1
|
Yi K, Chen W, Zhou X, Xie C, Zhong C, Zhu J. Bisphenol S exposure promoted stemness of triple-negative breast cancer cells via regulating Gli1-mediated Sonic hedgehog pathway. ENVIRONMENTAL RESEARCH 2024:120293. [PMID: 39505130 DOI: 10.1016/j.envres.2024.120293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/09/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
Bisphenol S (BPS), one of the most common alternatives for bisphenol A (BPA), has been implied to increase the risk of breast cancer. Triple-negative breast cancer (TNBC) is a highly aggressive type of breast cancer with a poor prognosis. However, the association between BPS and TNBC remains unclear. Cancer stem cells (CSCs) have a crucial role in breast cancer initiation, metastasis, and recurrence. Here, we proposed that BPS, equivalent to the human internal exposure and the environmental concentrations, enhanced CSC-like properties by upregulating sphere formation, self-renewal, the percentage of CD44+/CD24- cells, and the expression of CSC markers. Moreover, BPS promoted the migration, invasion, and epithelial-mesenchymal transition (EMT) in TNBC cells. Mechanistically, BPS activated the Sonic Hedgehog (SHH) signaling pathway in TNBC cells. Molecular docking analysis further showed that BPS upregulated SHH signaling pathway via directly binding Gli1 protein. Furthermore, inhibitor of SHH pathway or Gli1 siRNA attenuated the promoting effects of BPS on stemness, invasion, and migration of TNBC cells. In summary, our data firstly provide evidence that environmentally relevant BPS concentration treatment significantly enhanced TNBC malignant phenotype by activating the Sonic Hedgehog/Gli1 signaling pathway, raising high concerns about the potential population biology hazards of BPS.
Collapse
Affiliation(s)
- Kefan Yi
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weiyi Chen
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xu Zhou
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chunfeng Xie
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Jianyun Zhu
- Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China.
| |
Collapse
|
2
|
Wang Y, Wang Q, Tao S, Li H, Zhang X, Xia Y, Wang Y, Yang C, Sui C. Identification of SPP1 + macrophages in promoting cancer stemness via vitronectin and CCL15 signals crosstalk in liver cancer. Cancer Lett 2024; 604:217199. [PMID: 39216547 DOI: 10.1016/j.canlet.2024.217199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Macrophages play a multifaceted role in cancer biology, with both pro-tumorigenic and anti-tumorigenic functions. Understanding the mechanisms underlying macrophage involvement in cancer progression is essential for the development of therapeutic strategies. Our study analyzed single-cell RNA sequencing data from 12 patients with liver cancer and identified a subpopulation of macrophages characterized by elevated expression of SPP1, which correlates with poor prognosis in liver cancer patients. These SPP1+ macrophages induce upregulation of tumor stemness through a vitronectin (VTN)-dependent paracrine mechanism. Mechanistically, VTN derived from SPP1+ macrophages promote integrin αvβ5/adenosine 5'-monophosphate-activated protein kinase (AMPK)/Yes-associated protein 1 (YAP1)/SYR-box transcription factor 4 (SOX4) signaling, mediating liver tumor stemness and progression. Conversely, CCL15 produced by liver cancer cells drives polarization of M0 macrophages toward an SPP1+ macrophage phenotype, establishing a positive feedback loop of macrophage-tumor stemness. Furthermore, the presence of SPP1+ macrophages confers chemoresistance in liver cancer, and inhibition of the macrophage-tumor feedback loop through targeting integrin αvβ5/YAP1 signaling sensitizes liver cancer cells to chemotherapy. Our study highlights the crucial role of SPP1+ macrophages in liver cancer progression, providing novel insights for clinical liver cancer therapy.
Collapse
Affiliation(s)
- Yizhou Wang
- Department of Hepatic Surgery IV, The Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, PR China; Eastern Hepatobiliary Clinical Research Institute, Third Affiliated Hospital of Navy Medical University, Shanghai, 200438, PR China.
| | - Qing Wang
- Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China.
| | - Shuangfen Tao
- Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China.
| | - Haoyu Li
- Department of Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, PR China.
| | - Xiaofeng Zhang
- Department of Hepatic Surgery IV, The Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, PR China; Eastern Hepatobiliary Clinical Research Institute, Third Affiliated Hospital of Navy Medical University, Shanghai, 200438, PR China.
| | - Yong Xia
- Department of Hepatic Surgery IV, The Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, PR China; Eastern Hepatobiliary Clinical Research Institute, Third Affiliated Hospital of Navy Medical University, Shanghai, 200438, PR China.
| | - Yue Wang
- Department of Stem Cell and Regeneration Medicine, Translational Medicine Research Center, Naval Medical University, Shanghai, 200433, PR China; Department of Histology and Embryology, Basic Medicine Collage, Naval Medical University, Shanghai, 200433, PR China; Shanghai Key Laboratory of Cell Engineering, Shanghai, 200062, PR China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200092, PR China.
| | - Cheng Yang
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China; Shanghai GoBroad Cancer Hospital, China Pharmaceutical University, Shanghai, 200131, PR China.
| | - Chengjun Sui
- Department of Special Treatment, Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, PR China.
| |
Collapse
|
3
|
Luo S, Yue M, Wang D, Lu Y, Wu Q, Jiang J. Breaking the barrier: Epigenetic strategies to combat platinum resistance in colorectal cancer. Drug Resist Updat 2024; 77:101152. [PMID: 39369466 DOI: 10.1016/j.drup.2024.101152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/22/2024] [Accepted: 09/20/2024] [Indexed: 10/08/2024]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related mortality worldwide. Platinum-based drugs, such as cisplatin and oxaliplatin, are frontline chemotherapy for CRC, effective in both monotherapy and combination regimens. However, the clinical efficacy of these treatments is often undermined by the development of drug resistance, a significant obstacle in cancer therapy. In recent years, epigenetic alterations have been recognized as key players in the acquisition of resistance to platinum drugs. Targeting these dysregulated epigenetic mechanisms with small molecules represents a promising therapeutic strategy. This review explores the complex relationship between epigenetic changes and platinum resistance in CRC, highlighting current epigenetic therapies and their effectiveness in countering resistance mechanisms. By elucidating the epigenetic underpinnings of platinum resistance, this review aims to contribute to ongoing efforts to improve treatment outcomes for CRC patients.
Collapse
Affiliation(s)
- Shiwen Luo
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Ming Yue
- Department of Pharmacy, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Dequan Wang
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yukang Lu
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Qingming Wu
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Jue Jiang
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
4
|
Wang K, Zhu S, Zhang Y, Wang Y, Bian Z, Lu Y, Shao Q, Jin X, Xu X, Mo R. Targeting the GTPase RAN by liposome delivery for tackling cancer stemness-emanated therapeutic resistance. J Control Release 2024; 375:589-600. [PMID: 39245420 DOI: 10.1016/j.jconrel.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Cancer therapeutic resistance as a common hallmark of cancer is often responsible for treatment failure and poor patient survival. Cancer stem-like cells (CSCs) are one of the main contributors to therapeutic resistance, cancer relapse and metastasis. Through screening from our in-house library of natural products, we found polyphyllin II (PPII) as a potent anti-CSC compound for triple-negative breast cancer (TNBC). To enhance anti-CSC selectivity and improve druggability of PPII, we leverage the liposome-mediated delivery technique for increasing solubility of PPII, and more significantly, attaining broader therapeutic window. Liposomal PPII demonstrates its marked potency to inhibit tumor growth, post-surgical recurrence and metastasis compared to commercial liposomal chemotherapeutics in the mouse models of CSC-enriched TNBC tumor. We further identify PPII as an inhibitor of the Ras-related nuclear (RAN) protein whose upregulated expression is correlated with poor clinical outcomes. The direct binding of PPII to RAN reduces TNBC stemness, thereby suppressing tumor progression. Our work offers a significance from drug discovery to drug delivery benefiting from liposome technique for targeted treatment of high-stemness tumor.
Collapse
Affiliation(s)
- Kaili Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Sitong Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Ying Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Yuqian Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Zhenqian Bian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Yougong Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Quanlin Shao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Xiang Jin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xiaojun Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China; Department of Pharmacy, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Center for Innovative Traditional Chinese Medicine Target and New Drug Research, International Institutes of Medicine, Zhejiang University, Yiwu 322001, Zhejiang, China.
| | - Ran Mo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
5
|
Al-Wahaibi LH, El-Sheref EM, Tawfeek HN, Abou-Zied HA, Rabea SM, Bräse S, Youssif BGM. Design, synthesis, and biological evaluation of novel quinoline-based EGFR/HER-2 dual-target inhibitors as potential anti-tumor agents. RSC Adv 2024; 14:32978-32991. [PMID: 39434991 PMCID: PMC11492426 DOI: 10.1039/d4ra06394e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024] Open
Abstract
Dual targeting of EGFR and HER2 is a valid anti-cancer approach for treating solid tumors. We designed and synthesized a new series of EGFR/HER-2 dual-target inhibitors based on quinoline derivatives. The structure of the newly synthesized compounds was verified using 1H NMR, 13C NMR, and elemental analysis. The targeted compounds were tested for antiproliferative efficacy against four cancer cell lines. All the compounds had GI50s ranging from 25 to 82 nM, with breast (MCF-7) and lung (A-549) cancer cell lines being the most sensitive. Compound 5a demonstrated the most significant antiproliferative action. With inhibitory (IC50) values of 71 and 31 nM, respectively, compound 5a proved to be the most effective dual-target inhibitor of EGFR and HER-2, outperforming the reference erlotinib (IC50 = 80 nM) as an EGFR inhibitor but falling short of the clinically used agent lapatinib (IC50 = 26 nM) as a HER2 inhibitor. The apoptotic potential activity of 5a was examined, and the findings demonstrated that 5a promotes apoptosis by activating caspase-3, 8, and Bax while simultaneously reducing the expression of the anti-apoptotic protein Bcl-2. The docking studies provided valuable insights into the binding interactions of compounds 3e and 5a with EGFR, effectively rationalizing the observed SAR trends.
Collapse
Affiliation(s)
- Lamya H Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah Bint Abdulrahman University Riyadh 11671 Saudi Arabia
| | - Essmat M El-Sheref
- Chemistry Department, Faculty of Science, Minia University El Minia 61519 Egypt
| | - Hendawy N Tawfeek
- Chemistry Department, Faculty of Science, Minia University El Minia 61519 Egypt
- Unit of Occupational of Safety and Health, Administration Office of Minia University El-Minia 61519 Egypt
| | - Hesham A Abou-Zied
- Medicinal Chemistry Department, Faculty of Pharmacy, Deraya University Minia Egypt
| | - Safwat M Rabea
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University Minia 61519 Egypt
| | - Stefan Bräse
- Institute of Biological and Chemical Systems, IBCS-FMS, Karlsruhe Institute of Technology Karlsruhe 76131 Germany
| | - Bahaa G M Youssif
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt +20-01098294419
| |
Collapse
|
6
|
Cheng X, Li P, Jiang R, Meng E, Wu H. ADC: a deadly killer of platinum resistant ovarian cancer. J Ovarian Res 2024; 17:196. [PMID: 39367438 PMCID: PMC11451100 DOI: 10.1186/s13048-024-01523-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024] Open
Abstract
Platinum is a key component of ovarian cancer systemic therapy. However, most patients will eventually face a recurrence, leading to chemotherapy resistance, especially against platinum. For individuals with platinum-resistant ovarian cancer (PROC), treatment options are limited, and their survival prospects are grim. The emergence of antibody-drug conjugates (ADCs) shows promises as a future treatment for PROC. This review synthesizes current research on the effectiveness of ADCs in treating PROC. It encapsulates the advancements and clinical trials of novel ADCs that target specific antigens such as Folate Receptor alpha (FRα), MUC16, NaPi2b, Mesothelin, Dipeptidase 3(DPEP3), and human epidermal growth factor receptor 2 (HER2), as well as tissue factor, highlighting their potential anti-tumor efficacy and used in combination with other therapies. The ADCs landscape in ovarian cancer therapeutics is swiftly evolving, promising more potent and efficacious treatment avenues.
