1
|
Chen X, Wang Y, Hou Q, Liao X, Zheng X, Dong W, Wang J, Zhang X. Significant correlations between heavy metals and prokaryotes in the Okinawa Trough hydrothermal sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135657. [PMID: 39213773 DOI: 10.1016/j.jhazmat.2024.135657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/11/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Prokaryotes play crucial roles in hydrothermal vent ecosystems, yet their interactions with heavy metals are not well understood. This study explored the diversity of prokaryotic communities and their correlations with heavy metals and nutrient elements in hydrothermal sediments from Okinawa Trough. A total of 117 bacterial genera in 26 bacterial phyla and 10 archaeal classes in 3 archaeal phyla were identified, including dominant prokaryotic phyla Planctomycetes, Acidobacteria, Verrucomicrobia, and Euryarchaeota. Furthermore, Fe (39.61 mg/g), Mn (2.84 mg/g) and Ba (0.36 mg/g) were found to be the most abundant heavy metals in the Okinawa hydrothermal sediments. Notably, the concentrations of Zn, Ba, Mn, total organic carbon, and total nitrogen significantly increased, whereas the total sulfur concentration distinctively decreased at sampling sites farther from hydrothermal vents. These changes corresponded with reductions in prokaryotic abundance and diversity. Most heavy metals, including Mn, Fe, Co, Cu and As, presented significant positive correlations with a number of prokaryotic genera in the nearby sediment samples. In contrast, both positive and negative correlations with prokaryotes were observed in remote sediment. The keystone taxa include Magnetospirillum, GOUTA19, Lysobacter, Kaistobacter, Treponema, and Clostridium were detected through prokaryote interspecies interactions. The functional predictions revealed significant genes involved in carbon fixation, nitrogen/sulfur cycling, heat shock protein, and metal resistance pathways. Structural equation modeling confirmed that metal and nutrient elements directly influence the composition of prokaryotic communities, which in turn affects the relative abundance of functional genes.
Collapse
Affiliation(s)
- Xinye Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yizhuo Wang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qili Hou
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xinyu Liao
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoning Zheng
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Wenyu Dong
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaoyong Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Hu W, Liu Y, Li X, Lei L, Lin H, Yuan Q, Mao D, Luo Y. Nanobody-based strategy for rapid and accurate pathogen detection: A case of COVID-19 testing. Biosens Bioelectron 2024; 263:116598. [PMID: 39094292 DOI: 10.1016/j.bios.2024.116598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/16/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Abstract
Antibody pairs-based immunoassay platforms served as essential and effective tools in the field of pathogen detection. However, the cumbersome preparation and limited detection sensitivity of antibody pairs challenge in establishment of a highly sensitive detection platform. In this study, using COVID-19 testing as a case, we utilized readily accessible nanobodies as detection antibodies and further proposed an accurate design concept with a more scientific and efficient screening strategy to obtain ultrasensitive antibody pairs. We employed nanobodies capable of binding different antigenic epitopes of the nucleocapsid (NP) or receptor-binding domain (RBD) antigens sandwich as substitutes for monoclonal antibodies (mAbs) sandwich in fast detection formats and utilized time-resolved fluorescence (TRF) microspheres as the signal probe. Consequently, we developed a multi-epitope nanobody sandwich-based fluorescence lateral flow immunoassay (FLFA) strip. Our results suggest that the NP antigen had a detection limit of 12.01pg/mL, while the RBD antigen had a limit of 6.51 pg/mL using our FLFA strip. Based on double mAb sandwiches, the values presented herein demonstrated 4 to 32-fold enhancements in sensitivity, and 32 to 256-fold enhancements compared to commercially available antigen lateral flow assay kits. Furthermore, we demonstrated the excellent characteristics of the proposed test strip, including its specificity, stability, accuracy, and repeatability, which underscores its the prospective utility. Indeed, these findings indicate that our established screening strategy along with the multi-epitope nanobody sandwich mode provides an optimized strategy in the field of pathogen detection.
