1
|
Wismayer R, Matthews R, Whalley C, Kiwanuka J, Kakembo FE, Thorn S, Wabinga H, Odida M, Tomlinson I. Determination of the frequency and distribution of APC, PIK3CA, and SMAD4 gene mutations in Ugandan patients with colorectal cancer. BMC Cancer 2024; 24:1212. [PMID: 39350061 PMCID: PMC11440721 DOI: 10.1186/s12885-024-12967-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
Uganda is a developing low-income country with a low incidence of colorectal cancer, which is steadily increasing. Ugandan colorectal cancer (CRC) patients are young and present with advanced-stage disease. In our population, there is a scarcity of genetic oncological studies, therefore, we investigated the mutational status of CRC tissues, focusing in particular on the adenomatous polyposis coli (APC), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), and SMAD4 genes. Our objective was to determine whether there were any differences between other populations and Ugandan patients. We performed next-generation sequencing on the extracted DNA from formalin-fixed paraffin-embedded adenocarcinoma samples from 127 patients (mean (SD) age: 54.9 (16.0) years; male:female sex ratio: 1.2:1). Most tumours were located in the rectum 56 (44.1%), 14 (11%) tumours were high grade, and 96 (75.6%) were moderate grade CRC. Stage III + IV CRC tumours were found in 109 (85.8%) patients. We identified 48 variants of APC, including 9 novel APC mutations that were all pathogenic or deleterious. For PIK3CA, we found 19 variants, of which 9 were deleterious or pathogenic. Four PIK3CA novel pathogenic or deleterious variants were included (c.1397C > G, c.2399_2400insA, c.2621G > C, c.2632C > G). Three SMAD4 variants were reported, including two pathogenic or deleterious variants (c.1268G > T, c.556dupC) and one tolerant (c.563A > C) variant. One novel SMAD4 deleterious mutation (c.1268G > T) was reported. In conclusion, we provide clinicopathological information and new genetic variation data pertinent to CRC in Uganda.
Collapse
Affiliation(s)
- Richard Wismayer
- Department of Surgery, Masaka Regional Referral Hospital, Masaka, Uganda.
- Department of Surgery, Faculty of Health Sciences, Equator University of Science and Technology, Masaka, Uganda.
- Department of Surgery, Faculty of Health Sciences, Habib Medical School, IUIU University, Kampala, Uganda.
- Department of Pathology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda.
- Institute of Genetics and Cancer, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK.
| | - Rosie Matthews
- Institute of Genetics and Cancer, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Celina Whalley
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Julius Kiwanuka
- Department of Epidemiology and Biostatistics, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Fredrick Elishama Kakembo
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
- African Centre of Excellence in Bioinformatics and Data Intensive Sciences, Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Steve Thorn
- Institute of Genetics and Cancer, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
- Department of Oncology, University of Oxford, Oxford, UK
| | - Henry Wabinga
- Department of Pathology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Michael Odida
- Department of Pathology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
- Department of Pathology, Faculty of Medicine, Gulu University, Gulu, Uganda
| | - Ian Tomlinson
- Institute of Genetics and Cancer, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
- Department of Oncology, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Manirakiza F, Rutaganda E, Yamada H, Iwashita Y, Rugwizangoga B, Seminega B, Dusabejambo V, Ntakirutimana G, Ruhangaza D, Uwineza A, Shinmura K, Sugimura H. Clinicopathological Characteristics and Mutational Landscape of APC, HOXB13, and KRAS among Rwandan Patients with Colorectal Cancer. Curr Issues Mol Biol 2023; 45:4359-4374. [PMID: 37232746 PMCID: PMC10217012 DOI: 10.3390/cimb45050277] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/24/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Cancer research in Rwanda is estimated to be less than 1% of the total African cancer research output with limited research on colorectal cancer (CRC). Rwandan patients with CRC are young, with more females being affected than males, and most patients present with advanced disease. Considering the paucity of oncological genetic studies in this population, we investigated the mutational status of CRC tissues, focusing on the