Collapse
Affiliation(s)
- Xu Cheng
- The Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing City, Jiangsu Province, China
| | - Ping Li
- The Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing City, Jiangsu Province, China
| | - Rongqi Jiang
- The Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing City, Jiangsu Province, China
| | - Enqing Meng
- The Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing City, Jiangsu Province, China
| | - Hao Wu
- The Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing City, Jiangsu Province, China.
| |
Collapse
|
7
|
Ma D, Liang R, Luo Q, Song G. Pressure loading regulates the stemness of liver cancer stem cells via YAP/BMF signaling axis. J Cell Physiol 2024:e31451. [PMID: 39358905 DOI: 10.1002/jcp.31451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/27/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
Cancer stem cells (CSCs) are considered the major cause of the occurrence, progression, chemoresistance/radioresistance, recurrence, and metastasis of cancer. Increased interstitial fluid pressure (IFP) is a key feature of solid tumors. Our previous study showed that the distribution of liver cancer stem cells (LCSCs) correlated with the mechanical heterogeneity within liver cancer tissues. However, the regulation of liver cancer's mechanical microenvironment on the LCSC stemness is not fully understood. Here, we employed a cellular pressure-loading device to investigate the effects of normal IFP (5 mmHg), as well as increased IFP (40 and 200 mmHg) on the stemness of LCSCs. Compared to the control LCSCs (exposure to 5 mmHg pressure loading), the LCSCs exposed to 40 mmHg pressure loading exhibited significantly upregulated expression of CSC markers (CD44, EpCAM, Nanog), enhanced sphere and colony formation capacities, and tumorigenic potential, whereas continuously increased pressure to 200 mmHg suppressed the LCSC characteristics. Mechanistically, pressure loading regulated Yes-associated protein (YAP) activity and Bcl-2 modifying factor (BMF) expression. YAP transcriptionally regulated BMF expression to affect the stemness of LCSCs. Knockdown of YAP and overexpression of BMF attenuated pressure-mediated stemness and tumorgenicity, while YAP-deficient and BMF-deletion recused pressure-dependent stemness on LCSCs, suggesting the involvement of YAP/BMF signaling axis in this process. Together, our findings provide a potential target for overcoming the stemness of CSCs and elucidate the significance of increased IFP in cancer progression.
Collapse
Affiliation(s)
- Di Ma
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Rui Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
8
|
Erturk E, Ari F, Onur OE, Mustafa Gokgoz S, Tolunay S. Value of miR-31 and miR-150-3p as diagnostic and prognostic biomarkers for breast cancer. Mol Biol Rep 2024; 51:1030. [PMID: 39352561 DOI: 10.1007/s11033-024-09958-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/19/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND The most prevalent malignancy among women is breast cancer (BC). MicroRNAs (miRNAs) play a role in the initiation and progression of BC by influencing breast cancer stem cells (BCSCs) but the diagnostic and prognostic roles of those miRNAs on BC patients are still unknown. It was aimed to investigate expression profiles, diagnostic and prognostic potentials of BCSC-related miRNAs in different subtypes (Luminal A and B, HER2 + and TNBC) of BC patients. METHODS AND RESULTS Expression analysis of 15 BCSC-related miRNAs was performed in 50 breast tumor tissues and 20 adjacent non-tumor tissues obtained from BC patients using the qRT-PCR method. The expression levels of miR-31 and miR-150-3p were significantly upregulated in the tumor tissues compared to the adjacent non-tumor tissues (p < 0.05). miR-31 expression upregulated in the Luminal A and Luminal B group compared to non-tumor tissue (p < 0.05). miR-31 expression was determined to be significantly higher in the Luminal group (Luminal A and B) compared to the aggressive group (HER2 + and TNBC) (p < 0.05). According to the ROC analysis, the area under the curve (AUC) of miR-31 and miR-150-3p were 0.66 with a sensitivity of 68% and a specificity of 70%. A significant inverse correlation was observed between miR-31 expression with metastatic carcinoma status, in situ component, and Ki67 value in tumors, and high miR-150-3p expression was correlated with p63 expression (p < 0.05). CONCLUSION miR-31 and miR-150-3p have the potential to serve as biomarkers for guiding diagnosis, evaluating prognosis, and metastatic process in patients with BC.
Collapse
Affiliation(s)
- Elif Erturk
- Vocational School of Health Services, Bursa Uludag University, 16059, Bursa, Türkiye
| | - Ferda Ari
- Department of Biology, Science and Art Faculty, Bursa Uludag University, 16059, Bursa, Türkiye.
| | - Omer Enes Onur
- Department of Biology, Science and Art Faculty, Bursa Uludag University, 16059, Bursa, Türkiye
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Sehsuvar Mustafa Gokgoz
- Department of General Surgery, Faculty of Medicine, Bursa Uludag University, 16059, Bursa, Türkiye
| | - Sahsine Tolunay
- Department of Pathology, Faculty of Medicine, Bursa Uludag University, 16059, Bursa, Türkiye
| |
Collapse
|
9
|
Zheng D, Jin S, Liu PS, Ye J, Xie X. Targeting ferroptosis by natural products in pathophysiological conditions. Arch Toxicol 2024; 98:3191-3208. [PMID: 38987487 DOI: 10.1007/s00204-024-03812-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
Ferroptosis is a form of cell death that is induced by iron-mediated accumulation of lipid peroxidation. The involvement of ferroptosis in different pathophysiological conditions has offered new perspectives on potential therapeutic interventions. Natural products, which are widely recognized for their significance in drug discovery and repurposing, have shown great promise in regulating ferroptosis by targeting various ferroptosis players. In this review, we discuss the regulatory mechanisms of ferroptosis and its implications in different pathological conditions. We dissect the interactions between natural products and ferroptosis in cancer, ischemia/reperfusion, neurodegenerative diseases, acute kidney injury, liver injury, and cardiomyopathy, with an emphasis on the relevance of ferroptosis players to disease targetability.
Collapse
Affiliation(s)
- Daheng Zheng
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, China
| | - Shikai Jin
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, China
| | - Pu-Ste Liu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Jianping Ye
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, China.
| | - Xin Xie
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, China.
| |
Collapse
|
10
|
Zhang X, Du W, Huang X, Zhong H, Hu N. An overview of current research on cancer stem cells: a bibliometric analysis. Clin Transl Oncol 2024; 26:2466-2478. [PMID: 38625493 DOI: 10.1007/s12094-024-03486-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Cancer stem cells (CSCs) represent a potential mechanism contributing to tumorigenesis, metastasis, recurrence, and drug resistance. The objective of this study is to investigate the status quo and advancements in CSC research utilizing bibliometric analysis. METHODS Publications related to CSCs from 2010 to 2022 were collected from the Web of Science Core Collection database. Various analytical tools including CiteSpace, VOSviewer, Scimago Graphica, and GraphPad Prism were used to visualize aspects such as co-authorship, co-occurrence, and co-citation within CSC research to provide an objective depiction of the contemporary status and developmental trajectory of the CSC field. RESULTS A total of 22,116 publications were included from 1942 journals written by 95,992 authors. Notably, China emerged as the country with the highest number of publications, whereas the United States exerted the most significant influence within the field. MD Anderson Cancer Center emerged as the institution making the most comprehensive contributions. Wicha M.S. emerged as the most prolific and influential researcher. Among journals, Cancers emerged as a focal point for CSC research, consistently publishing a wealth of high-quality papers. Furthermore, it was observed that most journals tended to approach CSC research from molecular, biological, and immunological perspectives. The research into CSCs encompassed a broad array of topics, including isolation and enrichment techniques, biomarkers, biological characteristics, cancer therapy strategies, and underlying biological regulatory mechanisms. Notably, exploration of the tumor microenvironment and extracellular vesicles emerged as burgeoning research frontiers for CSCs. CONCLUSION The research on CSCs has garnered growing interest. A trend toward multidisciplinary homogeneity is emerging within the realm of CSCs. Further investigation could potentially center on the patients of extracellular vesicles and the tumor microenvironment in relation to CSCs.
Collapse
Affiliation(s)
- Xueyang Zhang
- International Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Wenbo Du
- International Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Xizhi Huang
- International Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Haoting Zhong
- International Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Ning Hu
- The First Affiliated Hospital, Chongqing Medical University, No. 1 of Youyi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
11
|
Ji G, Liu J, Zhao Z, Lan J, Yang Y, Wang Z, Feng H, Ji K, Jiang X, Xia H, Wei G, Zhang Y, Zhang Y, Du X, Wang Y, Yang Y, Liu Z, Zhang K, Mei Q, Sun R, Lu H. Polyamine Anabolism Promotes Chemotherapy-Induced Breast Cancer Stem Cell Enrichment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404853. [PMID: 39058337 PMCID: PMC11516096 DOI: 10.1002/advs.202404853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/27/2024] [Indexed: 07/28/2024]
Abstract
Breast cancer patients may initially benefit from cytotoxic chemotherapy but experience treatment resistance and relapse. Chemoresistant breast cancer stem cells (BCSCs) play a pivotal role in cancer recurrence and metastasis, however, identification and eradication of BCSC population in patients are challenging. Here, an mRNA-based BCSC signature is developed using machine learning strategy to evaluate cancer stemness in primary breast cancer patient samples. Using the BCSC signature, a critical role of polyamine anabolism in the regulation of chemotherapy-induced BCSC enrichment, is elucidated. Mechanistically, two key polyamine anabolic enzymes, ODC1 and SRM, are directly activated by transcription factor HIF-1 in response to chemotherapy. Genetic inhibition of HIF-1-controlled polyamine anabolism blocks chemotherapy-induced BCSC enrichment in vitro and in xenograft mice. A novel specific HIF-1 inhibitor britannin is identified through a natural compound library screening, and demonstrate that coadministration of britannin efficiently inhibits chemotherapy-induced HIF-1 transcriptional activity, ODC1 and SRM expression, polyamine levels, and BCSC enrichment in vitro and in xenograft and autochthonous mouse models. The findings demonstrate the key role of polyamine anabolism in BCSC regulation and provide a new strategy for breast cancer treatment.
