1
|
He C, Li Q, Ye Z, Wang L, Gong Y, Li S, Wu J, Lu Z, Wu S, Zhang J. Regulating Atomically-Precise Pt Sites for Boosting Light-Driven Dry Reforming of Methane. Angew Chem Int Ed Engl 2024; 63:e202412308. [PMID: 39129646 DOI: 10.1002/anie.202412308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 08/13/2024]
Abstract
Light-driven dry reforming of methane is a promising and mild route to convert two greenhouse gas into valuable syngas. However, developing facile strategy to atomically-precise regulate the active sites and realize balanced and stable syngas production is still challenging. Herein, we developed a spatial confinement approach to precisely control over platinum species on TiO2 surfaces, from single atoms to nanoclusters. The configuration comprising single atoms and sub-nanoclusters engenders pronounced electronic metal-support interactions, with resultant interfacial states prompting surface charge rearrangement. The unique geometric and electronic properties of these atom-cluster assemblies facilitate effective activation of CH4 and CO2, accelerating intermediate coupling and minimizing side reactions. Our catalyst exhibits an outstanding syngas generation rate of 34.41 mol gPt -1 h-1 with superior durability, displaying high apparent quantum yield of 9.1 % at 365 nm and turnover frequency of 1289 h-1. This work provides insightful understanding for exploring more multi-molecule systems at an atomic scale.
Collapse
Affiliation(s)
- Chengxuan He
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, P. R. China
| | - Qixin Li
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, P. R. China
| | - Zhicheng Ye
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, P. R. China
| | - Lijie Wang
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, P. R. China
| | - Yalin Gong
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, P. R. China
| | - Songting Li
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, P. R. China
| | - Jiaxin Wu
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, P. R. China
| | - Zhaojun Lu
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, P. R. China
| | - Shiqun Wu
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, P. R. China
| | - Jinlong Zhang
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, P. R. China
| |
Collapse
|
2
|
Jiao Z, Liu Y, Wang Z. Application of graph neural network in computational heterogeneous catalysis. J Chem Phys 2024; 161:171001. [PMID: 39484893 DOI: 10.1063/5.0227821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/11/2024] [Indexed: 11/03/2024] Open
Abstract
Heterogeneous catalysis, as a key technology in modern chemical industries, plays a vital role in social progress and economic development. However, its complex reaction process poses challenges to theoretical research. Graph neural networks (GNNs) are gradually becoming a key tool in this field as they can intrinsically learn atomic representation and consider connection relationship, making them naturally applicable to atomic and molecular systems. This article introduces the basic principles, current network architectures, and datasets of GNNs and reviews the application of GNN in heterogeneous catalysis from accelerating the materials screening and exploring the potential energy surface. In the end, we summarize the main challenges and potential application prospects of GNNs in future research endeavors.
Collapse
Affiliation(s)
- Zihao Jiao
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Shaanxi 710049, China
- School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Ya Liu
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Shaanxi 710049, China
| | - Ziyun Wang
- School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
3
|
Singh S, Wi D, Salem KE, Higgins D, Scott RWJ. Chemical activation of atom-precise Pd 3 nanoclusters on γ-Al 2O 3 supports for transfer hydrogenation reactions. NANOSCALE 2024; 16:19763-19774. [PMID: 39365165 DOI: 10.1039/d4nr03364g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Deposition of atom-precise nanoclusters onto solid supports is a promising route to synthesize model heterogeneous catalysts. However, to enhance nanocluster-support interactions, activation of the nanoclusters by removal of surface ligands is necessary. Thermal treatment to remove surface ligands from supported metal nanoclusters can yield highly active heterogeneous catalysts, however, the high temperatures employed can lead to poor control over the final size and speciation of the nanoclusters. As an alternative to high-temperature thermal treatments, chemical activation of [Pd3(μ-Cl)(μ-PPh2)2(PPh3)3]+ (Pd3) nanoclusters on γ-Al2O3 supports under mild reaction conditions has been demonstrated in this work. Hydride-based reducing agents such as NaBH4, LiBH4, and LiAlH4 have been examined for the activation of the Pd3 nanoclusters. The structural evolution and speciation of the nanoclusters after activation have been monitored using a combination of XAS, XPS, STEM-EDX mapping, and solid-state NMR techniques. The results indicate that treatment with borohydride reducing agents successfully removed surface phosphine and chloride ligands, and the extent of size growth of the nanoclusters during activation is directly correlated with the amount of borohydride used. Borate side products remain on the γ-Al2O3 surface after activation; moreover, exposure to high amounts of NaBH4 resulted in the incorporation of B atoms inside the lattice of the activated Pd nanoclusters. LiAlH4 treatment, on the other hand, led to no significant size growth of the nanoclusters and resulted in a mixture of Pd single-atom sites and activated nanoclusters on the γ-Al2O3 surface. Finally, the catalytic potential of the activated nanoclusters has been tested in the transfer hydrogenation of trans-cinnamaldehyde, using sodium formate/formic acid as the hydrogen donor. The catalytic results showed that smaller Pd nanoclusters are much more selective for hydrogenating trans-cinnamaldehyde to hydrocinnamaldehyde, but overall have lower activity compared to larger Pd nanoparticles. Overall, this study showcases chemical activation routes as an alternative to traditional thermal activation routes for activating supported nanoclusters by offering improved speciation and size control.