Collapse
Affiliation(s)
- Wenjin Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| | - Yichen Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| | - Xi Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| | - Liusheng Lei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| | - Huai Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| | - Qingbin Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| | - Daqing Mao
- School of Medicine, Nankai University, Tianjin, 300350, China.
| | - Yi Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
3
|
Amran RH, Jamal MT, Bowrji S, Sayegh F, Santanumurti MB, Satheesh S. Mini review: antimicrobial compounds produced by bacteria associated with marine invertebrates. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01209-5. [PMID: 39446239 DOI: 10.1007/s12223-024-01209-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
The marine environment is considered one of the most important ecosystems with high biodiversity. Microorganisms in this environment are variable and coexist with other marine organisms. The microbes associated with other marine organisms produce compounds with biological activity that may help the host's defense against invading organisms. The symbiotic association of bacteria with marine invertebrates is of ecological and biotechnological importance. Biologically active metabolites isolated from bacteria associated with marine invertebrates are considered potential sources of natural antimicrobial molecules for treating infectious diseases. Many studies have been conducted to screen the antimicrobial activity of metabolites produced by bacteria associated with marine invertebrates. This work provides an overview of the advancements in antimicrobial compound research on bacteria associated with marine invertebrates.
Collapse
Affiliation(s)
- Ramzi H Amran
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, 21589, Jeddah, Saudi Arabia
- Department of Marine Biology and Fisheries, Faculty of Marine Science and Environments, Hodeidah University, P.O. Box 3114, Hodeidah, Yemen
- Marine Natural Products Research Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mamdoh T Jamal
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, 21589, Jeddah, Saudi Arabia
| | - Saba Bowrji
- Department of Marine Biology and Fisheries, Faculty of Marine Science and Environments, Hodeidah University, P.O. Box 3114, Hodeidah, Yemen
| | - Fotoon Sayegh
- Department of Biology, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Marine Natural Products Research Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Browijoyo Santanumurti
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, 21589, Jeddah, Saudi Arabia
- Department of Aquaculture, Faculty of Fisheries and Marine, Universitas Airlangga, 60115, Surabaya, Indonesia
| | - Sathianeson Satheesh
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, 21589, Jeddah, Saudi Arabia.
| |
Collapse
|
4
|
Meneses MJ, Beaulieu SE, Best AC, Dykman LN, Mills SW, Wu JN, Mullineaux LS. Vertical distributions of megafauna on inactive vent sulfide features correspond to their feeding modes. MARINE ENVIRONMENTAL RESEARCH 2024; 200:106649. [PMID: 39059122 DOI: 10.1016/j.marenvres.2024.106649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
The discovery of inactive hydrothermal vent sulfide features near 9°50'N on the East Pacific Rise provides an opportunity to investigate the distribution and feeding ecology of communities inhabiting this type of habitat. We quantify megafaunal distributions on two features, Lucky's Mound and Sentry Spire, to determine how taxonomic composition and feeding traits vary with vertical elevation. Fifty-one morphotypes, categorized by feeding mode, were identified from three levels of the features (spire, apron, and base) and the surrounding flat oceanic rise. About half of the morphotypes (26 of 51) were only observed at the sulfide features. Passive suspension feeders were more abundant on the spires, where horizontal particulate flux is expected to be elevated, than the base or rise. Deposit feeders tended to be more abundant on the base and rise, where deposition is expected to be enhanced, but were unexpectedly abundant higher up on Sentry Spire. Community differences between the two sulfide features suggest that other processes, such as feature-specific chemoautotrophic production, may also influence distributions.
Collapse
Affiliation(s)
- Michael J Meneses
- Woods Hole Oceanographic Institution, 266 Woods Hole Rd, Woods Hole, MA, 02540, USA
| | - Stace E Beaulieu
- Woods Hole Oceanographic Institution, 266 Woods Hole Rd, Woods Hole, MA, 02540, USA
| | - Ayinde C Best
- Woods Hole Oceanographic Institution, 266 Woods Hole Rd, Woods Hole, MA, 02540, USA; Wheaton College, 26 E Main St, Norton, MA, 02766, USA
| | - Lauren N Dykman
- Woods Hole Oceanographic Institution, 266 Woods Hole Rd, Woods Hole, MA, 02540, USA; University of Victoria, 3800 Finnerty Rd, Victoria, BC, V8P 5C2, Canada
| | - Susan W Mills
- Woods Hole Oceanographic Institution, 266 Woods Hole Rd, Woods Hole, MA, 02540, USA
| | - Jyun-Nai Wu
- Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Lauren S Mullineaux
- Woods Hole Oceanographic Institution, 266 Woods Hole Rd, Woods Hole, MA, 02540, USA.