Collapse
Affiliation(s)
- Guangyu Ji
- The Second Hospital and Advanced Medical Research InstituteCheeloo College of MedicineShandong UniversityJinan250012China
- School of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinan250012China
| | - Jia Liu
- The Second Hospital and Advanced Medical Research InstituteCheeloo College of MedicineShandong UniversityJinan250012China
| | - Zhiqun Zhao
- The Second Hospital and Advanced Medical Research InstituteCheeloo College of MedicineShandong UniversityJinan250012China
| | - Jie Lan
- Department of Radiation OncologyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - You Yang
- Department of Pediatrics (Children Hematological Oncology)Birth Defects and Childhood Hematological Oncology LaboratoryThe Affiliated Hospital of Southwest Medical UniversitySichuan Clinical Research Center for Birth DefectsLuzhou646000China
| | - Zheng Wang
- Department of UrologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan250021China
| | - Huijing Feng
- Cancer Center, Shanxi Bethune HospitalShanxi Academy of Medical SciencesTongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuan030032China
| | - Kai Ji
- Shandong Helix Matrix Data TechnologyJinan250014China
| | - Xiaofeng Jiang
- Youth League CommitteeQilu HospitalShandong UniversityJinan250012China
| | - Huize Xia
- The Second Hospital and Advanced Medical Research InstituteCheeloo College of MedicineShandong UniversityJinan250012China
| | - Guangyao Wei
- The Second Hospital and Advanced Medical Research InstituteCheeloo College of MedicineShandong UniversityJinan250012China
| | - Yajing Zhang
- The Second Hospital and Advanced Medical Research InstituteCheeloo College of MedicineShandong UniversityJinan250012China
| | - Yuhong Zhang
- The Second Hospital and Advanced Medical Research InstituteCheeloo College of MedicineShandong UniversityJinan250012China
| | - Xinlong Du
- The Second Hospital and Advanced Medical Research InstituteCheeloo College of MedicineShandong UniversityJinan250012China
| | - Yawen Wang
- Department of Breast Surgery, General SurgeryQilu HospitalShandong UniversityJinan250012China
| | - Yuanyuan Yang
- Shandong Artificial Intelligence InstituteQilu University of Technology (Shandong Academy of Sciences)Jinan250399China
| | - Zhaojian Liu
- School of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinan250012China
| | - Kai Zhang
- Department of Breast Surgery, General SurgeryQilu HospitalShandong UniversityJinan250012China
| | - Qi Mei
- Cancer Center, Shanxi Bethune HospitalShanxi Academy of Medical SciencesTongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuan030032China
- Department of Oncology, Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Rong Sun
- The Second Hospital and Advanced Medical Research InstituteCheeloo College of MedicineShandong UniversityJinan250012China
| | - Haiquan Lu
- The Second Hospital and Advanced Medical Research InstituteCheeloo College of MedicineShandong UniversityJinan250012China
- Key Laboratory for Experimental Teratology of the Ministry of EducationCheeloo College of MedicineShandong UniversityJinan250012China
- Center for Reproductive MedicineShandong UniversityJinan250001China
| |
Collapse
|
12
|
Li J, Wang Y, Wang Z, Wei Y, Diao P, Wu Y, Wang D, Jiang H, Wang Y, Cheng J. Super-Enhancer Driven LIF/LIFR-STAT3-SOX2 Regulatory Feedback Loop Promotes Cancer Stemness in Head and Neck Squamous Cell Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404476. [PMID: 39206755 PMCID: PMC11516160 DOI: 10.1002/advs.202404476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Super-enhancers (SEs) have been recognized as key epigenetic regulators underlying cancer stemness and malignant traits by aberrant transcriptional control and promising therapeutic targets against human cancers. However, the SE landscape and their roles during head and neck squamous cell carcinoma (HNSCC) development especially in cancer stem cells (CSCs) maintenance remain underexplored yet. Here, we identify leukemia inhibitory factor (LIF)-SE as a representative oncogenic SE to activate LIF transcription in HNSCC. LIF secreted from cancer cells and cancer-associated fibroblasts promotes cancer stemness by driving SOX2 transcription in an autocrine/paracrine manner, respectively. Mechanistically, enhancer elements E1, 2, 4 within LIF-SE recruit SOX2/SMAD3/BRD4/EP300 to facilitate LIF transcription; LIF activates downstream LIFR-STAT3 signaling to drive SOX2 transcription, thus forming a previously unknown regulatory feedback loop (LIF-SE-LIF/LIFR-STAT3-SOX2) to maintain LIF overexpression and CSCs stemness. Clinically, increased LIF abundance in clinical samples correlate with malignant clinicopathological features and patient prognosis; higher LIF concentrations in presurgical plasma dramatically diminish following cancer eradication. Therapeutically, pharmacological targeting LIF-SE-LIF/LIFR-STAT3 significantly impairs tumor growth and reduces CSC subpopulations in xenograft and PDX models. Our findings reveal a hitherto uncharacterized LIF-SE-mediated auto-regulatory loop in regulating HNSCC stemness and highlight LIF as a novel noninvasive biomarker and potential therapeutic target for HNSCC.
Collapse
Affiliation(s)
- Jin Li
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatological Hospital of Nanjing Medical UniversityJiangsu210029China
- Jiangsu Key Laboratory of Oral DiseaseNanjing Medical UniversityJiangsu210029China
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjing Medical UniversityJiangsu210029China
| | - Yuhan Wang
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatological Hospital of Nanjing Medical UniversityJiangsu210029China
- Jiangsu Key Laboratory of Oral DiseaseNanjing Medical UniversityJiangsu210029China
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjing Medical UniversityJiangsu210029China
| | - Ziyu Wang
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatological Hospital of Nanjing Medical UniversityJiangsu210029China
- Jiangsu Key Laboratory of Oral DiseaseNanjing Medical UniversityJiangsu210029China
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjing Medical UniversityJiangsu210029China
| | - Yuxiang Wei
- Jiangsu Key Laboratory of Oral DiseaseNanjing Medical UniversityJiangsu210029China
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjing Medical UniversityJiangsu210029China
| | - Pengfei Diao
- Jiangsu Key Laboratory of Oral DiseaseNanjing Medical UniversityJiangsu210029China
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjing Medical UniversityJiangsu210029China
| | - Yaping Wu
- Jiangsu Key Laboratory of Oral DiseaseNanjing Medical UniversityJiangsu210029China
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjing Medical UniversityJiangsu210029China
| | - Dongmiao Wang
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatological Hospital of Nanjing Medical UniversityJiangsu210029China
| | - Hongbing Jiang
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatological Hospital of Nanjing Medical UniversityJiangsu210029China
- Jiangsu Key Laboratory of Oral DiseaseNanjing Medical UniversityJiangsu210029China
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjing Medical UniversityJiangsu210029China
| | - Yanling Wang
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatological Hospital of Nanjing Medical UniversityJiangsu210029China
- Jiangsu Key Laboratory of Oral DiseaseNanjing Medical UniversityJiangsu210029China
| | - Jie Cheng
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatological Hospital of Nanjing Medical UniversityJiangsu210029China
- Jiangsu Key Laboratory of Oral DiseaseNanjing Medical UniversityJiangsu210029China
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjing Medical UniversityJiangsu210029China
| |
Collapse
|
13
|
Xiong B, Liu W, Liu Y, Chen T, Lin A, Song J, Qu L, Luo P, Jiang A, Wang L. A Multi-Omics Prognostic Model Capturing Tumor Stemness and the Immune Microenvironment in Clear Cell Renal Cell Carcinoma. Biomedicines 2024; 12:2171. [PMID: 39457484 PMCID: PMC11504857 DOI: 10.3390/biomedicines12102171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Cancer stem-like cells (CSCs), a distinct subset recognized for their stem cell-like abilities, are intimately linked to the resistance to radiotherapy, metastatic behaviors, and self-renewal capacities in tumors. Despite their relevance, the definitive traits and importance of CSCs in the realm of oncology are still not fully comprehended, particularly in the context of clear cell renal cell carcinoma (ccRCC). A comprehensive understanding of these CSCs' properties in relation to stemness, and their impact on the efficacy of treatment and resistance to medication, is of paramount importance. Methods: In a meticulous research effort, we have identified new molecular categories designated as CRCS1 and CRCS2 through the application of an unsupervised clustering algorithm. The analysis of these subtypes included a comprehensive examination of the tumor immune environment, patterns of metabolic activity, progression of the disease, and its response to immunotherapy. In addition, we have delved into understanding these subtypes' distinctive clinical presentations, the landscape of their genomic alterations, and the likelihood of their response to various pharmacological interventions. Proceeding from these insights, prognostic models were developed that could potentially forecast the outcomes for patients with ccRCC, as well as inform strategies for the surveillance of recurrence after treatment and the handling of drug-resistant scenarios. Results: Compared with CRCS1, CRCS2 patients had a lower clinical stage/grading and a better prognosis. The CRCS2 subtype was in a hypoxic state and was characterized by suppression and exclusion of immune function, which was sensitive to gefitinib, erlotinib, and saracatinib. The constructed prognostic risk model performed well in both training and validation cohorts, helping to identify patients who may benefit from specific treatments or who are at risk of recurrence and drug resistance. A novel therapeutic target, SAA2, regulating neutrophil and fibroblast infiltration, and, thus promoting ccRCC progression, was identified. Conclusions: Our findings highlight the key role of CSCs in shaping the ccRCC tumor microenvironment, crucial for therapy research and clinical guidance. Recognizing tumor stemness helps to predict treatment efficacy, recurrence, and drug resistance, informing treatment strategies and enhancing ccRCC patient outcomes.
Collapse
Affiliation(s)
- Beibei Xiong
- Department of Oncology, The First People’s Hospital of Shuangliu District, Chengdu 610200, China;
| | - Wenqiang Liu
- Department of Urology, Changhai Hospital, Navel Medical University (Second Military Medical University), Shanghai 200433, China; (W.L.); (Y.L.); (T.C.); (J.S.)
| | - Ying Liu
- Department of Urology, Changhai Hospital, Navel Medical University (Second Military Medical University), Shanghai 200433, China; (W.L.); (Y.L.); (T.C.); (J.S.)
| | - Tong Chen
- Department of Urology, Changhai Hospital, Navel Medical University (Second Military Medical University), Shanghai 200433, China; (W.L.); (Y.L.); (T.C.); (J.S.)
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; (A.L.); (P.L.)
| | - Jiaao Song
- Department of Urology, Changhai Hospital, Navel Medical University (Second Military Medical University), Shanghai 200433, China; (W.L.); (Y.L.); (T.C.); (J.S.)
| | - Le Qu
- Department of Urology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China;
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; (A.L.); (P.L.)
| | - Aimin Jiang
- Department of Urology, Changhai Hospital, Navel Medical University (Second Military Medical University), Shanghai 200433, China; (W.L.); (Y.L.); (T.C.); (J.S.)
| | - Linhui Wang
- Department of Urology, Changhai Hospital, Navel Medical University (Second Military Medical University), Shanghai 200433, China; (W.L.); (Y.L.); (T.C.); (J.S.)
| |
Collapse
|
14
|
Chen L, Li F, Li R, Zheng K, Zhang X, Ma H, Li K, Nie L. Thermo-Responsive Hydrogel Based on Lung Decellularized Extracellular Matrix for 3D Culture Model to Enhance Cancer Stem Cell Characteristics. Molecules 2024; 29:4385. [PMID: 39339380 PMCID: PMC11433703 DOI: 10.3390/molecules29184385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Cancer stem cells (CSCs) are most likely the main cause of lung cancer formation, metastasis, drug resistance, and genetic heterogeneity. Three-dimensional (3D) ex vivo cell culture models can facilitate stemness improvement and CSC enrichment. Considering the critical role of extracellular matrix (ECM) on CSC properties, the present study developed a thermo-responsive hydrogel using the porcine decellularized lung for 3D cell culture, and the cell-laden hydrogel culturing model was used to explore the CSC characteristics and potential utilization in CSC-specific drug evaluation. Results showed that the lung dECM hydrogel (LEH) was composed of the main ECM components and displayed excellent cellular compatibility. In addition, lung cancer cells 3D cultured in LEH displayed the overexpression of metastasis-related genes and enhanced migration properties, as compared with those in two-dimensional (2D) conditions. Notably, the CSC features, including the expression level of stemness-associated genes, colony formation capability, drug resistance, and the proportion of cancer stem-like cells (CD133+), were also enhanced in 3D cells. Furthermore, the attenuation effect of epigallocatechin gallate (EGCG) on CSC properties in the 3D model was observed, confirming the potential practicability of the 3D culture on CSC-targeted drug screening. Overall, our results suggest that the fabricated LEH is an effective and facile platform for 3D cell culture and CSC-specific drug evaluation.
Collapse
Affiliation(s)
- Lei Chen
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Fanglu Li
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Ruobing Li
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Ke Zheng
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Xinyi Zhang
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Huijing Ma
- Library, Xinyang Normal University, Xinyang 464000, China
| | - Kaiming Li
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Lei Nie
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
15
|
Cheng X, Wei Y, Deng L, Dong H, Wei H, Xie C, Tuo Y, Chen M, Qin H, Cao Y. Expression and biological significance of topoisomerase II α (TOP2A) in oral squamous cell carcinoma. Discov Oncol 2024; 15:423. [PMID: 39254737 PMCID: PMC11387568 DOI: 10.1007/s12672-024-01295-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Topoisomerase II α(TOP2A) is usually highly expressed in rapidly proliferating cells, and its expression is regulated by cell cycle. The relationship between TOP2A and oral squamous cell carcinoma (OSCC) needs further study. METHODS TOP2A immunoreactivity was analyzed using immunohistochemical (IHC) staining analysis in specimens from 20 OSCC patients. Based on the high-throughput sequencing and gene microarray database, the expression of TOP2A mRNA in OSCC was calculated and its ability to identify OSCC tissues was evaluated by diagnostic analysis. CRISPR screen was used to select the genes necessary for OSCC cell growth, and the gene set was analyzed for function enrichment. Single-cell RNA sequencing analysis was conducted to evaluate the expression level of TOP2A mRNA in OSCC cells. RESULTS Compared with normal oral tissues, the expression of TOP2A protein was up-regulated in OSCC tissues. A total of 1240 OSCC and 428 non-OSCC oral tissue samples were included based on high-throughput dataset retrieval, and it was confirmed that TOP2A mRNA was highly expressed in OSCC tissues [SMD = 1.51 (95% CI 0.94-2.07), sROC AUC = 0.96 (95% CI 0.94-0.98)]. As an essential gene for OSCC cell growth, single-cell RNA sequencing data also confirmed that TOP2A mRNA expression was up-regulated in OSCC cells. CONCLUSION The up-regulation of TOP2A may play a pivotal role in OSCC.
