1
|
Nisa MU, Ishaq H, Crawford C. Electrochemical approaches for CO 2 point source, direct air, and seawater capture: identifying opportunities and synergies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-35890-x. [PMID: 39825062 DOI: 10.1007/s11356-025-35890-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 01/02/2025] [Indexed: 01/20/2025]
Abstract
The world is increasingly facing the direct effects of climate change triggering warnings of a crisis for the healthy existence of humankind. The dominant driver of the climate emergency is the historical and continued accumulation of atmospheric CO2 altering net radiative forcing on the planet. To address this global issue, understanding the core chemistry of CO2 manipulation in the atmosphere and proximally in the oceans is crucial, to offer a direct partial solution for emissions handling through negative emissions technologies. Many technologies have been proposed to develop a strategic and economic solution for carbon capture, storage, and utilization. In this paper, we review recent advances in technologies proposed for carbon capture and release via electrochemical process for point source/flue gas, direct air capture (DAC), and ocean/seawater capture. Electrochemical approaches to carbon capture are favorable in terms of reaction conditions, their ability to be incorporated into transformation processes, modularity, low relative carbon footprint, and compatibility with the availability of renewable electricity sources. We offer a critical comparative analysis of land- and ocean-based capture technologies to help guide future research and innovation.
Collapse
Affiliation(s)
- Mehar U Nisa
- Institute for Integrated Energy Systems at University of Victoria (IESVic), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada.
- Pacific Institute for Climate Solutions (PICS), British Columbia, Canada.
| | - Haris Ishaq
- Institute for Integrated Energy Systems at University of Victoria (IESVic), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
- Pacific Institute for Climate Solutions (PICS), British Columbia, Canada
| | - Curran Crawford
- Institute for Integrated Energy Systems at University of Victoria (IESVic), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
- Pacific Institute for Climate Solutions (PICS), British Columbia, Canada
| |
Collapse
|
2
|
Rahman T, Tahmid A, Arman SE, Ahmed T, Rakhy ZT, Das H, Rahman M, Azad AK, Wahadoszamen M, Habib A. Leveraging generative neural networks for accurate, diverse, and robust nanoparticle design. NANOSCALE ADVANCES 2025; 7:634-642. [PMID: 39659763 PMCID: PMC11627239 DOI: 10.1039/d4na00859f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
Tandem neural networks for inverse design can only make single predictions, which limits the diversity of predicted structures. Here, we use conditional variational autoencoder (cVAE) for the inverse design of core-shell nanoparticles. cVAE is a type of generative neural network that generates multiple valid solutions for the same input condition. We generate a dataset from Mie theory simulations, including ten commonly used materials in plasmonic core-shell nanoparticle synthesis. We compare the performance of cVAE with that of the tandem model. Our cVAE model shows higher accuracy with a lower mean absolute error (MAE) of 0.013 compared to 0.046 for the tandem model. Robustness analysis with 100 test spectra confirms the improved reliability and diversity of cVAE. To validate the effectiveness of the cVAE model, we synthesize Au@Ag core-shell nanoparticles. cVAE model offers high accuracy in predicting material composition and spectral features. Our study shows the potential of cVAEs as generative neural networks in producing accurate, diverse, and robust nanoparticle designs.
