged viruses, their replication was higher than the parental virus when entry was bypassed, suggesting the mutant viruses overcame a post-entry block in human cells. Three mutations in the viral NS1 protein were sufficient for enhanced post-entry replication in human cells. We found that the human cell-adapted MNV variants had reduced fitness in mouse BV2 cells. Although the mutant viruses had increased fitness in HeLa cells, they did not have increased fitness in mice. Overall, this work suggests that MNV tropism is not only determined by the presence of the viral receptor but also post-entry factors.
Collapse
Affiliation(s)
- Melissa R. Budicini
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Robert W. Maples
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Julie K. Pfeiffer
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
7
|
Ingle H, Makimaa H, Aggarwal S, Deng H, Foster L, Li Y, Kennedy EA, Peterson ST, Wilen CB, Lee S, Suthar MS, Baldridge MT. IFN-λ derived from nonsusceptible enterocytes acts on tuft cells to limit persistent norovirus. SCIENCE ADVANCES 2023; 9:eadi2562. [PMID: 37703370 PMCID: PMC10499323 DOI: 10.1126/sciadv.adi2562] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/10/2023] [Indexed: 09/15/2023]
Abstract
Norovirus is a leading cause of epidemic viral gastroenteritis, with no currently approved vaccines or antivirals. Murine norovirus (MNoV) is a well-characterized model of norovirus pathogenesis in vivo, and persistent strains exhibit lifelong intestinal infection. Interferon-λ (IFN-λ) is a potent antiviral that rapidly cures MNoV. We previously demonstrated that IFN-λ signaling in intestinal epithelial cells (IECs) controls persistent MNoV, and here demonstrate that IFN-λ acts on tuft cells, the exclusive site of MNoV persistence, to limit infection. While interrogating the source of IFN-λ to regulate MNoV, we confirmed that MDA5-MAVS signaling, required for IFN-λ induction to MNoV in vitro, controls persistent MNoV in vivo. We demonstrate that MAVS in IECs and not immune cells controls MNoV. MAVS in nonsusceptible enterocytes, but not in tuft cells, restricts MNoV, implicating noninfected cells as the IFN-λ source. Our findings indicate that host sensing of MNoV is distinct from cellular tropism, suggesting intercellular communication between IECs for antiviral signaling induction in uninfected bystander cells.
Collapse
Affiliation(s)
- Harshad Ingle
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Heyde Makimaa
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Somya Aggarwal
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hongju Deng
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lynne Foster
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yuhao Li
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Elizabeth A. Kennedy
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Stefan T. Peterson
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Craig B. Wilen
- Departments of Laboratory Medicine and Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Sanghyun Lee
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Mehul S. Suthar
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA, USA
| | - Megan T. Baldridge
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|