Adenomatous polyposis coli (APC), Kirsten rat sarcoma (KRAS), and Homeobox B13 (HOXB13) genes. Our aim was to determine whether there were any differences between Rwandan patients and other populations. To do so, we performed Sanger sequencing of the DNA extracted from formalin-fixed paraffin-embedded adenocarcinoma samples from 54 patients (mean age: 60 years). Most tumors were located in the rectum (83.3%), and 92.6% of the tumors were low-grade. Most patients (70.4%) reported never smoking, and 61.1% of patients had consumed alcohol. We identified 27 variants of APC, including 3 novel mutations (c.4310_4319delAAACACCTCC, c.4463_4470delinsA, and c.4506_4507delT). All three novel mutations are classified as deleterious by MutationTaster2021. We found four synonymous variants (c.330C>A, c.366C>T, c.513T>C, and c.735G>A) of HOXB13. For KRAS, we found six variants (Asp173, Gly13Asp, Gly12Ala, Gly12Asp, Gly12Val, and Gln61His), the last four of which are pathogenic. In conclusion, here we contribute new genetic variation data and provide clinicopathological information pertinent to CRC in Rwanda.
Collapse
Affiliation(s)
- Felix Manirakiza
- Department of Pathology, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 3286, Rwanda; (F.M.)
- Department of Pathology, University Teaching Hospital of Kigali, Kigali P.O. Box 655, Rwanda
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Shizuoka 431-3192, Japan; (H.Y.); (Y.I.)
| | - Eric Rutaganda
- Department of Internal Medicine, University Teaching Hospital of Kigali, Kigali P.O. Box 655, Rwanda
| | - Hidetaka Yamada
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Shizuoka 431-3192, Japan; (H.Y.); (Y.I.)
| | - Yuji Iwashita
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Shizuoka 431-3192, Japan; (H.Y.); (Y.I.)
| | - Belson Rugwizangoga
- Department of Pathology, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 3286, Rwanda; (F.M.)
- Department of Pathology, University Teaching Hospital of Kigali, Kigali P.O. Box 655, Rwanda
| | - Benoit Seminega
- Department of Internal Medicine, University Teaching Hospital of Kigali, Kigali P.O. Box 655, Rwanda
| | - Vincent Dusabejambo
- Department of Internal Medicine, University Teaching Hospital of Kigali, Kigali P.O. Box 655, Rwanda
| | - Gervais Ntakirutimana
- Department of Pathology, University Teaching Hospital of Kigali, Kigali P.O. Box 655, Rwanda
| | | | - Annette Uwineza
- Department of Pathology, University Teaching Hospital of Kigali, Kigali P.O. Box 655, Rwanda
- Department of Biochemistry, Molecular Biology and Genetics, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 3286, Rwanda
| | - Kazuya Shinmura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Shizuoka 431-3192, Japan; (H.Y.); (Y.I.)
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Shizuoka 431-3192, Japan; (H.Y.); (Y.I.)
- Sasaki Institute Sasaki Foundation, 2-2 Kanda Surugadai, Chiyoda-Ku, Tokyo 101-0062, Japan
| |
Collapse
|
3
|
Ibe C, Otu AA, Mnyambwa NP. Advancing disease genomics beyond COVID-19 and reducing health disparities: what does the future hold for Africa? Brief Funct Genomics 2022; 22:241-249. [DOI: 10.1093/bfgp/elac040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/03/2022] [Accepted: 10/14/2022] [Indexed: 11/27/2022] Open
Abstract
Abstract
The COVID-19 pandemic has ushered in high-throughput sequencing technology as an essential public health tool. Scaling up and operationalizing genomics in Africa is crucial as enhanced capacity for genome sequencing could address key health problems relevant to African populations. High-quality genomics research can be leveraged to improve diagnosis, understand the aetiology of unexplained illnesses, improve surveillance of infectious diseases and inform efficient control and therapeutic methods of known, rare and emerging infectious diseases. Achieving these within Africa requires strong commitment from stakeholders. A roadmap is needed to guide training of scientists, infrastructural development, research funding, international collaboration as well as promote public–private partnerships. Although the COVID-19 pandemic has significantly boosted genomics capacity in Africa, the continent still lags other regions. Here, we highlighted key initiatives in genomics research and efforts to address health challenges facing the diverse and fast-growing populations on the continent. We explore the scalability of genomic tools and techniques to tackle a broader range of infectious diseases in Africa, a continent that desperately requires a boost from genomic science.