Collapse
Affiliation(s)
- Xujie Cheng
- Department of Oral and Maxillofacial Surgery, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Yuxing Wei
- Department of Oral and Maxillofacial Surgery, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Limei Deng
- Department of Oral and Maxillofacial Surgery, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Hao Dong
- Department of Oral and Maxillofacial Surgery, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Huiping Wei
- Department of Oral and Maxillofacial Surgery, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Cheng Xie
- Department of Oral and Maxillofacial Surgery, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Yangjuan Tuo
- Department of Oral and Maxillofacial Surgery, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Meiyu Chen
- Department of Oral and Maxillofacial Surgery, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Hao Qin
- Department of Oral and Maxillofacial Surgery, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Yong Cao
- Department of Oral and Maxillofacial Surgery, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China.
| |
Collapse
|
16
|
Galassi C, Esteller M, Vitale I, Galluzzi L. Epigenetic control of immunoevasion in cancer stem cells. Trends Cancer 2024:S2405-8033(24)00171-7. [PMID: 39244477 DOI: 10.1016/j.trecan.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/24/2024] [Accepted: 08/12/2024] [Indexed: 09/09/2024]
Abstract
Cancer stem cells (CSCs) are a poorly differentiated population of malignant cells that (at least in some neoplasms) is responsible for tumor progression, resistance to therapy, and disease relapse. According to a widely accepted model, all stages of cancer progression involve the ability of neoplastic cells to evade recognition or elimination by the host immune system. In line with this notion, CSCs are not only able to cope with environmental and therapy-elicited stress better than their more differentiated counterparts but also appear to better evade tumor-targeting immune responses. We summarize epigenetic modifications of DNA and histones through which CSCs evade immune recognition or elimination, and propose that such alterations constitute promising therapeutic targets to increase the sensitivity of some malignancies to immunotherapy.
Collapse
Affiliation(s)
- Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain; Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Ilio Vitale
- Italian Institute for Genomic Medicine, Istituto di Ricovero e Cura a Carattere Scientifico (IRCSS) Candiolo, Torino, Italy; Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy.
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
17
|
Liao Y, Yang P, Yang C, Zhuang K, Fahira A, Wang J, Liu Z, Yan L, Huang Z. Clinical signature and associated immune metabolism of NLRP1 in pan-cancer. J Cell Mol Med 2024; 28:e70100. [PMID: 39318060 PMCID: PMC11422451 DOI: 10.1111/jcmm.70100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 06/07/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024] Open
Abstract
Inflammations have been linked to tumours, suggesting a potential association between NLRP1 and cancer. Nevertheless, a systematic assessment of NLRP1's role across various cancer types currently absent. A comprehensive bioinformatic analysis was conducted to determine whether NLRP1 exhibits prognostic relevance linked to immune metabolism across various cancers. The study leveraged data from the TCGA and GTEx databases to explore the clinical significance, metabolic features, and immunological characteristics of NLRP1, employing various tools such as R, GEPIA, STRING and TISIDB. NLRP1 exhibited differential expression patterns across various cancers, with elevated expression correlating with a more favourable prognosis in lung adenocarcinoma (LUAD) and pancreatic adenocarcinoma (PAAD). Downregulation of NLRP1 reduced tumour metabolic activity in LUAD. Moreover, the mutational signature of NLRP1 was linked to a favourable prognosis. Interestingly, high NLRP1 expression inversely correlated with tumour stemness while positively correlating with tumour immune infiltration in various cancers including LUAD and PAAD. Through extensive big data analysis, we delved into the role of NLRP1 across various tumour types, constructing a comprehensive role map of its involvement in pan-cancer scenarios. Our findings highlight the potential of NLRP1 as a promising therapeutic target specifically in LUAD and PAAD.
Collapse
Affiliation(s)
- Yong Liao
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, China
| | - Pinglian Yang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Cui Yang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, China
| | - Kai Zhuang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
| | - Aamir Fahira
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jiaojiao Wang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, China
| | - Zhiping Liu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Lin Yan
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
| | - Zunnan Huang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, China
| |
Collapse
|
18
|
Zhang W, Xu C, Yang Z, Zhou J, Peng W, Zhang X, Li H, Qu S, Tao K. Circular RNAs in tumor immunity and immunotherapy. Mol Cancer 2024; 23:171. [PMID: 39169354 PMCID: PMC11337656 DOI: 10.1186/s12943-024-02082-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024] Open
Abstract
Circular RNAs (circRNAs) are unique noncoding RNAs that have a closed and stable loop structure generated through backsplicing. Due to their conservation, stability and tissue specificity, circRNAs can potentially be used as diagnostic indicators and therapeutic targets for certain tumors. Many studies have shown that circRNAs can act as microRNA (miRNA) sponges, and engage in interactions with proteins and translation templates to regulate gene expression and signal transduction, thereby participating in the occurrence and development of a variety of malignant tumors. Immunotherapy has revolutionized the treatment of cancer. Early researches have indicated that circRNAs are involved in regulating tumor immune microenvironment and antitumor immunity. CircRNAs may have the potential to be important targets for increasing sensitivity to immunotherapy and expanding the population of patients who benefit from cancer immunotherapy. However, few studies have investigated the correlation between circRNAs and tumor immunity. In this review, we summarize the current researches on circRNAs involved in antitumor immune regulation through different mechanisms and their potential value in increasing immunotherapy efficacy with the goal of providing new targets for cancer immunotherapy.
Collapse
Affiliation(s)
- Wenjie Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Chen Xu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Zhipeng Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Jingshi Zhou
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Wei Peng
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xuan Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Haimin Li
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Shibin Qu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
19
|
Yu Y, Liu M, Wang Z, Liu Y, Yao M, Wang L, Zhong L. Identification of oxidative stress signatures of lung adenocarcinoma and prediction of patient prognosis or treatment response with single-cell RNA sequencing and bulk RNA sequencing data. Int Immunopharmacol 2024; 137:112495. [PMID: 38901238 DOI: 10.1016/j.intimp.2024.112495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
Lung adenocarcinoma (LUAD), the most common subtype of lung cancer globally, has seen improved prognosis with advancements in diagnostic, surgical, radiotherapy, and molecular therapy techniques, while its 5-year survival rate remains low. Molecular biomarkers provide prognostic value. Oxidative stress factors, such as reactive nitrogen species and ROS, are crucial in various stages of tumor progression, influencing cell transformation, proliferation, angiogenesis, and metastasis. ROS demonstrate dual roles, affecting tumor cells, hypoxia sensitivity, and the microenvironment. Comprehensive analysis of oxidative stress in LUAD has not been conducted to date. Therefore, we systematically investigated the regulatory patterns of oxidative stress in LUAD based on oxidative stress-related genes and correlated these patterns with cellular infiltration characteristics of the tumor immune microenvironment. The model utilizes single-factor Cox analysis to screen key differential genes with prognostic value and employs least absolute shrinkage and selection operator (LASSO) penalized Cox regression analysis to construct a prognostic-related prediction model. Ten candidate genes were selected based on this model. The risk score was constructed using the coefficients and expression levels of these ten genes. Furthermore, the impact of this risk score on overall survival (OS) was determined. Two genes with the most significant differential expression, SFTPB and S100P, were selected through qRT-PCR. Cell experiments including CCK-8, Edu, transwell assays confirmed their effects on lung cancer cells growth, consistent with the results of bioinformatics analysis. These findings suggested that this model held potential clinical value for evaluating the prognosis of lung adenocarcinoma.
Collapse
Affiliation(s)
- Yunchi Yu
- Department of Thoracic Surgery and Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu, China
| | - Miaoyan Liu
- Department of Thoracic Surgery and Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu, China
| | - Zihang Wang
- Department of Thoracic Surgery and Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu, China
| | - Yufan Liu
- Department of Thoracic Surgery and Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu, China
| | - Min Yao
- Department of Thoracic Surgery and Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu, China
| | - Li Wang
- Research Center for Intelligence Information Technology, Nantong University, Nantong 226001, Jiangsu, China
| | - Lou Zhong
- Department of Thoracic Surgery and Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
20
|
Shen Y, Yan J, Li L, Sun H, Zhang L, Li G, Wang X, Liu R, Wu X, Han B, Sun X, Liu J, Fan X. LOXL2-induced PEAR1 Ser891 phosphorylation suppresses CD44 degradation and promotes triple-negative breast cancer metastasis. J Clin Invest 2024; 134:e177357. [PMID: 39145451 PMCID: PMC11324313 DOI: 10.1172/jci177357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/20/2024] [Indexed: 08/16/2024] Open
Abstract
CD44 is associated with a high risk of metastasis, recurrence, and drug resistance in various cancers. Here we report that platelet endothelial aggregation receptor 1 (PEAR1) is a CD44 chaperone protein that protected CD44 from endocytosis-mediated degradation and enhances cleavage of the CD44 intracellular domain (CD44-ICD). Furthermore, we found that lysyl oxidase-like protein 2 (LOXL2), an endogenous ligand of PEAR1, bound to the PEAR1-EMI domain and facilitated the interaction between PEAR1 and CD44 by inducing PEAR1 Ser891 phosphorylation in a manner that was independent of its enzyme activity. Levels of PEAR1 protein and PEAR1 phosphorylation at Ser891 were increased in patients with triple-negative breast cancer (TNBC), were positively correlated with expression of LOXL2 and CD44, and were negatively correlated with overall survival. The level of PEAR1 Ser891 phosphorylation was identified as the best independent prognostic factor in TNBC patients. The prognostic efficacy of the combination of PEAR1 phosphorylation at Ser891 and CD44 expression was superior to that of PEAR1 phosphorylation at Ser891 alone. Blocking the interaction between LOXL2 and PEAR1 with monoclonal antibodies significantly inhibited TNBC metastasis, representing a promising therapeutic strategy for TNBC.
Collapse
Affiliation(s)
- Yingzhi Shen
- Department of Biochemistry and Molecular Cell Biology
| | - Jie Yan
- Department of Biochemistry and Molecular Cell Biology
| | - Lin Li
- Department of Biochemistry and Molecular Cell Biology
| | - Huiyan Sun
- Department of Biochemistry and Molecular Cell Biology
| | - Lin Zhang
- Department of Biochemistry and Molecular Cell Biology
| | - Guoming Li
- Department of Biochemistry and Molecular Cell Biology
| | - Xinxia Wang
- Department of Biochemistry and Molecular Cell Biology
| | - Ruoyan Liu
- Department of Biochemistry and Molecular Cell Biology
| | - Xuefeng Wu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and
| | - Baosan Han
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueqing Sun
- Department of Biochemistry and Molecular Cell Biology
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology
- Shanghai Synvida Biotechnology Co., Shanghai, China
| | - Xuemei Fan
- Department of Biochemistry and Molecular Cell Biology
| |
Collapse
|
21
|
Rahnama Sisakht A, Tavasouli Z, Negahi A, Hosseini SA, Satarzadeh M. Dental pulp stem cells regenerate neural tissue in degenerative disorders and stroke rehabilitation: A scope systematic review. Heliyon 2024; 10:e35080. [PMID: 39166055 PMCID: PMC11334686 DOI: 10.1016/j.heliyon.2024.e35080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
Background Dental Pulp Stem Cells (DPSCs) possess a remarkable ability for tissue differentiation, making them highly efficient in tissue regeneration and inflammation regulation. This systematic study proposes to find an answer to the question, "Do DPSCs have the ability to regenerate and rehabilitate nerve tissue?" Methods This systematic review was conducted based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria, and the principle of non-bias was respected. All the articles from 2014 to 2024 were extracted from the Web of Science, PubMed, and Scopus databases. This study extracted the antigens and pro-inflammatory factors associated with DPSCs' involvement and how they affect the CNS's neural tissue regeneration. Results Two persons of researchers searched the database. After screening the full texts, they included 11 articles in their study. DPSCs control the following antigens: CD73, CD34, CD90, CD105, CD14, CD45, CD19Oct-4, CD73, CD31, CD34CD29CD44. Even though hematopoietic markers did not change much, OCT-4 and CD-73 were increased by DPSCs. DPSC-derived exosomes suppressed the expression of IL-6, IL-1β, TNF-α, and TGF, key mediators of nerve tissue inflammation. Additionally, DPSCs show high Vascular Endothelial Growth Factor (VEGF) expression in mice brain tissue cultures. DPSCs reduce Subarachnoid Hemorrhage (SAH), a condition in which blood collects in the subarachnoid space and causes ischemia. Discussion DPSCs showed the ability to regenerate nerve tissue and brain ganglia, stimulating angiogenesis by expressing cell markers and controlling growth factors in mice, and high therapeutic potential in neurodegenerative disorders. The present study invites further research in neurological disorders, specifically strokes, to prescribe these stem cells to the human population.