Collapse
Affiliation(s)
- Tanzim Rahman
- Department of Electrical and Electronic Engineering, University of Dhaka Dhaka-1000 Bangladesh
| | - Ahnaf Tahmid
- Department of Electrical and Electronic Engineering, University of Dhaka Dhaka-1000 Bangladesh
| | - Shifat E Arman
- Department of Robotics and Mechatronics Engineering, University of Dhaka Dhaka-1000 Bangladesh
| | - Tanvir Ahmed
- Department of Physics, University of Dhaka Dhaka-1000 Bangladesh
| | | | | | - Mahmudur Rahman
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology Gazipur-1707 Bangladesh
| | - Abul Kalam Azad
- Department of Electrical and Electronic Engineering, University of Dhaka Dhaka-1000 Bangladesh
| | - Md Wahadoszamen
- Department of Physics, University of Dhaka Dhaka-1000 Bangladesh
| | - Ahsan Habib
- Department of Electrical and Electronic Engineering, University of Dhaka Dhaka-1000 Bangladesh
| |
Collapse
|
3
|
Babakhani P, Dale AW, Woulds C, Moore OW, Xiao KQ, Curti L, Peacock CL. Preservation of organic carbon in marine sediments sustained by sorption and transformation processes. NATURE GEOSCIENCE 2025; 18:78-83. [PMID: 39822308 PMCID: PMC11732750 DOI: 10.1038/s41561-024-01606-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/29/2024] [Indexed: 01/19/2025]
Abstract
Controls on organic carbon preservation in marine sediments remain controversial but crucial for understanding past and future climate dynamics. Here we develop a conceptual-mathematical model to determine the key processes for the preservation of organic carbon. The model considers the major processes involved in the breakdown of organic carbon, including dissolved organic carbon hydrolysis, mixing, remineralization, mineral sorption and molecular transformation. This allows redefining of burial efficiency as preservation efficiency, which considers both particulate organic carbon and mineral-phase organic carbon. We show that preservation efficiency is almost three times higher than the conventionally defined burial efficiency and reconciles predictions with global field data. Kinetic sorption and transformation are the dominant controls on organic carbon preservation. We conclude that a synergistic effect between kinetic sorption and molecular transformation (geopolymerization) creates a mineral shuttle in which mineral-phase organic carbon is protected from remineralization in the surface sediment and released at depth. The results explain why transformed organic carbon persists over long timescales and increases with depth.
Collapse
Affiliation(s)
- Peyman Babakhani
- School of Earth and Environment, University of Leeds, Leeds, UK
- Department of Civil Engineering and Management, University of Manchester, Manchester, UK
| | - Andrew W. Dale
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Clare Woulds
- School of Geography, University of Leeds, Leeds, UK
| | - Oliver W. Moore
- School of Earth and Environment, University of Leeds, Leeds, UK
- Department of Environment and Geography, University of York, York, UK
| | - Ke-Qing Xiao
- School of Earth and Environment, University of Leeds, Leeds, UK
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Lisa Curti
- School of Earth and Environment, University of Leeds, Leeds, UK
| | | |
Collapse
|
4
|
Peng H, Su Y, Fan X, Wang S, Zhang Q, Chen Y. Nano-micro materials regulated biocatalytic metabolism for efficient environmental remediation: Fine engineering the mass and electron transfer in multicellular environments. WATER RESEARCH 2025; 268:122759. [PMID: 39531797 DOI: 10.1016/j.watres.2024.122759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
The escalating energy and environmental crises have spurred significant research interest into developing efficient biological remediation technologies for sustainable contaminant and resource conversion. Integrating engineered nano-micro materials (NMMs) with these biocatalytic processes offers a promising approach to improve the microbial performance for environmental remediation. Core to such material-enhanced hybrid biocatalysis systems (MHBSs) is the rational regulation of metabolic processes with the assistance of NMMs, where a fine engineered mass and electron transfer is beneficial for the improved biocatalytic activity. However, the specific mechanisms of those NMMs-enhanced microbial metabolisms are normally overlooked. Here, we review the recent progress in MHBSs, focusing primarily on the mass/electron transfer regulation strategies for an enhanced microbial behavior. Specifically, the NMMs-regulated mass and electron transfer in extracellular, interfacial, and intracellular environment are summarized, where the patterns of diverse microbiological response are discussed thoroughly. Notably, fine modifications of cell interfaces and intracellular compartments by NMMs could even endow the biohybrids with new metabolic functions beyond their natural capabilities. Further, we also emphasize the importance of matching the various metabolic demands of biosystems with the diverse properties of NMMs to achieve efficient environmental remediation through a coordinated regulation strategy. Finally, major challenges and opportunities for the future development and practical implementation of MHBSs for environment remediation practices are given, aiming to provide future system design guidelines for attaining desirable biological behaviors.