Collapse
Affiliation(s)
- Siddhant Singh
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada.
| | - Dami Wi
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada.
| | - Kholoud E Salem
- Department of Chemical Engineering, McMaster University, 1280 Main St W, Hamilton, Ontario L8S 4L7, Canada
| | - Drew Higgins
- Department of Chemical Engineering, McMaster University, 1280 Main St W, Hamilton, Ontario L8S 4L7, Canada
| | - Robert W J Scott
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada.
| |
Collapse
|
4
|
Miura H, Imoto K, Nishio H, Junkaew A, Tsunesada Y, Fukuta Y, Ehara M, Shishido T. Optimization of Metal-Support Cooperation for Boosting the Performance of Supported Gold Catalysts for the Borylation of C-O and C-N Bonds. J Am Chem Soc 2024; 146:27528-27541. [PMID: 39205646 DOI: 10.1021/jacs.4c08340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The cooperation of multiple catalytic components is a powerful tool for intermolecular bond formation, specifically, cross-coupling reactions. Supported metal catalysts have interfacial sites between metal nanoparticles and their supports where multiple catalytic elements can work in cooperation to efficiently promote intermolecular reactions. Hence, the establishment of novel guidelines for designing active interfacial sites of supported metal catalysts is indispensable for heterogeneous catalysts which enable efficient cross-coupling reactions. In this article, we performed kinetic and theoretical studies to elucidate the effect of metal-support cooperation for the borylation of C-O bonds by supported gold catalysts and revealed that the Lewis acid density of the supports determined the number of active sites at which metal nanoparticles (NPs) and Lewis acid at the surface of the supports work in cooperation. Furthermore, DFT calculations revealed that strong adsorption of diborons at the interface between Au NPs and supports and a decrease in the LUMO level of adsorbed diboron were responsible for efficient C-O bond borylation. Supported Au catalysts with the optimized metal-metal oxide cooperation sites, namely, Au/α-Fe2O3 catalyst, showed excellent activity for C-O bond borylation, and also enabled the synthesis of organoboron compounds by using continuous-flow reactions. Furthermore, Au/α-Fe2O3 showed high activity for direct C-N bond borylation without the transformation of amino groups to ammonium cations. The results described herein suggest that the optimization of metal-metal oxide cooperation is beneficial for taking full advantage of the potential performance of supported metal catalysts for intermolecular reactions.
Collapse
Affiliation(s)
- Hiroki Miura
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
- Research Center for Hydrogen Energy-based Society, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Kaoru Imoto
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Hidenori Nishio
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Anchalee Junkaew
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Yunosuke Tsunesada
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Yohei Fukuta
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Masahiro Ehara
- Research Center for Computational Science, Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Tetsuya Shishido
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
- Research Center for Hydrogen Energy-based Society, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
5
|
Zhu C, Li W, Chen T, He Z, Villalobos E, Marini C, Zhou J, Woon Lo BT, Xiao H, Liu L. Boosting the Stability of Subnanometer Pt Catalysts by the Presence of Framework Indium(III) Sites in Zeolite. Angew Chem Int Ed Engl 2024; 63:e202409784. [PMID: 39225426 DOI: 10.1002/anie.202409784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Indexed: 09/04/2024]
Abstract
Subnanometer metal clusters show advantages over conventional metal nanoparticles in numerous catalytic reactions owing to their high percentage of exposed surface sites, abundance of under-coordinated metal sites and unique electronic structures. However, the applications of subnanometer metal clusters in high-temperature catalytic reactions (>600 °C) are still hindered, because of their low stability under harsh reaction conditions. In this work, we have developed a zeolite-confined bimetallic PtIn catalyst with exceptionally high stability against sintering. A combination of experimental and theoretical studies shows that the isolated framework In(III) species serve as the anchoring sites for Pt species, precluding the migration and sintering of Pt species in the oxidative atmosphere at ≥650 °C. The catalyst comprising subnanometer PtIn clusters exhibits long-term stability of >1000 h during a cyclic reaction-regeneration test for ethane dehydrogenation reaction.
Collapse
Affiliation(s)
- Chaofeng Zhu
- Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wenying Li
- Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Tianxiang Chen
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hunghom, Hong Kong, China
| | - Zhe He
- Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Eduardo Villalobos
- ALBA Synchrotron Light Source, Cerdanyola del Vallès, Barcelona, 08290, Spain
| | - Carlo Marini
- ALBA Synchrotron Light Source, Cerdanyola del Vallès, Barcelona, 08290, Spain
| | - Jian Zhou
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Shanghai Research Institute of Petrochemical Technology, SINOPEC Corp., Shanghai, 201208, China
| | - Benedict Tsz Woon Lo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hunghom, Hong Kong, China
| | - Hai Xiao
- Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Lichen Liu
- Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
6
|
Wang H, Liu X, Zhao Y, Sun Z, Lin Y, Yao T, Jiang HL. Regulating interaction with surface ligands on Au 25 nanoclusters by multivariate metal-organic framework hosts for boosting catalysis. Natl Sci Rev 2024; 11:nwae252. [PMID: 39301064 PMCID: PMC11409874 DOI: 10.1093/nsr/nwae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/26/2024] [Accepted: 07/07/2024] [Indexed: 09/22/2024] Open
Abstract
While atomically precise metal nanoclusters (NCs) with unique structures and reactivity are very promising in catalysis, the spatial resistance caused by the surface ligands and structural instability poses significant challenges. In this work, Au25(Cys)18 NCs are encapsulated in multivariate metal-organic frameworks (MOFs) to afford Au25@M-MOF-74 (M = Zn, Ni, Co, Mg). By the MOF confinement, the Au25 NCs showcase highly enhanced activity and stability in the intramolecular cascade reaction of 2-nitrobenzonitrile. Notably, the interaction between the metal nodes in M-MOF-74 and Au25(Cys)18 is able to suppress the free vibration of the surface ligands on the Au25 NCs and thereby improve the accessibility of Au sites; meanwhile, the stronger interactions lead to higher electron density and core expansion within Au25(Cys)18. As a result, the activity exhibits the trend of Au25@Ni-MOF-74 > Au25@Co-MOF-74 > Au25@Zn-MOF-74 > Au25@Mg-MOF-74, highlighting the crucial roles of microenvironment modulation around the Au25 NCs by interaction between the surface ligands and MOF hosts.