Collapse
Affiliation(s)
| | - Zahra Tavasouli
- Ghaemieh Health Care Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Negahi
- School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | | |
Collapse
|
22
|
Zhao Y, Fei Y, Zhao Y, Li M, Hu Y, Cai K, Yu SH, Luo Z. Biomineralization-Tuned Nanounits Reprogram the Signal Transducer and Activator of Transcription 3 Signaling for Ferroptosis-Immunotherapy in Cancer Stem Cells. ACS NANO 2024; 18:21268-21287. [PMID: 39083438 DOI: 10.1021/acsnano.4c05084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Cancer stem cells (CSCs) are promising targets for improving anticancer treatment outcomes while eliminating recurrence, but their treatment remains a major challenge. Here, we report a nanointegrative strategy to realize CSC-targeted ferroptosis-immunotherapy through spatiotemporally controlled reprogramming of STAT3-regulated signaling circuits. Specifically, STAT3 inhibitor niclosamide (Ni) and an experimental ferroptosis drug (1S, 3R)-RSL3 (RSL3) are integrated into hyaluronic acid-modified amorphous calcium phosphate (ACP) nanounits through biomineralization (CaP-PEG-HA@Ni/RSL3), which could be recognized by CD44-overexpressing CSCs and released in a synchronized manner. Ni inhibits the CSC-intrinsic STAT3-PD-L1 axis to stimulate adaptive immunity and enhance interferon gamma (IFNγ) secretion by CD8+ T cells to downregulate SLC7A11 and SLC3A2 for blocking glutathione biosynthesis. Meanwhile, Ni-dependent STAT3 inhibition also upregulates ACSL4 through downstream signaling and IFNγ feedback. These effects cooperate with RSL3-mediated GPX4 deactivation to induce pronounced ferroptosis. Furthermore, CaP-PEG-HA@Ni/RSL3 also impairs the immunosuppressive M2-like tumor-associated macrophages, while Ca2+ ions released from degraded ACP could chelate with lipid peroxides in ferroptotic CSCs to avoid CD8+ T-cell inhibition, thus boosting the effector function of activated CD8+ T cells. This study offers a cooperative ferroptosis-immunotherapeutic approach for the treatment of refractory cancer.
Collapse
Affiliation(s)
- Youbo Zhao
- Center for Tissue Engineering and Stem Cell Research, Key Laboratory for Autoimmune Disease Research, Department of Hepatic-Biliary-Pancreatic Surgery Affiliate Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang 550025, P. R. China
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Yang Fei
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Yang Zhao
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, Hefei Science Center of CAS, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, P. R. China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, P. R. China
| | - Shu-Hong Yu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, Hefei Science Center of CAS, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
23
|
Chen W, Chen M, Hong L, Xiahenazi A, Huang M, Tang N, Yang X, She F, Chen Y. M2-like tumor-associated macrophage-secreted CCL2 facilitates gallbladder cancer stemness and metastasis. Exp Hematol Oncol 2024; 13:83. [PMID: 39138521 PMCID: PMC11320879 DOI: 10.1186/s40164-024-00550-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND The predominant immune cells in solid tumors are M2-like tumor-associated macrophages (M2-like TAMs), which significantly impact the promotion of epithelial-mesenchymal transition (EMT) in tumors, enhancing stemness and facilitating tumor invasion and metastasis. However, the contribution of M2-like TAMs to tumor progression in gallbladder cancer (GBC) is partially known. METHODS Immunohistochemistry was used to evaluate the expression of M2-like TAMs and cancer stem cell (CSC) markers in 24 pairs of GBC and adjacent noncancerous tissues from patients with GBC. Subsequently, GBC cells and M2-like TAMs were co-cultured to examine the expression of CSC markers, EMT markers, and migratory behavior. Proteomics was performed on the culture supernatant of M2-like TAMs. The mechanisms underlying the induction of EMT, stemness, and metastasis in GBC by M2-like TAMs were elucidated using proteomics and transcriptomics. GBC cells were co-cultured with undifferentiated macrophages (M0) and analyzed. The therapeutic effect of gemcitabine combined with a chemokine (C-C motif) receptor 2 (CCR2) antagonist on GBC was observed in vivo. RESULTS The expression levels of CD68 and CD163 in M2-like TAMs and CD44 and CD133 in gallbladder cancer stem cells (GBCSCs) were increased and positively correlated in GBC tissues compared with those in neighboring noncancerous tissues. M2-like TAMs secreted a significant amount of chemotactic cytokine ligand 2 (CCL2), which activated the MEK/extracellular regulated protein kinase (ERK) pathway and enhanced SNAIL expression after binding to the receptor CCR2 on GBC cells. Activation of the ERK pathway caused nuclear translocation of ELK1, which subsequently led to increased SNAIL expression. GBCSCs mediated the recruitment and polarization of M0 into M2-like TAMs within the GBC microenvironment via CCL2 secretion. In the murine models, the combination of a CCR2 antagonist and gemcitabine efficiently inhibited the growth of subcutaneous tumors in GBC. CONCLUSIONS The interaction between M2-like TAMs and GBC cells is mediated by the chemokine CCL2, which activates the MEK/ERK/ELK1/SNAIL pathway in GBC cells, promoting EMT, stemness, and metastasis. A combination of a CCR2 inhibitor and gemcitabine effectively suppressed the growth of subcutaneous tumors. Consequently, our study identified promising therapeutic targets and strategies for treating GBC.
Collapse
Affiliation(s)
- Weihong Chen
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
- Fujian Medical University Cancer Center, Fuzhou, 350108, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, 350108, Fujian, China
| | - Mingyuan Chen
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
- Fujian Medical University Cancer Center, Fuzhou, 350108, China
| | - Lingju Hong
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Abudukeremu Xiahenazi
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
- Fujian Medical University Cancer Center, Fuzhou, 350108, China
| | - Maotuan Huang
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
- Fujian Medical University Cancer Center, Fuzhou, 350108, China
| | - Nanhong Tang
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
- Fujian Medical University Cancer Center, Fuzhou, 350108, China
| | - Xinyue Yang
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
- Fujian Medical University Cancer Center, Fuzhou, 350108, China
| | - Feifei She
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108, China.
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, 350108, Fujian, China.
| | - Yanling Chen
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.
- Fujian Medical University Cancer Center, Fuzhou, 350108, China.
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108, China.
| |
Collapse
|
24
|
Liu YJ, Li JX, Li JP, Hu YD, Ma ZB, Huang W, Liu SL, Zou X. Endoplasmic Reticulum Membrane Protein Complex Regulates Cancer Stem Cells and is Associated with Sorafenib Resistance in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:1519-1539. [PMID: 39139735 PMCID: PMC11321348 DOI: 10.2147/jhc.s474343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) remains a leading cause of cancer-related mortality, underscoring the need for novel therapeutic targets. This study aimed to elucidate the role of endoplasmic reticulum membrane protein complex subunit 1 (EMC1) in HCC progression and its therapeutic potential. Methods Publicly available sequencing data and biopsy specimens were analyzed to assess EMC's clinical value and functions in HCC. In vitro experiments validated EMC functions, and multiplex immunofluorescence analysis examined EMC-associated sorafenib resistance mechanisms. EMC1 expression was knocked down in HCC cell lines, followed by cell viability, wound healing, and transwell migration assays. Tumor growth and response to sorafenib treatment were evaluated in mouse models. Metabolomic analysis assessed changes in the TCA cycle. Results EMC genes were aberrantly expressed in HCC, and high EMC1 expression correlated with poorer survival rates. EMC1 disruption enhanced HCC cells' sensitivity to sorafenib, reducing cell viability, increasing apoptosis, and decreasing tumor size and weight. EMC1 maintained cancer cell stemness and promoted M2 macrophage infiltration. Metabolomic analysis revealed significant changes in the TCA cycle, indicating EMC1's role in HCC metabolic reprogramming. Importantly, EMC1 is highly associated with sorafenib resistance, potentially linked to CTNNB1 mutation or activation. Conclusion EMC1 plays a critical role in regulating the sorafenib resistance in HCC. Targeting EMC1 may improve HCC treatment efficacy.
Collapse
Affiliation(s)
- Yuan-Jie Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
| | - Jing-Xiao Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
| | - Jie-Pin Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
| | - Yi-Dou Hu
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, 215600, People’s Republic of China
| | - Zhi-Bin Ma
- Nanjing YOUMENG Biology Science and Technology Co. Ltd, Nanjing, Jiangsu, 210029, People’s Republic of China
| | - Wei Huang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
| | - Shen-Lin Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
| | - Xi Zou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
| |
Collapse
|
25
|
Gunes EG, Gunes M, Yu J, Janakiram M. Targeting cancer stem cells in multiple myeloma. Trends Cancer 2024; 10:733-748. [PMID: 38971642 DOI: 10.1016/j.trecan.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 07/08/2024]
Abstract
Multiple myeloma (MM) is a hematological malignancy of bone marrow (BM) plasma cells with excessive clonal expansion and is associated with the overproduction of light-chain or monoclonal immunoglobulins (Igs). MM remains incurable, with high rates of relapses and refractory disease after first-line treatment. Cancer stem cells (CSCs) have been implicated in drug resistance in MM; however, the evidence for CSCs in MM is not adequate, partly due to a lack of uniformity in the definitions of multiple myeloma stem cells (MMSCs). We review advances in understanding MMSCs and their role in drug resistance to MM therapies. We also discuss novel therapeutic strategies to overcome MMSC-mediated relapses and drug resistance.
Collapse
Affiliation(s)
- Emine Gulsen Gunes
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Los Angeles, CA 91010, USA; Toni Stephenson Lymphoma Center, City of Hope, Los Angeles, CA 91010, USA.
| | - Metin Gunes
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Department of Immuno-Oncology, Beckman Research Institute, Los Angeles, CA 91010, USA; Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA
| | - Murali Janakiram
- Department of Hematology, Division of Myeloma, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| |
Collapse
|
26
|
Zhou W, Zeng T, Chen J, Tang X, Yuan Y, Hu D, Zhang Y, Li Y, Zou J. Aberrant angiogenic signaling pathways: Accomplices in ovarian cancer progression and treatment. Cell Signal 2024; 120:111240. [PMID: 38823664 DOI: 10.1016/j.cellsig.2024.111240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Ovarian cancer is one of the most common malignant tumors in women, and treatment options are limited. Despite efforts to adjust cancer treatment models and develop new methods, including tumor microenvironment (TME) therapy, more theoretical support is needed. Increasing attention is being given to antiangiogenic measures for TME treatment. Another important concept in ovarian cancer TME is angiogenesis, where tumor cells obtain nutrients and oxygen from surrounding tissues through blood vessels to support further expansion and metastasis. Many neovascularization signaling pathways become imbalanced and hyperactive during this process. Inhibiting these abnormal pathways can yield ideal therapeutic effects in patients, even by reversing drug resistance. However, these deep TME signaling pathways often exhibit crosstalk and correlation. Understanding these interactions may be an important strategy for further treating ovarian cancer. This review summarizes the latest progress and therapeutic strategies for these angiogenic signaling pathways in ovarian cancer.