Collapse
Affiliation(s)
- Haojin Peng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yu Su
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xinyun Fan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Shuai Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Qingran Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
5
|
Patnaik R, Kumar Bagchi S, Rawat I, Bux F. Nanotechnology for the enhancement of algal cultivation and bioprocessing: Bridging gaps and unlocking potential. BIORESOURCE TECHNOLOGY 2024; 406:131025. [PMID: 38914236 DOI: 10.1016/j.biortech.2024.131025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 06/26/2024]
Abstract
Algae cultivation and bioprocessing are important due to algae's potential to effectively tackle crucial environmental challenges like climate change, soil and water pollution, energy security, and food scarcity. To realize these benefits high algal biomass production and valuable compound extraction are necessary. Nanotechnology can significantly improve algal cultivation through enhanced nutrient uptake, catalysis, CO2 utilization, real-time monitoring, cost-effective harvesting, etc. Synthetic nanoparticles are extensively used due to ease of manufacturing and targeted application. Nonetheless, there is a growing interest in transitioning to environmentally friendly options like natural and 'green' nanoparticles which are produced from renewable/biological sources by using eco-friendly solvents. Presently, natural, and 'green' nanoparticles are predominantly utilized in algal harvesting, with limited application in other areas, the reasons for which remain unclear. This review aims to critically evaluate research on nanotechnology-based algae system enhancement, identify research gaps and propose solutions using natural and 'green' nanoparticles for a sustainable future.
Collapse
Affiliation(s)
- Reeza Patnaik
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban 4000, South Africa
| | - Sourav Kumar Bagchi
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban 4000, South Africa
| | - Ismail Rawat
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban 4000, South Africa.
| |
Collapse
|
6
|
Fadeel B, Keller AA. Nanosafety: a Perspective on Nano-Bio Interactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310540. [PMID: 38597766 DOI: 10.1002/smll.202310540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/28/2024] [Indexed: 04/11/2024]
Abstract
Engineered nanomaterials offer numerous benefits to society ranging from environmental remediation to biomedical applications such as drug or vaccine delivery as well as clean and cost-effective energy production and storage, and the promise of a more sustainable way of life. However, as nanomaterials of increasing sophistication enter the market, close attention to potential adverse effects on human health and the environment is needed. Here a critical perspective on nanotoxicological research is provided; the authors argue that it is time to leverage the knowledge regarding the biological interactions of nanomaterials to achieve a more comprehensive understanding of the human health and environmental impacts of these materials. Moreover, it is posited that nanomaterials behave like biological entities and that they should be regulated as such.
Collapse
Affiliation(s)
- Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Arturo A Keller
- Bren School of Environmental Science & Management, University of California Santa Barbara, California, CA, 93106, USA
| |
Collapse
|
7
|
Taqieddin A, Sarrouf S, Ehsan MF, Buesseler K, Alshawabkeh AN. Electrochemical ocean iron fertilization and alkalinity enhancement approach toward CO 2 sequestration. NPJ OCEAN SUSTAINABILITY 2024; 3:28. [PMID: 39677975 PMCID: PMC11643492 DOI: 10.1038/s44183-024-00064-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 04/22/2024] [Indexed: 12/17/2024]
Abstract
Achieving net-zero emissions by 2050 requires the development of effective negative emission techniques, including ocean-based approaches for CO2 sequestration. However, the implementation and testing of marine CO2 removal (mCDR) techniques such as ocean iron fertilization (OIF) or ocean alkalinity enhancement (OAE) face significant challenges. Herein, a novel self-operating electrochemical technology is presented that not only combines OIF and OAE, but also recovers hydrogen gas (H2) from seawater, hence offering a promising solution for achieving quantifiable and transparent large-scale mCDR. Experimental results show that the electrochemical OIF (EOIF) can not only increase the concentration of ferrous iron (Fe+2) by 0-0.5 mg/L, but also significantly increases the seawater pH by 8% (i.e., a 25% decrease in the hydrogen ions concentration). The release of iron (Fe+2/Fe+3) can be regulated by adjusting the magnitude of the electric current and its form (e.g., pulsed current and polarity reversal), as well as by optimizing the electrode material and geometry. In certain ocean regions, enhanced iron concentrations stimulate the naturally occurring biological carbon pump (BCP), leading to increased phytoplankton growth, CO2 uptake, and subsequent export of carbon to the deep ocean. Simultaneously, the system increases seawater alkalinity and the buffer capacity, enhancing CO2 solubility and storage in the shallow ocean through the solubility pump. The obtained measurements demonstrate the scalability of EOIF and its ability to operate using solar energy at a lower cost. Overall, the proposed EOIF technology offers a practical, effective, and sustainable solution for addressing climate change on a large scale.