| |
Collapse
|
5
|
Murray L, Fullerton H, Moyer CL. Microbial metabolic potential of hydrothermal vent chimneys along the submarine ring of fire. Front Microbiol 2024; 15:1399422. [PMID: 39165569 PMCID: PMC11333457 DOI: 10.3389/fmicb.2024.1399422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
Hydrothermal vents host a diverse community of microorganisms that utilize chemical gradients from the venting fluid for their metabolisms. The venting fluid can solidify to form chimney structures that these microbes adhere to and colonize. These chimney structures are found throughout many different locations in the world's oceans. In this study, comparative metagenomic analyses of microbial communities on five chimney structures from around the Pacific Ocean were elucidated focusing on the core taxa and genes that are characteristic of each of these hydrothermal vent chimneys. The differences among the taxa and genes found at each chimney due to parameters such as physical characteristics, chemistry, and activity of the vents were highlighted. DNA from the chimneys was sequenced, assembled into contigs, and annotated for gene function. Genes used for carbon, oxygen, sulfur, nitrogen, iron, and arsenic metabolisms were found at varying abundances at each of the chimneys, largely from either Gammaproteobacteria or Campylobacteria. Many taxa shared an overlap of these functional metabolic genes, indicating that functional redundancy is critical for life at these hydrothermal vents. A high relative abundance of oxygen metabolism genes coupled with a low abundance of carbon fixation genes could be used as a unique identifier for inactive chimneys. Genes used for DNA repair, chemotaxis, and transposases were found at high abundances at each of these hydrothermal chimneys allowing for enhanced adaptations to the ever-changing chemical and physical conditions encountered.
Collapse
Affiliation(s)
- Laura Murray
- Department of Biology, Western Washington University, Bellingham, WA, United States
| | - Heather Fullerton
- Department of Biology, College of Charleston, Charleston, SC, United States
| | - Craig L. Moyer
- Department of Biology, Western Washington University, Bellingham, WA, United States
| |
Collapse
|
6
|
Meyer NR, Morono Y, Dekas AE. Single-cell analysis reveals an active and heterotrophic microbiome in the Guaymas Basin deep subsurface with significant inorganic carbon fixation by heterotrophs. Appl Environ Microbiol 2024; 90:e0044624. [PMID: 38709099 PMCID: PMC11334695 DOI: 10.1128/aem.00446-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024] Open
Abstract
The marine subsurface is a long-term sink of atmospheric carbon dioxide with significant implications for climate on geologic timescales. Subsurface microbial cells can either enhance or reduce carbon sequestration in the subsurface, depending on their metabolic lifestyle. However, the activity of subsurface microbes is rarely measured. Here, we used nanoscale secondary ion mass spectrometry (nanoSIMS) to quantify anabolic activity in 3,203 individual cells from the thermally altered deep subsurface in the Guaymas Basin, Mexico (3-75 m below the seafloor, 0-14°C). We observed that a large majority of cells were active (83%-100%), although the rates of biomass generation were low, suggesting cellular maintenance rather than doubling. Mean single-cell activity decreased with increasing sediment depth and temperature and was most strongly correlated with porewater sulfate concentrations. Intracommunity heterogeneity in microbial activity decreased with increasing sediment depth and age. Using a dual-isotope labeling approach, we determined that all active cells analyzed were heterotrophic, deriving the majority of their cellular carbon from organic sources. However, we also detected inorganic carbon assimilation in these heterotrophic cells, likely via processes such as anaplerosis, and determined that inorganic carbon contributes at least 5% of the total biomass carbon in heterotrophs in this community. Our results demonstrate that the deep marine biosphere at Guaymas Basin is largely active and contributes to subsurface carbon cycling primarily by not only assimilating organic carbon but also fixing inorganic carbon. Heterotrophic assimilation of inorganic carbon may be a small yet significant and widespread underappreciated source of labile carbon in the global subsurface. IMPORTANCE The global subsurface is the largest reservoir of microbial life on the planet yet remains poorly characterized. The activity of life in this realm has implications for long-term elemental cycling, particularly of carbon, as well as how life survives in extreme environments. Here, we recovered cells from the deep subsurface of the Guaymas Basin and investigated the level and distribution of microbial activity, the physicochemical drivers of activity, and the relative significance of organic versus inorganic carbon to subsurface biomass. Using a sensitive single-cell assay, we found that the majority of cells are active, that activity is likely driven by the availability of energy, and that although heterotrophy is the dominant metabolism, both organic and inorganic carbon are used to generate biomass. Using a new approach, we quantified inorganic carbon assimilation by heterotrophs and highlighted the importance of this often-overlooked mode of carbon assimilation in the subsurface and beyond.