Collapse
Affiliation(s)
- Wenchao Zhou
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Tian Zeng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Junling Chen
- Department of Gynecology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xing Tang
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Yuwei Yuan
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Daopu Hu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yue Zhang
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| | - Yukun Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China.
| | - Juan Zou
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
27
|
Li X, Jiang J, Wu Q, You T, Yang F. TRIM58 downregulation maintains stemness via MYH9-GRK3-YAP axis activation in triple-negative breast cancer stem cells. Cancer Gene Ther 2024; 31:1186-1200. [PMID: 38714850 DOI: 10.1038/s41417-024-00780-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 06/27/2024]
Abstract
TRIM58 is a member of the TRIM protein family, which possess with E3 ubiquitin ligase activities. Studies have revealed that low expression of TRIM58 plays key roles, has been implicated in the tumor progression of tumor formation due to its reduced expression. However, its role in regulating the stemness of breast cancer stem cells (CSCs) remains unexplored. Here, we found that TRIM58 was underexpressed in TNBC tissues and cells compared to adjacent mucosa tissue, and its downregulation was significantly associated with shorter survival. Overexpression of TRIM58 reduced the proportion of CD44 + /CD24- cells, upregulated differentiation genes, and inhibited stemness-related gene expression in TNBC CSCs. In vitro and in vivo experiments revealed that TRIM58 overexpression in CSCs suppressed tumor sphere formation and tumorigenic capacity. Co-IP results indicated direct interaction between TRIM58 and MYH9, with TRIM58 inducing MYH9 degradation via ubiquitination in differentiated cells. Label-free quantitative proteomics identified GRK3 and Hippo-YAP as downstream targets and signaling pathways of MYH9. TIMER database analysis, immunohistochemistry, western blotting, DNA-protein pulldown experiments, and dual luciferase reporter assays demonstrated that MYH9 regulated GRK3 transcriptional activation in CSCs. In conclusion, elevated TRIM58 expression in CSCs downregulates MYH9 protein levels by promoting ubiquitin-mediated degradation, thereby inhibiting downstream GRK3 transcription, inactivating the YAP stemness pathway, and ultimately promoting CSC differentiation.
Collapse
Affiliation(s)
- Xujun Li
- Department of Oncology, Ningbo No.2 Hospital, Ningbo, Zhejiang, PR China
- Department of Breast Surgery, Ningbo No.2 Hospital, Ningbo, Zhejiang, PR China
| | - Jing Jiang
- Department of Oncology, Ningbo No.2 Hospital, Ningbo, Zhejiang, PR China
- Department of Breast Surgery, Ningbo No.2 Hospital, Ningbo, Zhejiang, PR China
| | - Qian Wu
- Department of Breast Surgery, Ningbo No.2 Hospital, Ningbo, Zhejiang, PR China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, PR China
| | - Tianzi You
- Traditional Chinese Medicine Hospital of Ninghai County, Ningbo, Zhejiang, PR China
| | - Fan Yang
- Department of Oncology, Ningbo No.2 Hospital, Ningbo, Zhejiang, PR China.
- Department of Breast Surgery, Ningbo No.2 Hospital, Ningbo, Zhejiang, PR China.
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, PR China.
| |
Collapse
|
28
|
Zou Z, Luo T, Wang X, Wang B, Li Q. Exploring the interplay between triple-negative breast cancer stem cells and tumor microenvironment for effective therapeutic strategies. J Cell Physiol 2024; 239:e31278. [PMID: 38807378 DOI: 10.1002/jcp.31278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 05/30/2024]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive and metastatic malignancy with poor treatment outcomes. The interaction between the tumor microenvironment (TME) and breast cancer stem cells (BCSCs) plays an important role in the development of TNBC. Owing to their ability of self-renewal and multidirectional differentiation, BCSCs maintain tumor growth, drive metastatic colonization, and facilitate the development of drug resistance. TME is the main factor regulating the phenotype and metastasis of BCSCs. Immune cells, cancer-related fibroblasts (CAFs), cytokines, mesenchymal cells, endothelial cells, and extracellular matrix within the TME form a complex communication network, exert highly selective pressure on the tumor, and provide a conducive environment for the formation of BCSC niches. Tumor growth and metastasis can be controlled by targeting the TME to eliminate BCSC niches or targeting BCSCs to modify the TME. These approaches may improve the treatment outcomes and possess great application potential in clinical settings. In this review, we summarized the relationship between BCSCs and the progression and drug resistance of TNBC, especially focusing on the interaction between BCSCs and TME. In addition, we discussed therapeutic strategies that target the TME to inhibit or eliminate BCSCs, providing valuable insights into the clinical treatment of TNBC.
Collapse
Affiliation(s)
- Zhuoling Zou
- Queen Mary College, Nanchang University, Nanchang, Jiangxi, China
| | - Tinglan Luo
- Department of Oncology, The Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing, China
| | - Xinyuan Wang
- Department of Clinical Medicine, The Second Clinical College of Chongqing Medicine University, Chongqing, China
| | - Bin Wang
- Department of Oncology, The Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing, China
| | - Qing Li
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
29
|
Baek BS, Park H, Choi JW, Lee EY, Youn JI, Seong SY. Dendritic cells pulsed with penetratin-OLFM4 inhibit the growth and metastasis of melanoma in mice. Biomed Pharmacother 2024; 177:117083. [PMID: 38968793 DOI: 10.1016/j.biopha.2024.117083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024] Open
Abstract
Cancer stem cells (CSCs) can self-renew and differentiate, contributing to tumor heterogeneity, metastasis, and recurrence. Their resistance to therapies, including immunotherapy, underscores the importance of targeting them for complete remission and relapse prevention. Olfactomedin 4 (OLFM4), a marker associated with various cancers such as colorectal cancer, is expressed on CSCs promoting immune evasion and tumorigenesis. However, its potential as a target for CSC-specific immunotherapy remains underexplored. The primary aim of this study is to evaluate the effectiveness of targeting OLFM4 with dendritic cell (DC)-based vaccines in inhibiting tumor growth and metastasis. To improve antigen delivery and immune response, OLFM4 was conjugated with a protein-transduction domain (PTD) from the antennapedia of Drosophila called penetratin, creating a fusion protein (P-OLFM4). The efficacy of DCs pulsed with P-OLFM4 (DCs [P-OLFM4]) was compared to DCs pulsed with OLFM4 (DCs [OLFM4]) and PBS (DCs [PBS]). DCs [P-OLFM4] inhibited tumor growth by 91.2 % and significantly reduced lung metastasis of OLFM4+ melanoma cells by 97 %, compared to the DCs [PBS]. DCs [OLFM4] also demonstrated a reduction in lung metastasis by 59.7 % compared to DCs [PBS]. Immunization with DCs [P-OLFM4] enhanced OLFM4-specific T-cell proliferation, interferon-γ production, and cytotoxic T cell activity in mice. The results indicate that OLFM4 is a viable target for CSC-focused immunotherapy. DC [P-OLFM4] vaccines can elicit robust immune responses, significantly inhibiting tumor growth and metastasis. This strategy holds promise for developing more effective cancer treatments that specifically target CSCs, potentially leading to better patient outcomes by reducing the likelihood of tumor relapse and metastasis.
Collapse
Affiliation(s)
- Bum-Seo Baek
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon, Gangwon Province, South Korea; Department of Biomedical Sciences, South Korea
| | - Hyunmi Park
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon, Gangwon Province, South Korea
| | - Ji-Woong Choi
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon, Gangwon Province, South Korea
| | - Eun-Young Lee
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon, Gangwon Province, South Korea
| | - Je-In Youn
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon, Gangwon Province, South Korea; Department of Biomedical Sciences, South Korea
| | - Seung-Yong Seong
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon, Gangwon Province, South Korea; Department of Biomedical Sciences, South Korea; Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea; Shaperon Inc. Ltd, Seoul, South Korea.
| |
Collapse
|
30
|
Cao L, Lin G, Fan D, Weng K, Chen Y, Wang J, Li P, Zheng C, Huang C, Xie J. NUAK1 activates STAT5/GLI1/SOX2 signaling to enhance cancer cell expansion and drives chemoresistance in gastric cancer. Cell Rep 2024; 43:114446. [PMID: 38996065 DOI: 10.1016/j.celrep.2024.114446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 06/02/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
The gene encoding the NUAK family kinase 1 (NUAK1) is frequently amplified and its expression is upregulated, activating oncogenic signaling in various cancers. However, little is known about its role in gastric cancer (GC). We investigate the mechanistic links among NUAK1, Hedgehog signaling, and tumorigenesis in GC. NUAK1 overexpression is validated in local and public GC cohorts. Patient-derived xenograft and transgenic mouse models demonstrate that NUAK1 depletion or inhibition dramatically ameliorates gastric tumorigenesis. NUAK1 upregulates GLI1 expression by activating STAT5-mediated transcription and stabilizing GLI1 protein. NUAK1 depletion or inhibition impairs cancer cell expansion, tumor formation, and chemotherapy resistance in in vitro and in vivo models. Clinicopathological analysis confirms that upregulated NUAK1 expression correlates with poor prognosis and chemotherapy resistance in human GC. Our findings demonstrate that the signaling axis NUAK1/STAT5/GLI1 promotes cancer cell expansion and tumorigenesis and indicate that NUAK1 is an attractive therapeutic target and prognostic factor in GC.
Collapse
Affiliation(s)
- Longlong Cao
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, China.
| | - Guangtan Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, China
| | - Denghui Fan
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, China
| | - Kai Weng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, China
| | - Yujing Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, China
| | - Jiabin Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, China
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, China
| | - Chaohui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, China
| | - Changming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, China.
| | - Jianwei Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
31
|
Oliveira SM, Carvalho PD, Serra-Roma A, Oliveira P, Ribeiro A, Carvalho J, Martins F, Machado AL, Oliveira MJ, Velho S. Fibroblasts Promote Resistance to KRAS Silencing in Colorectal Cancer Cells. Cancers (Basel) 2024; 16:2595. [PMID: 39061234 PMCID: PMC11274566 DOI: 10.3390/cancers16142595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Colorectal cancer (CRC) responses to KRAS-targeted inhibition have been limited due to low response rates, the mechanisms of which remain unknown. Herein, we explored the cancer-associated fibroblasts (CAFs) secretome as a mediator of resistance to KRAS silencing. CRC cell lines HCT15, HCT116, and SW480 were cultured either in recommended media or in conditioned media from a normal colon fibroblast cell line (CCD-18Co) activated with rhTGF-β1 to induce a CAF-like phenotype. The expression of membrane stem cell markers was analyzed by flow cytometry. Stem cell potential was evaluated by a sphere formation assay. RNAseq was performed in KRAS-silenced HCT116 colonospheres treated with either control media or conditioned media from CAFs. Our results demonstrated that KRAS-silencing up-regulated CD24 and down-regulated CD49f and CD104 in the three cell lines, leading to a reduction in sphere-forming efficiency. However, CAF-secreted factors restored stem cell marker expression and increased stemness. RNA sequencing showed that CAF-secreted factors up-regulated genes associated with pro-tumorigenic pathways in KRAS-silenced cells, including KRAS, TGFβ, NOTCH, WNT, MYC, cell cycle progression and exit from quiescence, epithelial-mesenchymal transition, and immune regulation. Overall, our results suggest that resistance to KRAS-targeted inhibition might derive not only from cell-intrinsic causes but also from external elements, such as fibroblast-secreted factors.