Collapse
Affiliation(s)
- He Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xiaokang Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Yulong Zhao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Zhihu Sun
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Yue Lin
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Tao Yao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
7
|
Guo B, Wen X, Xu L, Ren X, Niu S, YangCheng R, Ma G, Zhang J, Guo Y, Xu P, Li S. Noble Metal Phosphides: Robust Electrocatalysts toward Hydrogen Evolution Reaction. SMALL METHODS 2024; 8:e2301469. [PMID: 38161258 DOI: 10.1002/smtd.202301469] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Facing with serious carbon emission issues, the production of green H2 from electrocatalytic hydrogen evolution reaction (HER) has received extensive research interest. Almost all kinds of noble metal phosphides (NMPs) consisting of Pt-group elements (i.e., Ru, Rh, Pd, Os, Ir and Pt) are all highly active and pH-universal electrocatalysts toward HER. In this review, the recent progress of NMP-based HER electrocatalysts is summarized. It is further take typical examples for discussing important impact factors on the HER performance of NMPs, including crystalline phase, morphology, noble metal element and doping. Moreover, the synthesis and HER application of hybrid catalysts consisting of NMPs and other materials such as transition metal phosphides, oxides, sulfides and phosphates, carbon materials and noble metals is also reviewed. Reducing the use of noble metal is the key idea for NMP-based hybrid electrocatalysts, while the expanded functionality and structure-performance relationship are also noticed in this part. At last, the potential opportunities and challenges for this kind of highly active catalyst is discussed.
Collapse
Affiliation(s)
- Bingrong Guo
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xinxin Wen
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Li Xu
- Novel Energy Materials & Catalysis Research Center, Shanwei Innovation Industrial Design & Research Institute, Shanwei, 516600, P. R. China
| | - Xiaoqian Ren
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Siqi Niu
- Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Ruixue YangCheng
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Guoxin Ma
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Junchao Zhang
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Ying Guo
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Ping Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Siwei Li
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
8
|
Guo K, Bao L, Yu Z, Lu X. Carbon encapsulated nanoparticles: materials science and energy applications. Chem Soc Rev 2024. [PMID: 39314168 DOI: 10.1039/d3cs01122d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The technological implementation of electrochemical energy conversion and storage necessitates the acquisition of high-performance electrocatalysts and electrodes. Carbon encapsulated nanoparticles have emerged as an exciting option owing to their unique advantages that strike a high-level activity-stability balance. Ever-growing attention to this unique type of material is partly attributed to the straightforward rationale of carbonizing ubiquitous organic species under energetic conditions. In addition, on-demand precursors pave the way for not only introducing dopants and surface functional groups into the carbon shell but also generating diverse metal-based nanoparticle cores. By controlling the synthetic parameters, both the carbon shell and the metallic core are facilely engineered in terms of structure, composition, and dimensions. Apart from multiple easy-to-understand superiorities, such as improved agglomeration, corrosion, oxidation, and pulverization resistance and charge conduction, afforded by the carbon encapsulation, potential core-shell synergistic interactions lead to the fine-tuning of the electronic structures of both components. These features collectively contribute to the emerging energy applications of these nanostructures as novel electrocatalysts and electrodes. Thus, a systematic and comprehensive review is urgently needed to summarize recent advancements and stimulate further efforts in this rapidly evolving research field.
Collapse
Affiliation(s)
- Kun Guo
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Lipiao Bao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Zhixin Yu
- Department of Energy and Petroleum Engineering, University of Stavanger, Stavanger 4036, Norway
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
9
|
Yang X, Song W, Liao K, Wang X, Wang X, Zhang J, Wang H, Chen Y, Yan N, Han X, Ding J, Hu W. Cohesive energy discrepancy drives the fabrication of multimetallic atomically dispersed materials for hydrogen evolution reaction. Nat Commun 2024; 15:8216. [PMID: 39294161 PMCID: PMC11411064 DOI: 10.1038/s41467-024-52520-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 09/11/2024] [Indexed: 09/20/2024] Open
Abstract
Atomically dispersed single atom (SA) and atomic cluster (AC) metallic materials attract tremendous attentions in various fields. Expanding monometallic SA and AC to multimetallic SA/AC composites opens vast scientific and technological potentials yet exponentially increasing the synthesis difficulty. Here, we present a general energy-selective-clustering methodology to build the largest reported library of carbon supported bi-/multi-metallic SA/AC materials. The discrepancy in cohesive energy results into selective metal clustering thereby driving the symbiosis of multimetallic SA or/and AC. The library includes 23 bimetallic SA/AC composites, and expanded compositional space of 17 trimetallic, quinary-metallic, septenary-metallic SA/AC composites. We chose bimetallic M1SAM2AC to demonstrate the electrocatalysis utility. Unique decoupled active sites and inter-site synergy lead to 8/47 mV overpotential at 10 mA cm-2 for alkaline/acidic hydrogen evolution and over 1000 h durability in water electrolyzer. Moreover, delicate modulations towards composition and configuration yield high-performance catalysts for multiple electrocatalysis systems. Our work broadens the family of atomically dispersed materials from monometallic to multimetallic and provides a platform to explore the complex composition induced unconventional effects.
Collapse
Affiliation(s)
- Xinyi Yang
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Wanqing Song
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Kang Liao
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Xiaoyang Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Xin Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Jinfeng Zhang
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Haozhi Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, China
| | - Yanan Chen
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Ning Yan
- School of Physics and Technology, Wuhan University, Wuhan, China
| | - Xiaopeng Han
- School of Materials Science and Engineering, Tianjin University, Tianjin, China.
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, China.
| | - Jia Ding
- School of Materials Science and Engineering, Tianjin University, Tianjin, China.
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, China.
| | - Wenbin Hu
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, China
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, China
| |
Collapse
|
10
|
Yan L, Mao Y, Li Y, Sha Q, Sun K, Li P, Waterhouse GIN, Wang Z, Tian S, Sun X. Sublimation Transformation Synthesis of Dual-Atom Fe Catalysts for Efficient Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2024:e202413179. [PMID: 39225757 DOI: 10.1002/anie.202413179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/04/2024]
Abstract
Dual-atom catalysts (DACs) have garnered significant interest due to their remarkable catalytic reactivity. However, achieving atomically precise control in the fabrication of DACs remains a major challenge. Herein, we developed a straightforward and direct sublimation transformation synthesis strategy for dual-atom Fe catalysts (Fe2/NC) by utilizing in situ generated Fe2Cl6(g) dimers from FeCl3(s). The structure of Fe2/NC was investigated by aberration-corrected transmission electron microscopy and X-ray absorption fine structure (XAFS) spectroscopy. As-obtained Fe2/NC, with a Fe-Fe distance of 0.3 nm inherited from Fe2Cl6, displayed superior oxygen reduction performance with a half-wave potential of 0.90 V (vs. RHE), surpassing commercial Pt/C catalysts, Fe single-atom catalyst (Fe1/NC), and its counterpart with a common and shorter Fe-Fe distance of ~0.25 nm (Fe2/NC-S). Density functional theory (DFT) calculations and microkinetic analysis revealed the extended Fe-Fe distance in Fe2/NC is crucial for the O2 adsorption on catalytic sites and facilitating the subsequent protonation process, thereby boosting catalytic performance. This work not only introduces a new approach for fabricating atomically precise DACs, but also offers a deeper understanding of the intermetallic distance effect on dual-site catalysis.
