1
|
Smart M, Shvartsman SY, Nunley H. A model of replicating coupled oscillators generates naturally occurring cell networks. Development 2023; 150:dev202187. [PMID: 37823332 PMCID: PMC10690053 DOI: 10.1242/dev.202187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
When a founder cell and its progeny divide with incomplete cytokinesis, a network forms in which each intercellular bridge corresponds to a past mitotic event. Such networks are required for gamete production in many animals, and different species have evolved diverse final network topologies. Although mechanisms regulating network assembly have been identified in particular organisms, we lack a quantitative framework to understand network assembly and inter-species variability. Motivated by cell networks responsible for oocyte production in invertebrates, where the final topology is typically invariant within each species, we devised a mathematical model for generating cell networks, in which each node is an oscillator and, after a full cycle, the node produces a daughter to which it remains connected. These cell cycle oscillations are transient and coupled via diffusion over the edges of the network. By variation of three biologically motivated parameters, our model generates nearly all such networks currently reported across invertebrates. Furthermore, small parameter variations can rationalize cases of intra-species variation. Because cell networks outside of the ovary often form less deterministically, we propose model generalizations to account for sources of stochasticity.
Collapse
Affiliation(s)
- Matthew Smart
- Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA
| | - Stanislav Y. Shvartsman
- Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA
- Department of Molecular Biology and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Hayden Nunley
- Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA
| |
Collapse
|
2
|
Diegmiller R, Imran Alsous J, Li D, Yamashita YM, Shvartsman SY. Fusome topology and inheritance during insect gametogenesis. PLoS Comput Biol 2023; 19:e1010875. [PMID: 36821548 PMCID: PMC9949678 DOI: 10.1371/journal.pcbi.1010875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/16/2023] [Indexed: 02/24/2023] Open
Abstract
From insects to mammals, oocytes and sperm develop within germline cysts comprising cells connected by intercellular bridges (ICBs). In numerous insects, formation of the cyst is accompanied by growth of the fusome-a membranous organelle that permeates the cyst. Fusome composition and function are best understood in Drosophila melanogaster: during oogenesis, the fusome dictates cyst topology and size and facilitates oocyte selection, while during spermatogenesis, the fusome synchronizes the cyst's response to DNA damage. Despite its distinct and sex-specific roles during insect gametogenesis, elucidating fusome growth and inheritance in females and its structure and connectivity in males has remained challenging. Here, we take advantage of advances in three-dimensional (3D) confocal microscopy and computational image processing tools to reconstruct the topology, growth, and distribution of the fusome in both sexes. In females, our experimental findings inform a theoretical model for fusome assembly and inheritance and suggest that oocyte selection proceeds through an 'equivalency with a bias' mechanism. In males, we find that cell divisions can deviate from the maximally branched pattern observed in females, leading to greater topological variability. Our work consolidates existing disjointed experimental observations and contributes a readily generalizable computational approach for quantitative studies of gametogenesis within and across species.
Collapse
Affiliation(s)
- Rocky Diegmiller
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Jasmin Imran Alsous
- Flatiron Institute, Simons Foundation, New York, New York, United States of America
| | - Duojia Li
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Yukiko M. Yamashita
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Cambridge, Massachusetts, United States of America
| | - Stanislav Y. Shvartsman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Flatiron Institute, Simons Foundation, New York, New York, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
3
|
Li G, LeFebre R, Starman A, Chappell P, Mugler A, Sun B. Temporal signals drive the emergence of multicellular information networks. Proc Natl Acad Sci U S A 2022; 119:e2202204119. [PMID: 36067282 PMCID: PMC9477235 DOI: 10.1073/pnas.2202204119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
Coordinated responses to environmental stimuli are critical for multicellular organisms. To overcome the obstacles of cell-to-cell heterogeneity and noisy signaling dynamics within individual cells, cells must effectively exchange information with peers. However, the dynamics and mechanisms of collective information transfer driven by external signals are poorly understood. Here we investigate the calcium dynamics of neuronal cells that form confluent monolayers and respond to cyclic ATP stimuli in microfluidic devices. Using Granger inference to reconstruct the underlying causal relations between the cells, we find that the cells self-organize into spatially decentralized and temporally stationary networks to support information transfer via gap junction channels. The connectivity of the causal networks depends on the temporal profile of the external stimuli, where short periods, or long periods with small duty fractions, lead to reduced connectivity and fractured network topology. We build a theoretical model based on communicating excitable units that reproduces our observations. The model further predicts that connectivity of the causal network is maximal at an optimal communication strength, which is confirmed by the experiments. Together, our results show that information transfer between neuronal cells is externally regulated by the temporal profile of the stimuli and internally regulated by cell-cell communication.