Collapse
Affiliation(s)
- Nicolette R. Meyer
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Yuki Morono
- Kochi Institute for Core Sample Research, Institute for Extra-cutting-edge Science and Technology Avantgarde Research (X-STAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi, Japan
| | - Anne E. Dekas
- Department of Earth System Science, Stanford University, Stanford, California, USA
| |
Collapse
|
7
|
Taglialegna A. Inactive vents, active producers. Nat Rev Microbiol 2024; 22:187. [PMID: 38355763 DOI: 10.1038/s41579-024-01022-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
|
8
|
McNichol J. Mineral-eating microorganisms at extinct hydrothermal vents. Nat Microbiol 2024; 9:589-590. [PMID: 38429423 DOI: 10.1038/s41564-024-01622-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Affiliation(s)
- Jesse McNichol
- Department of Biology, St Francis Xavier University, Antigonish, Nova Scotia, Canada.
| |
Collapse
|
9
|
Takamiya H, Kouduka M, Kato S, Suga H, Oura M, Yokoyama T, Suzuki M, Mori M, Kanai A, Suzuki Y. Genome-resolved metaproteogenomic and nanosolid characterization of an inactive vent chimney densely colonized by enigmatic DPANN archaea. THE ISME JOURNAL 2024; 18:wrae207. [PMID: 39499858 PMCID: PMC11537232 DOI: 10.1093/ismejo/wrae207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 11/07/2024]
Abstract
Recent successes in the cultivation of DPANN archaea with their hosts have demonstrated an episymbiotic lifestyle, whereas the lifestyle of DPANN archaea in natural habitats is largely unknown. A free-living lifestyle is speculated in oxygen-deprived fluids circulated through rock media, where apparent hosts of DPANN archaea are lacking. Alternatively, DPANN archaea may be detached from their hosts and/or rock surfaces. To understand the ecology of rock-hosted DPANN archaea, rocks rather than fluids should be directly characterized. Here, we investigated a deep-sea hydrothermal vent chimney without fluid venting where our previous study revealed the high proportion of Pacearchaeota, one of the widespread and enigmatic lineages of DPANN archaea. Using spectroscopic methods with submicron soft X-ray and infrared beams, the microbial habitat was specified to be silica-filled pores in the inner chimney wall comprising chalcopyrite. Metagenomic analysis of the inner wall revealed the lack of biosynthetic genes for nucleotides, amino acids, cofactors, and lipids in the Pacearchaeota genomes. Genome-resolved metaproteomic analysis clarified the co-occurrence of a novel thermophilic lineage actively fixing carbon and nitrogen and thermophilic archaea in the inner chimney wall. We infer that the shift in metabolically active microbial populations from the thermophiles to the mesophilic DPANN archaea occurs after the termination of fluid venting. The infilling of mineral pores by hydrothermal silica deposition might be a preferred environmental factor for the colonization of free-living Pacearchaeota with ultrasmall cells depending on metabolites synthesized by the co-occurring thermophiles during fluid venting.
Collapse
Affiliation(s)
- Hinako Takamiya
- Department of Earth and Planetary Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Mariko Kouduka
- Department of Earth and Planetary Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shingo Kato
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
- Submarine Resources Research Center, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15, Natsushima-cho, Yokosuka-city, Kanagawa 237-0061, Japan
| | - Hiroki Suga
- Spectroscopy Division, Japan Synchrotron Radiation Research Institute, Sayo-gun, Hyogo, Japan
- Graduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
| | - Masaki Oura
- Soft X-ray Spectroscopy Instrumentation Team, RIKEN SPring-8 Center, Sayo-gun, Hyogo, Japan
| | - Tadashi Yokoyama
- Graduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
| | - Michio Suzuki
- Department of Applied Biological Chemistry, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Masaru Mori
- Institute for Advanced Biosciences, Keio University, Nipponkoku, Daihoji, Tsuruoka, Yamagata, Japan
| | - Akio Kanai
- Institute for Advanced Biosciences, Keio University, Nipponkoku, Daihoji, Tsuruoka, Yamagata, Japan
| | - Yohey Suzuki
- Department of Earth and Planetary Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|