Collapse
Affiliation(s)
- Chibuike Ibe
- Abia State University Department of Microbiology, Faculty of Biological Sciences, , Uturu, Nigeria
| | | | - Nicholaus P Mnyambwa
- National Institute for Medical Research , Muhimbili Research Centre, Dar es Salaam , Tanzania
- Alliance for Africa Health and Research (A4A), Dar es Salaam , Tanzania
| |
Collapse
|
4
|
Nankabirwa JI, Rek J, Arinaitwe E, Namuganga JF, Nsobya SL, Asua V, Mawejje HD, Epstein A, Greenhouse B, Rodriguez-Barraquer I, Briggs J, Krezanoski PJ, Rosenthal PJ, Conrad M, Smith D, Staedke SG, Drakeley C, Bousema T, Andolina C, Donnelly MJ, Kamya MR, Dorsey G. East Africa International Center of Excellence for Malaria Research: Summary of Key Research Findings. Am J Trop Med Hyg 2022; 107:21-32. [PMID: 36228916 PMCID: PMC9662228 DOI: 10.4269/ajtmh.21-1285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/16/2022] [Indexed: 12/24/2022] Open
Abstract
The Program for Resistance, Immunology, Surveillance, and Modeling of Malaria (PRISM) has been conducting malaria research in Uganda since 2010 to improve the understanding of the disease and measure the impact of population-level control interventions in the country. Here, we will summarize key research findings from a series of studies addressing routine health facility-based surveillance, comprehensive cohort studies, studies of the molecular epidemiology, and transmission of malaria, evaluation of antimalarial drug efficacy, and resistance across the country, and assessments of insecticide resistance. Among our key findings are the following. First, we found that in historically high transmission areas of Uganda, a combination of universal distribution of long-lasting insecticidal-treated nets (LLINs) and sustained indoor residual spraying (IRS) of insecticides lowered the malaria burden greatly, but marked resurgences occurred if IRS was discontinued. Second, submicroscopic infections are common and key drivers of malaria transmission, especially in school-age children (5-15 years). Third, markers of drug resistance have changed over time, with new concerning emergence of markers predicting resistance to artemisinin antimalarials. Fourth, insecticide resistance monitoring has demonstrated high levels of resistance to pyrethroids, appreciable impact of the synergist piperonyl butoxide to pyrethroid susceptibility, emerging resistance to carbamates, and complete susceptibility of malaria vectors to organophosphates, which could have important implications for vector control interventions. Overall, PRISM has yielded a wealth of information informing researchers and policy-makers on the malaria burden and opportunities for improved malaria control and eventual elimination in Uganda. Continued studies concerning all the types of surveillance discussed above are ongoing.