Collapse
Affiliation(s)
- Guanyu Li
- Department of Physics, Oregon State University, Corvallis, OR 97331
| | - Ryan LeFebre
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260
| | - Alia Starman
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331
| | - Patrick Chappell
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331
| | - Andrew Mugler
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260
| | - Bo Sun
- Department of Physics, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
4
|
Stolzenbach V, Woods DC, Tilly JL. Non-neutral clonal selection and its potential role in mammalian germline stem cell dysfunction with advancing age. Front Cell Dev Biol 2022; 10:942652. [PMID: 36081905 PMCID: PMC9445274 DOI: 10.3389/fcell.2022.942652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
The concept of natural selection, or "survival of the fittest", refers to an evolutionary process in nature whereby traits emerge in individuals of a population through random gene alterations that enable those individuals to better adapt to changing environmental conditions. This genetic variance allows certain members of the population to gain an advantage over others in the same population to survive and reproduce in greater numbers under new environmental pressures, with the perpetuation of those advantageous traits in future progeny. Here we present that the behavior of adult stem cells in a tissue over time can, in many respects, be viewed in the same manner as evolution, with each stem cell clone being representative of an individual within a population. As stem cells divide or are subjected to cumulative oxidative damage over the lifespan of the organism, random genetic alterations are introduced into each clone that create variance in the population. These changes may occur in parallel to, or in response to, aging-associated changes in microenvironmental cues perceived by the stem cell population. While many of these alterations will be neutral or silent in terms of affecting cell function, a small fraction of these changes will enable certain clones to respond differently to shifts in microenvironmental conditions that arise with advancing age. In some cases, the same advantageous genetic changes that support survival and expansion of certain clones over others in the population (viz. non-neutral competition) could be detrimental to the downstream function of the differentiated stem cell descendants. In the context of the germline, such a situation would be devastating to successful propagation of the species across generations. However, even within a single generation, the “evolution” of stem cell lineages in the body over time can manifest into aging-related organ dysfunction and failure, as well as lead to chronic inflammation, hyperplasia, and cancer. Increased research efforts to evaluate stem cells within a population as individual entities will improve our understanding of how organisms age and how certain diseases develop, which in turn may open new opportunities for clinical detection and management of diverse pathologies.
Collapse
|
5
|
Singh J, Imran Alsous J, Garikipati K, Shvartsman SY. Mechanics of stabilized intercellular bridges. Biophys J 2022; 121:3162-3171. [PMID: 35778841 PMCID: PMC9463629 DOI: 10.1016/j.bpj.2022.06.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/04/2022] [Accepted: 06/27/2022] [Indexed: 11/02/2022] Open
Abstract
Numerous engineered and natural systems form through reinforcement and stabilization of a deformed configuration that was generated by a transient force. An important class of such structures arises during gametogenesis, when a dividing cell undergoes incomplete cytokinesis, giving rise to daughter cells that remain connected through a stabilized intercellular bridge (ICB). ICBs can form through arrest of the contractile cytokinetic furrow and its subsequent stabilization. Despite knowledge of the molecular components, the mechanics underlying robust ICB assembly and the interplay between ring contractility and stiffening are poorly understood. Here, we report joint experimental and theoretical work that explores the physics underlying robust ICB assembly. We develop a continuum mechanics model that reveals the minimal requirements for the formation of stable ICBs, and validate the model's equilibrium predictions through a tabletop experimental analog. With insight into the equilibrium states, we turn to the dynamics: we demonstrate that contractility and stiffening are in dynamic competition and that the time intervals of their action must overlap to ensure assembly of ICBs of biologically observed proportions. Our results highlight a mechanism in which deformation and remodeling are tightly coordinated-one that is applicable to several mechanics-based applications and is a common theme in biological systems spanning several length scales.
Collapse
Affiliation(s)
- Jaspreet Singh
- Center for Computational Biology, Flatiron Institute, New York, New York
| | | | - Krishna Garikipati
- Departments of Mechanical Engineering, and Mathematics, Michigan Institute for Computational Discovery & Engineering, University of Michigan, Ann Arbor, Michigan.
| | - Stanislav Y Shvartsman
- Department of Molecular Biology, Princeton University, Princeton, New Jersey; The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey.
| |
Collapse
|