Collapse
Affiliation(s)
- Li Yan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Yu Mao
- School of Chemical Sciences, University of Auckland, 1010, Auckland, New Zealand
| | - Yingxin Li
- School of Chemical Sciences, University of Auckland, 1010, Auckland, New Zealand
| | - Qihao Sha
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Kai Sun
- School of Chemical Sciences, University of Auckland, 1010, Auckland, New Zealand
| | - Panpan Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, 100029, Beijing, China
| | | | - Ziyun Wang
- School of Chemical Sciences, University of Auckland, 1010, Auckland, New Zealand
| | - Shubo Tian
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, 100029, Beijing, China
| |
Collapse
|
11
|
Bhalothia D, Yan C, Hiraoka N, Ishii H, Liao Y, Dai S, Chen P, Chen T. Iridium Single Atoms to Nanoparticles: Nurturing the Local Synergy with Cobalt-Oxide Supported Palladium Nanoparticles for Oxygen Reduction Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404076. [PMID: 38934929 PMCID: PMC11434211 DOI: 10.1002/advs.202404076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/05/2024] [Indexed: 06/28/2024]
Abstract
A ternary catalyst comprising Iridium (Ir) single-atoms (SA)s decorated on the Co-oxide supported palladium (Pd) nanoparticles (denoted as CPI-SA) is developed in this work. The CPI-SA with 1 wt.% of Ir exhibits unprecedented high mass activity (MA) of 7173 and 770 mA mgIr -1, respectively, at 0.85 and 0.90 V versus RHE in alkaline ORR (0.1 m KOH), outperforming the commercial Johnson Matthey Pt catalyst (J.M.-Pt/C; 20 wt.% Pt) by 107-folds. More importantly, the high structural reliability of the Ir single-atoms endows the CPI-SA with outstanding durability, where it shows progressively increasing MA of 13 342 and 1372 mA mgIr -1, respectively, at 0.85 and 0.90 V versus RHE up to 69 000 cycles (3 months) in the accelerated degradation test (ADT). Evidence from the in situ partial fluorescence yield X-ray absorption spectroscopy (PFY-XAS) and the electrochemical analysis indicate that the Ir single-atoms and adjacent Pd domains synergistically promote the O2 splitting and subsequent desorption of hydroxide ions (OH-), respectively. Whereas the Co-atoms underneath serve as electron injectors to boost the ORR activity of the Ir single-atoms. Besides, a progressive and sharp drop in the ORR performance is observed when Ir-clusters and Ir nanoparticles are decorated on the Co-oxide-supported Pd nanoparticles.
Collapse
Affiliation(s)
- Dinesh Bhalothia
- Department of Engineering and System ScienceNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Che Yan
- Department of Engineering and System ScienceNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Nozomu Hiraoka
- National Synchrotron Radiation Research CenterHsinchu30076Taiwan
| | - Hirofumi Ishii
- National Synchrotron Radiation Research CenterHsinchu30076Taiwan
| | - Yen‑Fa Liao
- National Synchrotron Radiation Research CenterHsinchu30076Taiwan
| | - Sheng Dai
- School of Chemistry & Molecular EngineeringEast China University of Science and TechnologyShanghai200237P. R. China
| | - Po‐Chun Chen
- Department of Materials and Mineral Resources EngineeringNational Taipei University of TechnologyTaipei10608Taiwan
| | - Tsan‐Yao Chen
- Department of Engineering and System ScienceNational Tsing Hua UniversityHsinchu30013Taiwan
| |
Collapse
|
12
|
Hamed EM, Fung FM, Li SFY. Unleashing the Potential of Single-Atom Nanozymes: Catalysts for the Future. ACS Sens 2024; 9:3840-3847. [PMID: 39083641 DOI: 10.1021/acssensors.4c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Single-atom nanozymes (SANs) have become a breakthrough in atomically precise catalysis, which relies on the catalytic active site formed by the single-atom itself. From this angle, SANs and their advantages compared to natural enzymes as well as spaces for their application are emphasized. The SANs have outstanding control over their catalytic activities; this is compared with bulk materials and natural enzymes. The structure of the SANs has very promising potential for the next generation of biosensing and biomedical devices and environmental remediation. Although their capabilities are high, difficulties still arise. The specificity, scalability, biosafety, and catalysis mechanisms raise additional issues that require further research. We build up a vision of the perspectives of the better implementation of SANs, which are designed for diagnostic purposes, improving industrial technologies, and creating new sustainable technologies in the food processing industry. AI and machine learning systems may clarify the structure-performance relationship of SANs for improved material and process selectivity. The future of SANs is very promising, and by addressing these challenges and leveraging advancements in artificial intelligence and materials science, SANs have the potential to become powerful tools for a sustainable future.