Collapse
Affiliation(s)
- Amir Taqieddin
- Department of Mechanical & Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | - Stephanie Sarrouf
- Department of Civil & Environmental Engineering, Northeastern University, Boston, MA 02115, USA
| | - Muhammad Fahad Ehsan
- Department of Civil & Environmental Engineering, Northeastern University, Boston, MA 02115, USA
| | - Ken Buesseler
- Woods Hole Oceanographic Institution, Marine Chemistry and Geochemistry Department, 266 Woods Hole Rd., Woods Hole, MA 02543, USA
| | - Akram N. Alshawabkeh
- Department of Civil & Environmental Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
8
|
Kumar D, Jaswal R, Park CH, Kim CS. Synergistic Trimetallic Nanocomposites as Visible-NIR-Sunlight-Driven Photocatalysts for Efficient Artificial Photosynthesis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42490-42500. [PMID: 37644704 DOI: 10.1021/acsami.3c06730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Here, we report monodispersed tricomponent MnNSs-SnO2@Pt and MnNFs-SnO2@Pt nanocomposites prepared by simultaneous SnO2 and Pt nanodot coating on Mn nanospheres (MnNSs) and Mn nanoflowers (MnNFs) for highly efficient CO2 photoreduction in visible-NIR-sunlight irradiation. MnNFs-SnO2@Pt showed higher efficiency with a quantum yield of 3.21% and a chemical yield of 5.45% for CO2 conversion under visible light irradiation for HCOOH formation with 94% selectivity. Similarly, MnNFs-SnO2@Pt displayed significant photocatalytic efficiency in NIR and sunlight irradiation for HCOOH yield. MnNFs-SnO2@Pt nanocomposites also showed robust morphology and sustained structural stability with shelf-life for at least 1 year and were utilized for at least 10 reaction cycles without losing significant photocatalytic efficiency. The high surface area (94.98 m2/g), efficient electron-hole separation, and Pt-nanodot support in MnNFs--SnO2@Pt contributed to a higher photocatalytic efficacy toward CO2 reduction.