Collapse
Affiliation(s)
- Susana Mendonça Oliveira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- FMUP—Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- ESS|P.PORTO—Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - Patrícia Dias Carvalho
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - André Serra-Roma
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Patrícia Oliveira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Andreia Ribeiro
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Joana Carvalho
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Flávia Martins
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- FMUP—Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Ana Luísa Machado
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- FMUP—Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- ESS|P.PORTO—Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - Maria José Oliveira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- FMUP—Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre 823, 4150-177 Porto, Portugal
| | - Sérgia Velho
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| |
Collapse
|
32
|
Xia J, Zhang L, Peng X, Tu J, Li S, He X, Li F, Qiang J, Dong H, Deng Q, Liu C, Xu J, Zhang R, Liu Q, Hu G, Liu C, Jiang YZ, Shao ZM, Chen C, Liu S. IL1R2 Blockade Alleviates Immunosuppression and Potentiates Anti-PD-1 Efficacy in Triple-Negative Breast Cancer. Cancer Res 2024; 84:2282-2296. [PMID: 38657120 DOI: 10.1158/0008-5472.can-23-3429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/29/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with limited therapeutic options. IL1 receptor type 2 (IL1R2) promotes breast tumor-initiating cell (BTIC) self-renewal and tumor growth in TNBC, indicating that targeting it could improve patient treatment. In this study, we observed that IL1R2 blockade strongly attenuated macrophage recruitment and the polarization of tumor-associated macrophages (TAM) to inhibit BTIC self-renewal and CD8+ T-cell exhaustion, which resulted in reduced tumor burden and prolonged survival in TNBC mouse models. IL1R2 activation by TAM-derived IL1β increased PD-L1 expression by interacting with the transcription factor Yin Yang 1 (YY1) and inducing YY1 ubiquitination and proteasomal degradation in both TAMs and TNBC cells. Loss of YY1 alleviated the transcriptional repression of c-Fos, which is a transcriptional activator of PDL-1. Combined treatment with an IL1R2-neutralizing antibodies and anti-PD-1 led to enhanced antitumor efficacy and reduced TAMs, BTICs, and exhausted CD8+ T cells. These results suggest that IL1R2 blockade might be a strategy to potentiate immune checkpoint blockade efficacy in TNBC to improve patient outcomes. Significance: IL1R2 in both macrophages and breast cancer cells orchestrates an immunosuppressive tumor microenvironment by upregulating PD-L1 expression and can be targeted to enhance the efficacy of anti-PD-1 in triple-negative breast cancer.
Collapse
Affiliation(s)
- Jie Xia
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lixing Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xilei Peng
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
| | - Juchuanli Tu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
| | - Siqin Li
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xueyan He
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fengkai Li
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiankun Qiang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haonan Dong
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiaodan Deng
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cuicui Liu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center and Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiahui Xu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rui Zhang
- The Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Quentin Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Guohong Hu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chong Liu
- Department of Neurosurgery of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Precision Cancer Medical Center, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhi-Ming Shao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Precision Cancer Medical Center, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
- Academy of Biomedical Engineering and The Third Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
33
|
Chikhirzhina E, Tsimokha A, Tomilin AN, Polyanichko A. Structure and Functions of HMGB3 Protein. Int J Mol Sci 2024; 25:7656. [PMID: 39062899 PMCID: PMC11276821 DOI: 10.3390/ijms25147656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
HMGB3 protein belongs to the group of HMGB proteins from the superfamily of nuclear proteins with high electrophoretic mobility. HMGB proteins play an active part in almost all cellular processes associated with DNA-repair, replication, recombination, and transcription-and, additionally, can act as cytokines during infectious processes, inflammatory responses, and injuries. Although the structure and functions of HMGB1 and HMGB2 proteins have been intensively studied for decades, very little attention has been paid to HMGB3 until recently. In this review, we summarize the currently available data on the molecular structure, post-translational modifications, and biological functions of HMGB3, as well as the possible role of the ubiquitin-proteasome system-dependent HMGB3 degradation in tumor development.
Collapse
Affiliation(s)
- Elena Chikhirzhina
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Av. 4, 194064 St. Petersburg, Russia; (A.T.); (A.N.T.); (A.P.)
| | | | | | | |
Collapse
|
34
|
Ye Z, Xiao M, Zhang Y, Zheng A, Zhang D, Chen J, Du F, Zhao Y, Wu X, Li M, Chen Y, Deng S, Shen J, Zhang X, Wen Q, Zhang J, Xiao Z. Identification of tumor stemness and immunity related prognostic factors and sensitive drugs in head and neck squamous cell carcinoma. Sci Rep 2024; 14:15962. [PMID: 38987626 PMCID: PMC11236973 DOI: 10.1038/s41598-024-66196-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
The presence of cancer stem cells (CSCs) contributes significantly to treatment resistance in various cancers, including head and neck squamous cell carcinoma (HNSCC). Despite this, the relationship between cancer stemness and immunity remains poorly understood. In this study, we aimed to identify potential immunotherapeutic targets and sensitive drugs for CSCs in HNSCC. Using data from public databases, we analyzed expression patterns and prognostic values in HNSCC. The stemness index was calculated using the single-sample gene set enrichment analysis (ssgsea) algorithm, and weighted gene co-expression network analysis (WGCNA) was employed to screen for key stemness-related modules. Consensus clustering was then used to group samples for further analysis, and prognosis-related key genes were identified through regression analysis. Our results showed that tumor samples from HNSCC exhibited higher stemness indices compared to normal samples. WGCNA identified a module highly correlated with stemness, comprising 187 genes, which were significantly enriched in protein digestion and absorption pathways. Furthermore, we identified sensitive drugs targeting prognostic genes associated with tumor stemness. Notably, two genes, HLF and CCL11, were found to be highly associated with both stemness and immunity. In conclusion, our study identifies a stemness-related gene signature and promising drug candidates for CSCs of HNSCC. Additionally, HLF and CCL11, which are associated with both stemness and immunity, represent potential targets for immunotherapy in HNSCC.
Collapse
Affiliation(s)
- Zhihua Ye
- Department of Medical Oncology Center, Zhongshan People's Hospital, Zhongshan, Guangdong, China
| | - Mintao Xiao
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yinping Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Anfu Zheng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Duoli Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Jie Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Xinyi Zhang
- School of Data Science, The Chinese University of Hong Kong, Shenzhen, China
| | - Qinglian Wen
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junkai Zhang
- Department of Medical Oncology Center, Zhongshan People's Hospital, Zhongshan, Guangdong, China.
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China.
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China.
- Department of Pharmacology, School of Pharmacy, Sichuan College of Traditional Chinese Medicine, Mianyang, 621000, Sichuan, China.
- Gulin Traditional Chinese Medicine Hospital, Luzhou, China.
| |
Collapse
|
35
|
Chu X, Tian W, Ning J, Xiao G, Zhou Y, Wang Z, Zhai Z, Tanzhu G, Yang J, Zhou R. Cancer stem cells: advances in knowledge and implications for cancer therapy. Signal Transduct Target Ther 2024; 9:170. [PMID: 38965243 PMCID: PMC11224386 DOI: 10.1038/s41392-024-01851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/27/2024] [Accepted: 04/28/2024] [Indexed: 07/06/2024] Open
Abstract
Cancer stem cells (CSCs), a small subset of cells in tumors that are characterized by self-renewal and continuous proliferation, lead to tumorigenesis, metastasis, and maintain tumor heterogeneity. Cancer continues to be a significant global disease burden. In the past, surgery, radiotherapy, and chemotherapy were the main cancer treatments. The technology of cancer treatments continues to develop and advance, and the emergence of targeted therapy, and immunotherapy provides more options for patients to a certain extent. However, the limitations of efficacy and treatment resistance are still inevitable. Our review begins with a brief introduction of the historical discoveries, original hypotheses, and pathways that regulate CSCs, such as WNT/β-Catenin, hedgehog, Notch, NF-κB, JAK/STAT, TGF-β, PI3K/AKT, PPAR pathway, and their crosstalk. We focus on the role of CSCs in various therapeutic outcomes and resistance, including how the treatments affect the content of CSCs and the alteration of related molecules, CSCs-mediated therapeutic resistance, and the clinical value of targeting CSCs in patients with refractory, progressed or advanced tumors. In summary, CSCs affect therapeutic efficacy, and the treatment method of targeting CSCs is still difficult to determine. Clarifying regulatory mechanisms and targeting biomarkers of CSCs is currently the mainstream idea.
Collapse
Affiliation(s)
- Xianjing Chu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wentao Tian
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yunqi Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ziqi Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhuofan Zhai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jie Yang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China.
| |
Collapse
|
36
|
Xie C, Zhou X, Chen W, Ren D, Li X, Jiang R, Zhong C, Zhu J. Diallyl trisulfide induces pyroptosis and impairs lung CSC-like properties by activating the ROS/Caspase 1 signaling pathway. Chem Biol Interact 2024; 397:111083. [PMID: 38821455 DOI: 10.1016/j.cbi.2024.111083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/02/2024]
Abstract
Lung cancer stem cells (CSCs) drive continuous cancer growth and metastatic dissemination; thus, there is an urgent requirement to acquire effective therapeutic strategies for targeting lung CSCs. Diallyl trisulfide (DATS), a garlic organosulfide, possesses suppressive potential in lung cancer; however, its underlying mechanism is still unclear. In this study, we identified DATS as a pyroptosis inducer in lung cancer cells. DATS-treated A549 and H460 cells exhibited pyroptotic cell death, with characteristic large bubbles appearing on their plasma membrane and LDH release. DATS induced cell death, arrested the cell cycle at the G2/M phase, and inhibited colony formation in lung cancer cells. Meanwhile, we found that DATS significantly suppressed the malignant features by impairing lung CSC-like properties, including sphere formation ability, CD133 positive cell number, and lung CSCs marker expression. Mechanistically, DATS induced cell pyroptosis via increasing the expression of NLRP3, ASC, Pro Caspase 1, Cleaved Caspase 1, GSDMD, GSDMD-N, and IL-1β. The verification experiments showed that the effects of DATS on pyroptosis and lung CSC-like properties were weakened after Caspase 1 inhibitor VX-765 treatment, indicating that DATS activated NLRP3 inflammasome-mediated pyroptosis by targeting Caspase 1 in lung cancer cells. Moreover, DATS increased ROS overproduction and mitochondrial dysfunction, which contributed to DATS-induced pyroptosis of lung cancer cells. NAC treatment reversed the effects of DATS on pyroptosis and CSC-like properties. In vivo experiment further confirmed that DATS restrained tumor growth. Together, our results suggest that DATS promotes pyroptosis and impairs lung CSC-like properties by activating ROS/Caspase 1 signaling pathway, thereby retarding lung cancer progression.
Collapse
Affiliation(s)
- Chunfeng Xie
- Medical School, Nanjing University, Nanjing, 210093, China; Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xu Zhou
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Weiyi Chen
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Dongxue Ren
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaoting Li
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Runqiu Jiang
- Medical School, Nanjing University, Nanjing, 210093, China.
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Jianyun Zhu
- Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215008, China.
| |
Collapse
|
37
|
Zhang G, Guan Q, Zhao Y, Wang S, Li H. miR-1-3p Inhibits Osteosarcoma Cell Proliferation and Cell Cycle Progression While Promoting Cell Apoptosis by Targeting CDK14 to Inactivate Wnt/Beta-Catenin Signaling. Mol Biotechnol 2024; 66:1704-1717. [PMID: 37420040 DOI: 10.1007/s12033-023-00811-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/28/2023] [Indexed: 07/09/2023]
Abstract
Osteosarcoma (OS) is a common bone malignancy and is diagnosed frequently in children and young adults. According to previous RNA sequencing, miR-1-3p is downregulated in OS clinical samples. Nevertheless, the functions of miR-1-3p in OS cell process and the related mechanism have not been revealed yet. In the current study, miR-1-3p expression in OS tissues and cells were evaluated using quantitative polymerase chain reaction. CCK-8 assays were conducted to measure OS cell viability in response to miR-1-3p overexpression. Colony forming assays and EdU staining were conducted for measurement of cell proliferation, and flow cytometry analysis was performed to determine cell apoptosis and cell cycle progression. Protein levels of apoptotic markers, beta-catenin, and Wnt downstream targets were quantified using western blotting. The binding relation between miR-1-3p and cyclin dependent kinase 14 (CDK14) was validated utilizing luciferase reporter assays. Experimental results revealed that miR-1-3p expression was decreased in OS tissues and cells. Additionally, miR-1-3p inhibited cell proliferation and cell cycle progression while enhancing OS cell apoptosis. Moreover, miR-1-3p directly targeted CDK14 and inversely regulated CDK14 expression in OS cells. Furthermore, miR-1-3p inactivated the Wnt/beta-catenin signaling. CDK14 overexpression partially rescued the inhibitory impact of miR-1-3p on OS cell growth. Overall, miR-1-3p inhibits OS cell proliferation and cell cycle progression while promoting cell apoptosis by targeting CDK14 and inactivating the Wnt/beta-catenin signaling.