Collapse
Affiliation(s)
- Eslam M Hamed
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Fun Man Fung
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Centre for Teaching, Learning and Technology, National University of Singapore, 15 Kent Ridge Road, Singapore 119225, Singapore
- College of Humanities and Sciences, National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
| | - Sam F Y Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- College of Humanities and Sciences, National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
- NUS Environmental Research Institute (NERI), #02-01, T-Lab Building (TL), 5A Engineering Drive 1, Singapore 117411, Singapore
| |
Collapse
|
13
|
Zhu C, Chen ZL, Li H, Lu L, Kang X, Xuan J, Zhu M. Rational Design of Highly Phosphorescent Nanoclusters for Efficient Photocatalytic Oxidation. J Am Chem Soc 2024; 146:23212-23220. [PMID: 39084600 DOI: 10.1021/jacs.4c05530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Analyzing the molecular structure-photophysical property correlations of metal nanoclusters to accomplish function-oriented photocatalysis could be challenging. Here, the selective heteroatom alloying has been exploited to a Au15 nanocluster, making up a structure-correlated nanocluster series, including homogold Au15, bimetallic AgxAu15-x and CuxAu15-x, trimetallic AgxCuyAu15-x-y, and tetrametallic Pt1AgxCuyAu15-x-y. Their structure-dependent photophysical properties were investigated due to the atomically precise structures of these nanoclusters. Cu-alloyed CuxAu15-x showed intense phosphorescence and the highest singlet oxygen production efficiency. Moreover, the generation of 1O2 species from excited nanoclusters enabled CuxAu15-x as a suitable catalyst for efficient photocatalytic oxidation of silyl enol ethers to produce α,β-unsaturated carbonyl compounds. The generality and applicability of the CuxAu15-x catalysts toward different photocatalytic oxidations were assessed. Overall, this study presents an intriguing Au15-based cluster series enabling an atomic-level understanding of structure-photophysical property correlations, which hopefully provides guidance for the fabrication of cluster-based catalysts with customized photocatalytic performance.
Collapse
Affiliation(s)
- Chen Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Ze-Le Chen
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Hao Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Luyao Lu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Jun Xuan
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
14
|
Khan B, Faheem MB, Peramaiah K, Nie J, Huang H, Li Z, Liu C, Huang KW, He JH. Unassisted photoelectrochemical CO 2-to-liquid fuel splitting over 12% solar conversion efficiency. Nat Commun 2024; 15:6990. [PMID: 39143057 PMCID: PMC11324881 DOI: 10.1038/s41467-024-51088-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/29/2024] [Indexed: 08/16/2024] Open
Abstract
The increasing need to control anthropogenic CO2 emissions and conversion to fuels features the necessity for innovative solutions, one of which is photoelectrochemical system. This approach, capable of yielding gaseous production progressively, is facing challenges for liquid fuels generation due to optical, electrical, and catalytic properties. This study employs a standalone photoelectrochemical setup, in which InGaP/GaAs/Ge photoanode is integrated with tin-modified bismuth oxide cathode to convert CO2 into liquid formic acid. In unassisted two-electrode assembly, setup exemplifies its operational durability for 100 h, during which it maintains an average Faradaic efficiency of 88% with 17.3 mmol L-1 h-1 of yield, thereby excelling in average solar-to-fuel conversion efficiency at 12% with 60% of electrical energy efficiency under one sun illumination. This significant performance is further associated with metal-semiconductor interface formation between tin and bismuth oxide, which bridges electronic structures and generates an electric field at their interfaces. This study outperforms conventional solar-driven systems in operational durability and liquid fuel production.
Collapse
Affiliation(s)
- Bilawal Khan
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - M Bilal Faheem
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, NY, 13244, USA
| | - Karthik Peramaiah
- Agency for Science, Technology, and Research, Institute of Sustainability for Chemicals, Energy and Environment, 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore
- KAUST Catalysis Center and Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Jinlan Nie
- School of Physics, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Hao Huang
- KAUST Catalysis Center and Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Zhongxiao Li
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Chen Liu
- KAUST Catalysis Center and Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Kuo-Wei Huang
- Agency for Science, Technology, and Research, Institute of Sustainability for Chemicals, Energy and Environment, 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore
- KAUST Catalysis Center and Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Jr-Hau He
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong.
| |
Collapse
|
15
|
Ren J, Wang B, Yin HQ, Zhang P, Wang XH, Quan Y, Yao S, Lu TB, Zhang ZM. Single Dispersion of Fe(H 2O) 2-Based Polyoxometalate on Polymeric Carbon Nitride for Biomimetic CH 4 Photooxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403101. [PMID: 38771974 DOI: 10.1002/adma.202403101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/24/2024] [Indexed: 05/23/2024]
Abstract
Direct methane conversion to value-added oxygenates under mild conditions with in-depth mechanism investigation has attracted wide interest. Inspired by methane monooxygenase, the K9Na2Fe(H2O)2{[γ-SiW9O34Fe(H2O)]}2·25H2O polyoxometalate (Fe-POM) with well-defined Fe(H2O)2 sites is synthesized to clarify the key role of Fe species and their microenvironment toward CH4 photooxidation. The Fe-POM can efficiently drive the conversion of CH4 to HCOOH with a yield of 1570.0 µmol gPOM -1 and 95.8% selectivity at ambient conditions, much superior to that of [Fe(H2O)SiW11O39]5- with Fe(H2O) active site, [Fe2SiW10O38(OH)]2 14- and [P8W48O184Fe16(OH)28(H2O)4]20- with multinuclear Fe-OH-Fe active sites. Single-dispersion of Fe-POM on polymeric carbon nitride (PCN) is facilely achieved to provide single-cluster functionalized PCN with well-defined Fe(H2O)2 site, the HCOOH yield can be improved to 5981.3 µmol gPOM -1. Systemic investigations demonstrate that the (WO)4-Fe(H2O)2 can supply Fe═O active center for C-H activation via forming (WO)4-Fea-Ot···CH4 intermediate, similar to that for CH4 oxidation in the monooxygenase. This work highlights a promising and facile strategy for single dispersion of ≈1-2 Å metal center with precise coordination microenvironment by uniformly anchoring nanoscale molecular clusters, which provides a well-defined model for in-depth mechanism research.