Collapse
Affiliation(s)
- Dinesh Kumar
- Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 54896, South Korea
- Regional Leading Research Center for Nanocarbon-based Energy Materials and Application Technology, Jeonbuk National University, Jeonju 54896, South Korea
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, South Korea
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, South Korea
| | - Richa Jaswal
- Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 54896, South Korea
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, South Korea
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, South Korea
| | - Chan Hee Park
- Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 54896, South Korea
- Regional Leading Research Center for Nanocarbon-based Energy Materials and Application Technology, Jeonbuk National University, Jeonju 54896, South Korea
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, South Korea
| | - Cheol Sang Kim
- Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 54896, South Korea
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, South Korea
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, South Korea
| |
Collapse
|
9
|
Kottapurath Vijay A, Sharma VK, Meyerstein D. Overlooked Formation of Carbonate Radical Anions in the Oxidation of Iron(II) by Oxygen in the Presence of Bicarbonate. Angew Chem Int Ed Engl 2023; 62:e202309472. [PMID: 37439593 DOI: 10.1002/anie.202309472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/14/2023]
Abstract
Iron(II), (Fe(H2 O)6 2+ , (FeII ) participates in many reactions of natural and biological importance. It is critically important to understand the rates and the mechanism of FeII oxidation by dissolved molecular oxygen, O2 , under environmental conditions containing bicarbonate (HCO3 - ), which exists up to millimolar concentrations. In the absence and presence of HCO3 - , the formation of reactive oxygen species (O2 ⋅- , H2 O2 , and HO⋅) in FeII oxidation by O2 has been suggested. In contrast, our study demonstrates for the first time the rapid generation of carbonate radical anions (CO3 ⋅- ) in the oxidation of FeII by O2 in the presence of bicarbonate, HCO3 - . The rate of the formation of CO3 ⋅- may be expressed as d[CO3 ⋅- ]/dt=[FeII [[O2 ][HCO3 - ]2 . The formation of reactive species was investigated using 1 H nuclear magnetic resonance (1 H NMR) and gas chromatographic techniques. The study presented herein provides new insights into the reaction mechanism of FeII oxidation by O2 in the presence of bicarbonate and highlights the importance of considering the formation of CO3 ⋅- in the geochemical cycling of iron and carbon.
Collapse
Affiliation(s)
- Aswin Kottapurath Vijay
- Department of Chemical Sciences and The Radical Research Center, Ariel University, Ariel, 40700, Israel
- Chemistry Department, Ben-Gurion University, Beer-Sheva, 8410501, Israel
| | - Virender K Sharma
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX 77843, USA
| | - Dan Meyerstein
- Department of Chemical Sciences and The Radical Research Center, Ariel University, Ariel, 40700, Israel
- Chemistry Department, Ben-Gurion University, Beer-Sheva, 8410501, Israel
| |
Collapse
|
10
|
Varga G, Szenti I, Kiss J, Baán K, Halasi G, Óvári L, Szamosvölgyi Á, Mucsi R, Dodony E, Fogarassy Z, Pécz B, Olivi L, Sápi A, Kukovecz Á, Kónya Z. Decisive role of Cu/Co interfaces in copper cobaltite derivatives for high performance CO2 methanation catalyst. J CO2 UTIL 2023; 75:102582. [DOI: 10.1016/j.jcou.2023.102582] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
|
11
|
Wan J, Ye J, Zhang Y, Li Z, Wu Z, Dang C, Fu J. Interaction of silver nanoparticles with marine/lake snow in early formation stage. WATER RESEARCH 2023; 241:120160. [PMID: 37270947 DOI: 10.1016/j.watres.2023.120160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/16/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Marine and lake snows play an important ecological role in aquatic systems, and recent researches have also revealed their interactions with various pollutants. In this paper, the interaction of silver nanoparticles (Ag-NPs), a typical nano-pollutant, with marine/lake snow in the early formation stage was investigated by roller table experiments. Results indicated Ag-NPs promoted the accumulation of larger marine snow flocs while inhibited the development of lake snow. The promotion effect of AgNPs might be attributed to their oxidative dissolution into low-toxic silver chloride complexes in seawater, and the subsequent incorporation into marine snow, which would enhance the rigidity and strength of larger flocs and favor the development of biomass. Conversely, Ag-NPs mainly existed in the form of colloidal nanoparticles in lake water and their strong antimicrobial effect suppressed the growths of biomass and lake snow. In addition, Ag-NPs could also affect the microbial community of marine/lake snow, including impact on microbial diversity, and elevation on abundances of extracellular polymeric substances (EPS) synthesis genes and silver resistance genes. This work has deepened our understanding of the fate and ecological effect of Ag-NPs via the interaction with marine/lake snow in aquatic environments.
Collapse
Affiliation(s)
- Jing Wan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Juefei Ye
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yibo Zhang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhang Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhenbing Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chenyuan Dang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jie Fu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|