Collapse
Affiliation(s)
- Joaniter I. Nankabirwa
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University, College of Health Sciences, Kampala, Uganda
| | - John Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | | | - Sam L. Nsobya
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Victor Asua
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Adrienne Epstein
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, California
| | | | - Jessica Briggs
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Paul J. Krezanoski
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Philip J. Rosenthal
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Melissa Conrad
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - David Smith
- Institute for Health Metrics & Evaluation, University of Washington, Seattle, Washington
| | - Sarah G. Staedke
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Chris Drakeley
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Chiara Andolina
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Martin J. Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Moses R. Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University, College of Health Sciences, Kampala, Uganda
| | - Grant Dorsey
- Department of Medicine, University of California San Francisco, San Francisco, California
| |
Collapse
|
5
|
Samtal C, El Jaddaoui I, Hamdi S, Bouguenouch L, Ouldim K, Nejjari C, Ghazal H, Bekkari H. Review of prostate cancer genomic studies in Africa. Front Genet 2022; 13:911101. [PMID: 36303548 PMCID: PMC9593051 DOI: 10.3389/fgene.2022.911101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/28/2022] [Indexed: 09/07/2024] Open
Abstract
Prostate cancer (PCa) is the second most commonly diagnosed in men worldwide and one of the most frequent cancers in men in Africa. The heterogeneity of this cancer fosters the need to identify potential genetic risk factors/biomarkers. Omics variations may significantly contribute to early diagnosis and personalized treatment. However, there are few genomic studies of this disease in African populations. This review sheds light on the status of genomics research on PCa in Africa and outlines the common variants identified thus far. The allele frequencies of the most significant SNPs in Afro-native, Afro-descendants, and European populations were compared. We advocate how these few but promising data will aid in understanding, better diagnosing, and precisely treating this cancer and the need for further collaborative research on the genomics of PCa in the African continent.
Collapse
Affiliation(s)
- Chaimae Samtal
- Laboratory of Biotechnology, Environment, Agri-food and Health, Faculty of Sciences Dhar El Mahraz–Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Islam El Jaddaoui
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Salsabil Hamdi
- Laboratory of Environmental Health, Institut Pasteur Maroc, Casablanca, Morocco
| | - Laila Bouguenouch
- Faculty of Medicine, Pharmacy and Dentistry‒Sidi Mohammed Ben Abdellah University, University Hospital Hassan II, Fez, Morocco
| | - Karim Ouldim
- Faculty of Medicine, Pharmacy and Dentistry‒Sidi Mohammed Ben Abdellah University, University Hospital Hassan II, Fez, Morocco
| | - Chakib Nejjari
- Department of Medicine, School of Medicine, Mohammed VI University of Health Sciences, Casablanca, Morocco
- School of Medicine and Pharmacy, Fes, Morocco
| | - Hassan Ghazal
- Laboratory of Biotechnology, Environment, Agri-food and Health, Faculty of Sciences Dhar El Mahraz–Sidi Mohammed Ben Abdellah University, Fez, Morocco
- Laboratory of Genomics and Bioinformatics, School of Pharmacy, Mohammed VI University of Health Sciences, Casablanca, Morocco
- National Center for Scientific and Technical Research, Rabat, Morocco
| | - Hicham Bekkari
- Laboratory of Biotechnology, Environment, Agri-food and Health, Faculty of Sciences Dhar El Mahraz–Sidi Mohammed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
6
|
Isewon I, Soremekun C, Adebiyi M, Adetunji C, Ogunleye AJ, Bajeh AO, Asani EO, Gbadamosi B, Soremekun O, Udosen B, Kintu C, Ogundokun R, Arowolo MO, Matiluko O, Nashiru O, Adebiyi E, Ekenna C, Fatumo S. Strengthening Bioinformatics and Genomics Analyses Skills in Africa for Attainment of the Sustainable Development Goals: Report of the 2nd Conference of the Nigerian Bioinformatics and Genomics Network. Am J Trop Med Hyg 2022; 107:tpmd211164. [PMID: 35576945 PMCID: PMC9294681 DOI: 10.4269/ajtmh.21-1164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/16/2022] [Indexed: 11/07/2022] Open
Abstract
The second conference of the Nigerian Bioinformatics and Genomics Network (NBGN21) was held from October 11 to October 13, 2021. The event was organized by the Nigerian Bioinformatics and Genomics Network. A 1-day genomic analysis workshop on genome-wide association study and polygenic risk score analysis was organized as part of the conference. It was organized primarily as a research capacity building initiative to empower Nigerian researchers to take a leading role in this cutting-edge field of genomic data science. The theme of the conference was "Leveraging Bioinformatics and Genomics for the attainments of the Sustainable Development Goals." The conference used a hybrid approach-virtual and in-person. It served as a platform to bring together 235 registered participants mainly from Nigeria and virtually, from all over the world. NBGN21 had four keynote speakers and four leading Nigerian scientists received awards for their contributions to genomics and bioinformatics development in Nigeria. A total of 100 travel fellowships were awarded to delegates within Nigeria. A major topic of discussion was the application of bioinformatics and genomics in the achievement of the Sustainable Development Goals (SDG3-Good Health and Well-Being, SDG4-Quality Education, and SDG 15-Life on Land [Biodiversity]). In closing, most of the NBGN21 conference participants were interviewed and interestingly they agreed that bioinformatics and genomic analysis of African genomes are vital in identifying population-specific genetic variants that confer susceptibility to different diseases that are endemic in Africa. The knowledge of this can empower African healthcare systems and governments for timely intervention, thereby enhancing good health and well-being.