Collapse
Affiliation(s)
- Jing Ren
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, 391 West Binshui Road, Tianjin, 300384, China
| | - Baifan Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Hua-Qing Yin
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, 391 West Binshui Road, Tianjin, 300384, China
| | - Peng Zhang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, 391 West Binshui Road, Tianjin, 300384, China
| | - Xin-Hui Wang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, 391 West Binshui Road, Tianjin, 300384, China
| | - Yangjian Quan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, China
| | - Shuang Yao
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, 391 West Binshui Road, Tianjin, 300384, China
| | - Tong-Bu Lu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, 391 West Binshui Road, Tianjin, 300384, China
| | - Zhi-Ming Zhang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, 391 West Binshui Road, Tianjin, 300384, China
| |
Collapse
|
16
|
Xu SY, Shi W, Huang JR, Yao S, Wang C, Lu TB, Zhang ZM. Single-cluster Functionalized TiO 2 Nanotube Array for Boosting Water Oxidation and CO 2 Photoreduction to CH 3OH. Angew Chem Int Ed Engl 2024; 63:e202406223. [PMID: 38664197 DOI: 10.1002/anie.202406223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Indexed: 06/05/2024]
Abstract
Solar-driven CO2 reduction and water oxidation to liquid fuels represents a promising solution to alleviate energy crisis and climate issue, but it remains a great challenge for generating CH3OH and CH3CH2OH dominated by multi-electron transfer. Single-cluster catalysts with super electron acceptance, accurate molecular structure, customizable electronic structure and multiple adsorption sites, have led to greater potential in catalyzing various challenging reactions. However, accurately controlling the number and arrangement of clusters on functional supports still faces great challenge. Herein, we develop a facile electrosynthesis method to uniformly disperse Wells-Dawson- and Keggin-type polyoxometalates on TiO2 nanotube arrays, resulting in a series of single-cluster functionalized catalysts P2M18O62@TiO2 and PM12O40@TiO2 (M=Mo or W). The single polyoxometalate cluster can be distinctly identified and serves as electronic sponge to accept electrons from excited TiO2 for enhancing surface-hole concentration and promote water oxidation. Among these samples, P2Mo18O62@TiO2-1 exhibits the highest electron consumption rate of 1260 μmol g-1 for CO2-to-CH3OH conversion with H2O as the electron source, which is 11 times higher than that of isolated TiO2 nanotube arrays. This work supplied a simple synthesis method to realize the single-dispersion of molecular cluster to enrich surface-reaching holes on TiO2, thereby facilitating water oxidation and CO2 reduction.
Collapse
Affiliation(s)
- Shen-Yue Xu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Wenxiong Shi
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Juan-Ru Huang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China
- School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Shuang Yao
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Cheng Wang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Tong-Bu Lu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Zhi-Ming Zhang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China
| |
Collapse
|
17
|
Chen S, Zhi C. Catalytically faster power. Nat Rev Chem 2024; 8:493-494. [PMID: 38760572 DOI: 10.1038/s41570-024-00614-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Affiliation(s)
- Shengmei Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, China.
| |
Collapse
|
18
|
Bakhchin D, Ravi R, Douadi O, Faqir M, Essadiqi E. Integrated catalytic systems for simultaneous NOx and PM reduction: a comprehensive evaluation of synergistic performance and combustion waste energy utilization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46840-46857. [PMID: 38980481 DOI: 10.1007/s11356-024-34287-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024]
Abstract
The global transition towards sustainable automotive vehicles has driven the demand for energy-efficient internal combustion engines with advanced aftertreatment systems capable of reducing nitrogen oxides (NOx) and particulate matter (PM) emissions. This comprehensive review explores the latest advancements in aftertreatment technologies, focusing on the synergistic integration of in-cylinder combustion strategies, such as low-temperature combustion (LTC), with post-combustion purification systems. Selective catalytic reduction (SCR), lean NOx traps (LNT), and diesel particulate filters (DPF) are critically examined, highlighting novel catalyst formulations and system configurations that enhance low-temperature performance and durability. The review also investigates the potential of energy conversion and recovery techniques, including thermoelectric generators and organic Rankine cycles, to harness waste heat from the exhaust and improve overall system efficiency. By analyzing the complex interactions between engine operating parameters, combustion kinetics, and emission formation, this study provides valuable insights into the optimization of integrated LTC-aftertreatment systems. Furthermore, the review emphasizes the importance of considering real-world driving conditions and transient operation in the development and evaluation of these technologies. The findings presented in this article lay the foundation for future research efforts aimed at overcoming the limitations of current aftertreatment systems and achieving superior emission reduction performance in advanced combustion engines, ultimately contributing to the development of sustainable and efficient automotive technologies.
Collapse
Affiliation(s)
- Dikra Bakhchin
- School of Aerospace and Automotive Engineering, LERMA Laboratory, International University of Rabat, 11000, Rabat, Morocco
| | - Rajesh Ravi
- School of Aerospace and Automotive Engineering, LERMA Laboratory, International University of Rabat, 11000, Rabat, Morocco.
| | - Oumaima Douadi
- School of Aerospace and Automotive Engineering, LERMA Laboratory, International University of Rabat, 11000, Rabat, Morocco
| | - Mustapha Faqir
- School of Aerospace and Automotive Engineering, LERMA Laboratory, International University of Rabat, 11000, Rabat, Morocco
| | - Elhachmi Essadiqi
- School of Aerospace and Automotive Engineering, LERMA Laboratory, International University of Rabat, 11000, Rabat, Morocco
| |
Collapse
|
19
|
Álvarez-García A, Molina LM, Garzón IL. O 2 activation by subnanometer Re-Pt clusters supported on TiO 2(110): exploring adsorption sites. Phys Chem Chem Phys 2024; 26:15902-15915. [PMID: 38775219 DOI: 10.1039/d4cp01118j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Activation of O2 by subnanometer metal clusters is a fundamental step in the reactivity and oxidation processes of single-cluster catalysts. In this work, we examine the adsorption and dissociation of O2 on RenPtm (n + m = 5) clusters supported on rutile TiO2(110) using DFT calculations. The adhesion energies of RenPtm clusters on the support are high, indicating significant stability of the supported clusters. Furthermore, the bimetallic Re-Pt clusters attach to the surface through the Re atoms. The oxygen molecule was adsorbed on three sites of the supported systems: the metal cluster, the surface, and the interface. At the metal cluster site, the O2 molecule binds strongly to RenPtm clusters, especially on the Re-rich clusters. O2 activation occurs by charge transfer from the metal atoms to the molecule. The dissociation of O2 on the RenPtm clusters is an exothermic process with low barriers. As a result, sub-nanometer Re-Pt clusters can be susceptible to oxidation. Similar results are obtained at the metal-support interface, where both the surface and cluster transfer charge to O2. To surface sites, molecular oxygen is adsorbed onto the Ti5c atoms with moderate adsorption energies. The polarons, which are produced by the interaction between the metal cluster and the surface, participate in the activation of the molecule. However, dissociating O2 in these sites is challenging due to the endothermic nature of the process and the high energy barriers involved. Our findings provide novel insights into the reactivity of supported clusters, specifically regarding the O2 activation by Re-Pt clusters on rutile TiO2(110).
Collapse
Affiliation(s)
- Andrés Álvarez-García
- Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, Ciudad de México 01000, Mexico.
| | - Luis M Molina
- Departamento de Física Teórica, Atómica y Optica, Universidad de Valladolid, E-47011 Valladolid, Spain
| | - Ignacio L Garzón
- Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, Ciudad de México 01000, Mexico.
| |
Collapse
|
20
|
Li R, Li YK, Xu J, Hou GL. Direct reduction of NO into N 2 catalyzed by fullerene-supported rhodium clusters. Phys Chem Chem Phys 2024; 26:15332-15337. [PMID: 38748511 DOI: 10.1039/d4cp01398k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Catalytic conversion of NO has long been a focus of atmospheric pollution control and diesel vehicle exhaust treatment. Rhodium is one of the most effective metals for catalyzing NO reduction, and understanding the nature of the active sites and underlying mechanisms can help improve the design of Rh-based catalysts towards NO reduction. In this work, we investigated the detailed catalytic mechanisms for the direct reduction of NO to N2 by fullerene-supported rhodium clusters, C60Rh4+, with density functional theory calculations. We found that the presence of C60 facilitates the smooth reduction of NO into N2 and O2, as well as their subsequent desorption, recovering the catalyst C60Rh4+. Such a process fails to be completed by free Rh4+, emphasizing the critical importance of C60 support. We attribute the novel performance of C60Rh4+ to the electron sponge effect of C60, providing useful guidance for designing efficient catalysts for the direct reduction of NO.
Collapse
Affiliation(s)
- Ruomeng Li
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049 Shaanxi, China.
| | - Ya-Ke Li
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049 Shaanxi, China.
| | - Jianzhi Xu
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049 Shaanxi, China.
| | - Gao-Lei Hou
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049 Shaanxi, China.
| |
Collapse
|
21
|
Nie W, Ren T, Zhao W, Yao B, Yuan W, Liu X, Abdullah, Zhang J, Liu Q, Zhang T, Tang S, He C, Fang Y, Li X. Electrochemical Generation of Te Vacancy Pairs in PtTe for Efficient Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21828-21837. [PMID: 38639177 DOI: 10.1021/acsami.4c01273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Two-dimensional (2D) van der Waals materials are increasingly seen as potential catalysts due to their unique structures and unmatched properties. However, achieving precise synthesis of these remarkable materials and regulating their atomic and electronic structures at the most fundamental level to enhance their catalytic performance remain a significant challenge. In this study, we synthesized single-crystal bulk PtTe crystals via chemical vapor transport and subsequently produced atomically thin, large PtTe nanosheets (NSs) through electrochemical cathode intercalation. These NSs are characterized by a significant presence of Te vacancy pairs, leading to undercoordinated Pt atoms on their basal planes. Experimental and theoretical studies together reveal that Te vacancy pairs effectively optimize and enhance the electronic properties (such as charge distribution, density of states near the Fermi level, and d-band center) of the resultant undercoordinated Pt atoms. This optimization results in a significantly higher percentage of dangling O-H water, a decreased energy barrier for water dissociation, and an increased binding affinity of these Pt atoms to active hydrogen intermediates. Consequently, PtTe NSs featuring exposed and undercoordinated Pt atoms demonstrate outstanding electrocatalytic activity in hydrogen evolution reactions, significantly surpassing the performance of standard commercial Pt/C catalysts.
Collapse
Affiliation(s)
- Wenjie Nie
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, China
| | - Taotao Ren
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, China
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Wen Zhao
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Bingqing Yao
- Department of Materials Science and Engineering, National University of Singapore, Singapore 119077, Singapore
| | - Wenhao Yuan
- Department of Materials Science and Engineering, National University of Singapore, Singapore 119077, Singapore
| | - Xuan Liu
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Abdullah
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jiaxun Zhang
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, China
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Qiyuan Liu
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Tianqing Zhang
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Shangfeng Tang
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Chi He
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yiyun Fang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xinzhe Li
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
22
|
Liu Y, Wu G, Ge R, Jiang X, Li L, Ishida T, Murayama T, Qiao B, Wang J. Highly Active and Sintering-Resistant Pt Clusters Supported on FeO x-Hydroxyapatite Achieved by Tailoring Strong Metal-Support Interactions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22007-22015. [PMID: 38629801 DOI: 10.1021/acsami.4c02521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
The catalytic performance of supported metal catalysts is closely related to their structure. While Pt-based catalysts are widely used in many catalytic reactions because of their exceptional intrinsic activity, they tend to deactivate in high-temperature reactions, requiring a tedious and expensive regeneration process. The strong metal-support interaction (SMSI) is a promising strategy to improve the stability of supported metal nanoparticles, but often at the price of the activity due to either the coverage of the active sites by support overlay and/or the too-strong metal-support bonding. Herein, we newly constructed a supported Pt cluster catalyst by introducing FeOx into hydroxyapatite (HAP) support to fine-tune the SMSIs. The catalyst exhibited not only high catalytic activity but also sintering resistance, without deactivation in a 100 h test for catalytic CO oxidation. Detailed characterizations reveal that FeOx introduced into HAP weaken the strong covalent metal-support interaction (CMSI) between Pt and FeOx while simultaneously inhibiting the oxidative strong metal-support interaction (OMSI) between Pt and HAP, giving rise to both high activity and thermal stability of the supported Pt clusters.