Collapse
Affiliation(s)
- Itunuoluwa Isewon
- Department of Computer and Information Sciences, Covenant University, Ota, Ogun State, Nigeria
- Covenant Applied Informatics and Communication African Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
| | - Chisom Soremekun
- The African Computational Genomics (TACG) Research Group, MRC/UVRI, and LSHTM, Entebbe, Uganda
- Department of Immunology and Molecular Biology, College of Health Science, Makerere University, Kampala, Uganda
- H3Africa Bioinformatics Network (H3ABioNet) Node, Centre for Genomics Research and Innovation, NABDA/FMST, Abuja, Nigeria
| | - Marion Adebiyi
- Department of Computer and Information Sciences, Covenant University, Ota, Ogun State, Nigeria
- Covenant Applied Informatics and Communication African Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
- Department of Computer Science, Landmark University, Omu-Aran, Nigeria
| | - Charles Adetunji
- Department of Microbiology, Edo State University Uzairue, Edo State, Nigeria
| | | | - Amos Orenyi Bajeh
- Department of Computer Science, Landmark University, Omu-Aran, Nigeria
| | | | | | - Opeyemi Soremekun
- The African Computational Genomics (TACG) Research Group, MRC/UVRI, and LSHTM, Entebbe, Uganda
| | - Brenda Udosen
- The African Computational Genomics (TACG) Research Group, MRC/UVRI, and LSHTM, Entebbe, Uganda
- H3Africa Bioinformatics Network (H3ABioNet) Node, Centre for Genomics Research and Innovation, NABDA/FMST, Abuja, Nigeria
| | - Christopher Kintu
- The African Computational Genomics (TACG) Research Group, MRC/UVRI, and LSHTM, Entebbe, Uganda
- Department of Immunology and Molecular Biology, College of Health Science, Makerere University, Kampala, Uganda
| | | | | | - Opeyemi Matiluko
- Department of Computer Science, Landmark University, Omu-Aran, Nigeria
| | - Oyekanmi Nashiru
- H3Africa Bioinformatics Network (H3ABioNet) Node, Centre for Genomics Research and Innovation, NABDA/FMST, Abuja, Nigeria
| | - Ezekiel Adebiyi
- Department of Computer and Information Sciences, Covenant University, Ota, Ogun State, Nigeria
- Covenant Applied Informatics and Communication African Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Chinwe Ekenna
- Department of Computer Science, University at Albany, Albany, New York
| | - Segun Fatumo
- The African Computational Genomics (TACG) Research Group, MRC/UVRI, and LSHTM, Entebbe, Uganda
- H3Africa Bioinformatics Network (H3ABioNet) Node, Centre for Genomics Research and Innovation, NABDA/FMST, Abuja, Nigeria
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|