Collapse
Affiliation(s)
- Yunxia Liu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Mössbauer Effect Data Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guandong Wu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Mössbauer Effect Data Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Rile Ge
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Mössbauer Effect Data Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xunzhu Jiang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tamao Ishida
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Toru Murayama
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 minami-osawa, Hachioji, Tokyo 192-0397, Japan
- Yantai Key Laboratory of Gold Catalysis and Engineering, Shandong Applied Research Center of Gold Nanotechnology (AU-SDARC), School of Chemistry & Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Botao Qiao
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Junhu Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Mössbauer Effect Data Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
23
|
Tang T, Bai X, Wang Z, Guan J. Structural engineering of atomic catalysts for electrocatalysis. Chem Sci 2024; 15:5082-5112. [PMID: 38577377 PMCID: PMC10988631 DOI: 10.1039/d4sc00569d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024] Open
Abstract
As a burgeoning category of heterogeneous catalysts, atomic catalysts have been extensively researched in the field of electrocatalysis. To satisfy different electrocatalytic reactions, single-atom catalysts (SACs), diatomic catalysts (DACs) and triatomic catalysts (TACs) have been successfully designed and synthesized, in which microenvironment structure regulation is the core to achieve high-efficiency catalytic activity and selectivity. In this review, the effect of the geometric and electronic structure of metal active centers on catalytic performance is systematically introduced, including substrates, central metal atoms, and the coordination environment. Then theoretical understanding of atomic catalysts for electrocatalysis is innovatively discussed, including synergistic effects, defect coupled spin state change and crystal field distortion spin state change. In addition, we propose the challenges to optimize atomic catalysts for electrocatalysis applications, including controlled synthesis, increasing the density of active sites, enhancing intrinsic activity, and improving the stability. Moreover, the structure-function relationships of atomic catalysts in the CO2 reduction reaction, nitrogen reduction reaction, oxygen reduction reaction, hydrogen evolution reaction, and oxygen evolution reaction are highlighted. To facilitate the development of high-performance atomic catalysts, several technical challenges and research orientations are put forward.
Collapse
Affiliation(s)
- Tianmi Tang
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Xue Bai
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Zhenlu Wang
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Jingqi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| |
Collapse
|
24
|
Xu G, Cui YS, Jiang XL, Xu CQ, Li J, Chen XD. Synthesis and characterization of iron clusters with an icosahedral [Fe@Fe 12] 16+ Core. Natl Sci Rev 2024; 11:nwad327. [PMID: 38487495 PMCID: PMC10939364 DOI: 10.1093/nsr/nwad327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 03/17/2024] Open
Abstract
Iron-metal clusters are crucial in a variety of critical biological and material systems, including metalloenzymes, catalysts, and magnetic storage devices. However, a synthetic high-nuclear iron cluster has been absent due to the extreme difficulty in stabilizing species with direct iron-iron bonding. In this work, we have synthesized, crystallized, and characterized a (Tp*)4W4S12(Fe@Fe12) cluster (Tp* = tris(3,5-dimethyl-1-pyrazolyl)borate(1-)), which features a rare trideca-nuclear, icosahedral [Fe@Fe12] cluster core with direct multicenter iron-iron bonding between the interstitial iron (Fei) and peripheral irons (Fep), as well as Fep···Fep ferromagnetic coupling. Quantum chemistry studies reveal that the stability of the cluster arises from the 18-electron shell-closing of the [Fe@Fe12]16+ core, assisted by its bonding interactions with the peripheral tridentate [(Tp*)WS3]4- ligands which possess both S→Fe donation and spin-polarized Fe-W σ bonds. The ground-state electron spin is theoretically predicted to be S = 32/2 for the cluster. The existence of low oxidation-state (OS ∼ +1.23) iron in this compound may find interesting applications in magnetic storage, spintronics, redox chemistry, and cluster catalysis.
Collapse
Affiliation(s)
- Gan Xu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yun-Shu Cui
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xue-Lian Jiang
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Cong-Qiao Xu
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun Li
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Xu-Dong Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, China
| |
Collapse
|
25
|
Liu C, Chen F, Zhao BH, Wu Y, Zhang B. Electrochemical hydrogenation and oxidation of organic species involving water. Nat Rev Chem 2024; 8:277-293. [PMID: 38528116 DOI: 10.1038/s41570-024-00589-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 03/27/2024]
Abstract
Fossil fuel-driven thermochemical hydrogenation and oxidation using high-pressure H2 and O2 are still popular but energy-intensive CO2-emitting processes. At present, developing renewable energy-powered electrochemical technologies, especially those using clean, safe and easy-to-handle reducing agents and oxidants for organic hydrogenation and oxidation reactions, is urgently needed. Water is an ideal carrier of hydrogen and oxygen. Electrochemistry provides a powerful route to drive water splitting under ambient conditions. Thus, electrochemical hydrogenation and oxidation transformations involving water as the hydrogen source and oxidant, respectively, have been developed to be mild and efficient tools to synthesize organic hydrogenated and oxidized products. In this Review, we highlight the advances in water-participating electrochemical hydrogenation and oxidation reactions of representative organic molecules. Typical electrode materials, performance metrics and key characterization techniques are firstly introduced. General electrocatalyst design principles and controlling the microenvironment for promoting hydrogenation and oxygenation reactions involving water are summarized. Furthermore, paired hydrogenation and oxidation reactions are briefly introduced before finally discussing the challenges and future opportunities of this research field.
Collapse
Affiliation(s)
- Cuibo Liu
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Fanpeng Chen
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Bo-Hang Zhao
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Yongmeng Wu
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Bin Zhang
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, China.
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, China.
| |
Collapse
|
26
|
Korobov A. A possibility to infer frustrations of supported catalytic clusters from macro-scale observations. Sci Rep 2024; 14:3801. [PMID: 38361133 PMCID: PMC10869823 DOI: 10.1038/s41598-024-54485-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/12/2024] [Indexed: 02/17/2024] Open
Abstract
Recent experimental and theoretical studies suggest that dynamic active centres of supported heterogeneous catalysts may, under certain conditions, be frustrated. Such out-of-equilibrium materials are expected to possess unique catalytic properties and also higher level of functionality. The latter is associated with the navigation through the free energy landscapes with energetically close local minima. The lack of common approaches to the study of out-of-equilibrium materials motivates the search for specific ones. This paper suggests a way to infer some valuable information from the interplay between the intensity of reagent supply and regularities of product formation.
Collapse
Affiliation(s)
- Alexander Korobov
- Materials Chemistry Department, V. N. Karazin Kharkiv National University, Kharkiv, 61022, Ukraine.
| |
Collapse
|