Collapse
Affiliation(s)
- Guangheng Zhang
- Department of Orthopaedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.39 Yanhu Road East Lake Scenic Area, Wuhan, 430077, Hubei, China
| | - Qingyu Guan
- Medical School, Jianghan University, Wuhan, 430056, Hubei, China
| | - Yingsong Zhao
- Department of Orthopaedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.39 Yanhu Road East Lake Scenic Area, Wuhan, 430077, Hubei, China
| | - Siyuan Wang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Hewei Li
- Department of Orthopaedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.39 Yanhu Road East Lake Scenic Area, Wuhan, 430077, Hubei, China.
| |
Collapse
|
38
|
Yuan X, Liu X, Li H, Peng S, Huang H, Yu Z, Chen L, Liu X, Bai J. pH-Triggered Transformable Peptide Nanocarriers Extend Drug Retention for Breast Cancer Combination Therapy. Adv Healthc Mater 2024; 13:e2400031. [PMID: 38588449 DOI: 10.1002/adhm.202400031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/27/2024] [Indexed: 04/10/2024]
Abstract
Increasing the penetration and accumulation of antitumor drugs at the tumor site are crucial in chemotherapy. Smaller drug-loaded nanoparticles (NPs) typically exhibit increased tumor penetration and more effective permeation through the nuclear membrane, whereas larger drug-loaded NPs show extended retention at the tumor site. In addition, cancer stem cells (CSCs) have unlimited proliferative potential and are crucial for the onset, progression, and metastasis of cancer. Therefore, a drug-loaded amphiphilic peptide, DDP- and ATRA-loaded Pep1 (DA/Pep1), is designed that self-assembles into spherical NPs upon the encapsulation of cis-diamminedichloroplatinum (DDP) and all-trans retinoic acid (ATRA). In an acidic environment, DA/Pep1 transforms into aggregates containing sheet-like structures, which significantly increases drug accumulation at the tumor site, thereby increasing antitumor effects and inhibiting metastasis. Moreover, although DDP treatment can increase the number of CSCs present, ATRA can induce the differentiation of CSCs in breast cancer to increase the therapeutic effect of DDP. In conclusion, this peptide nanodelivery system that transforms in response to the acidic tumor microenvironment is an extremely promising nanoplatform that suggests a new idea for the combined treatment of tumors.
Collapse
Affiliation(s)
- Xiaomeng Yuan
- School of Bioscience and Technology, Shandong Second Medical University, Weifang, 261053, P. R. China
| | - Xiaoying Liu
- School of Bioscience and Technology, Shandong Second Medical University, Weifang, 261053, P. R. China
| | - Hongjie Li
- School of Medical Sciences, Shandong Second Medical University, Weifang, 261053, P. R. China
| | - Shan Peng
- School of Stomatology, Shandong Second Medical University, Weifang, 261053, P. R. China
| | - Haiqin Huang
- School of Bioscience and Technology, Shandong Second Medical University, Weifang, 261053, P. R. China
| | - Zhe Yu
- School of Bioscience and Technology, Shandong Second Medical University, Weifang, 261053, P. R. China
| | - Limei Chen
- School of Bioscience and Technology, Shandong Second Medical University, Weifang, 261053, P. R. China
| | - Xinlu Liu
- School of Bioscience and Technology, Shandong Second Medical University, Weifang, 261053, P. R. China
| | - Jingkun Bai
- School of Bioscience and Technology, Shandong Second Medical University, Weifang, 261053, P. R. China
| |
Collapse
|
39
|
Zhang Y, Wang Y, Zhang R, Li Q. The prognostic and clinical value of genes associate with immunity and amino acid Metabolism in Lung Adenocarcinoma. Heliyon 2024; 10:e32341. [PMID: 39183890 PMCID: PMC11341317 DOI: 10.1016/j.heliyon.2024.e32341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/02/2024] [Accepted: 06/02/2024] [Indexed: 08/27/2024] Open
Abstract
Background Lung adenocarcinoma (LUAD) is the commonest subtype of primary lung cancer. A comprehensive analysis of the association of immunity with amino acid metabolism in LUAD is critical for understanding the disease. Methods The present study examined LUAD and noncancerous cases from the TCGA database. Differentially expressed genes (DEGs) between LUAD and noncancerous tissues were detected by analyzing processed expression profiles. We cross-referenced the up-regulated DEGs with Immune and Amino Acid Metabolism-related genes (I&AAMGs), resulting in Immune and Amino Acid Metabolism related differentially expressed genes (IAAAMRDEGs). The STRING database was employed to analyze PPI on IAAAMRDEGs, obtaining excavated hub genes, whose biological processes, molecular functions and cellular components were examined with GO/KEGG. Potential mechanisms related to LUAD were investigated by GSEA and GSVA. A prognostic model was built by LASSO-COX analysis, taking into consideration risk scores and prognostic factors to determine biomarkers affecting LUAD occurrence and prognosis. Results Totally 377 genes were detected at the intersection of upregulated DEGs and I&AAMGs. Analysis of PPI on these 377 IAAAMRDEGs yielded 17 hub genes. A LASSO regression analysis was utilized to assess the prognostic values of the 17 hub genes. Validation using the combined dataset confirmed 4 genes, e.g., polo-like kinase (PLK1), Ribonucleotide Reductase Subunit M2 (RRM2), Thyroid Hormone Receptor Interactor 13 (TRIP13), and Hyaluronan-Mediated Motility Receptor (HHMR). The model's accuracy was further assessed by ROC curve analysis and the COX model. In addition, immunohistochemical staining obtained from the HPA database, revealed enhanced PLK1 expression in LUAD samples. Conclusion LUAD pathogenesis is highly associated with immunity and amino acid metabolism. The PLK1, RRM2, TRIP13, and HMMR genes have prognostic values for LUAD. PLK1 upregulation in LUAD might be involved in tumorigenesis by modulating the cell cycle and represents a potential prognostic factor in clinic.
Collapse
Affiliation(s)
- Yuxin Zhang
- Beijing University of Chinese Medicine, No.11, North Third Ring East Road, Chaoyang District, Beijing, 100029, China
| | - Yuehui Wang
- Beijing University of Chinese Medicine, No.11, North Third Ring East Road, Chaoyang District, Beijing, 100029, China
| | - Ruoxuan Zhang
- Beijing University of Chinese Medicine, No.11, North Third Ring East Road, Chaoyang District, Beijing, 100029, China
| | - Quanwang Li
- Dongfang Hospital, Beijing University of Chinese Medicine, No. 6 fangxingyuan, Fengtai District, Beijing, 100078, China
| |
Collapse
|
40
|
Tufail M, Hu JJ, Liang J, He CY, Wan WD, Huang YQ, Jiang CH, Wu H, Li N. Hallmarks of cancer resistance. iScience 2024; 27:109979. [PMID: 38832007 PMCID: PMC11145355 DOI: 10.1016/j.isci.2024.109979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
This review explores the hallmarks of cancer resistance, including drug efflux mediated by ATP-binding cassette (ABC) transporters, metabolic reprogramming characterized by the Warburg effect, and the dynamic interplay between cancer cells and mitochondria. The role of cancer stem cells (CSCs) in treatment resistance and the regulatory influence of non-coding RNAs, such as long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), are studied. The chapter emphasizes future directions, encompassing advancements in immunotherapy, strategies to counter adaptive resistance, integration of artificial intelligence for predictive modeling, and the identification of biomarkers for personalized treatment. The comprehensive exploration of these hallmarks provides a foundation for innovative therapeutic approaches, aiming to navigate the complex landscape of cancer resistance and enhance patient outcomes.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Ju Hu
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Liang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Cai-Yun He
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Dong Wan
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yu-Qi Huang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Can-Hua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Wu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
41
|
Li X, Zhang C, Yue W, Jiang Y. Modulatory effects of cancer stem cell-derived extracellular vesicles on the tumor immune microenvironment. Front Immunol 2024; 15:1362120. [PMID: 38962016 PMCID: PMC11219812 DOI: 10.3389/fimmu.2024.1362120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
Cancer stem cells (CSCs), accounting for only a minor cell proportion (< 1%) within tumors, have profound implications in tumor initiation, metastasis, recurrence, and treatment resistance due to their inherent ability of self-renewal, multi-lineage differentiation, and tumor-initiating potential. In recent years, accumulating studies indicate that CSCs and tumor immune microenvironment act reciprocally in driving tumor progression and diminishing the efficacy of cancer therapies. Extracellular vesicles (EVs), pivotal mediators of intercellular communications, build indispensable biological connections between CSCs and immune cells. By transferring bioactive molecules, including proteins, nucleic acids, and lipids, EVs can exert mutual influence on both CSCs and immune cells. This interaction plays a significant role in reshaping the tumor immune microenvironment, creating conditions favorable for the sustenance and propagation of CSCs. Deciphering the intricate interplay between CSCs and immune cells would provide valuable insights into the mechanisms of CSCs being more susceptible to immune escape. This review will highlight the EV-mediated communications between CSCs and each immune cell lineage in the tumor microenvironment and explore potential therapeutic opportunities.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Animal Science, College of Animal Science, Hebei North University, Zhangjiakou, Hebei, China
- Department of Gynecology and Obstetrics, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Cuilian Zhang
- Reproductive Medicine Center, Henan Provincial People’s Hospital, Zhengzhou University, Zhengzhou, China
| | - Wei Yue
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
| | - Yuening Jiang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
| |
Collapse
|
42
|
Chen R, Gao W, Liang L, Yu H, Song W. Stem cell index-based RiskScore model for predicting prognosis in thyroid cancer and experimental verification. Heliyon 2024; 10:e31970. [PMID: 38868069 PMCID: PMC11167363 DOI: 10.1016/j.heliyon.2024.e31970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/14/2024] Open
Abstract
Objective An mRNA expression-based stemness index (mRNAsi) has been developed to characterize cancer stemness. However, the predictive value of mRNAsi-based signature in therapeutic resistance and immunotherapy in thyroid cancer (THCA) remains unclarified. This study evaluated and validated the role of mRNAsi in drug sensitivity, its relationship between mRNAsi and THCA clinical features and immunity based on bioinformatics. Methods Based on transcriptome data of THCA patients from the Tumor Genome Atlas Project (TCGA) database, and expression data of multifunctional stem cell samples from the Progenitor Cell Biology Consortium (PCBC) databases, mRNAsi was calculated by the " one class logistic regression (OCLR)" method, Molecular subtypes of TCGA-THCA samples were identified with mRNAsi-related genes using ConsensusClusterPlus method. The gene mutation, clinical characteristics, immune characteristics, TIDE and drug sensitivity were compared among molecular subtypes. A prognostic model was designed with Lasso cox method. Modulation of malignant phenotype of THCA cell lines by model characterization genes is validated by CCK-8, flow cytometry. DNA methylation disorder in promoter region was analyzed between risk groups. The model was validated for survival in the internal Test dataset, while TCGA pan-cancer and immunotherapy datasets were further employed to validate the performance of this model. Results We obtained a total of 78 stem cell samples, each containing the expression profile of 8087 mRNA genes. Based on mRNAsi, THCA was divided into 3 subtypes. Subtype C2 had the poorest prognosis and highest immune score, while subtype C3 had the best prognosis, lowest mRANsi and highest TIDE score. Patients in subtype C2 showed higher sensitivity to Cisplatin, Erlotinib, Paclitaxel, and Lapatinib. The prognostic signature was generated using 5 mRNAsi-related genes, which could predict prognosis for THCA. qRT-PCR results showed that the expression of 5 genes were various in Hth7 and KTC-1 cells, and inhibition CELSR3 expression increased percentage of apoptosis in Hth7 and KTC-1 cells. mRNAsi related DNA methylation sites were mainly enriched in tumor related pathways. Good performance of this model was validated in Test dataset, pan-cancer and immunotherapy datasets. Conclusion This study identified three subtypes for classification and developed a prognostic model with mRNAsi-related genes, which provided great potential for prognosis and immunotherapy prediction.
Collapse
Affiliation(s)
- Ruoran Chen
- Department of Endocrinology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Wei Gao
- Department of Endocrinology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Linlang Liang
- Department of Endocrinology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Hao Yu
- Department of Endocrinology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Wei Song
- Department of Endocrinology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| |
Collapse
|
43
|
Xi Y, Min Z, Liu M, Lin X, Yuan ZH. Role and recent progress of P2Y12 receptor in cancer development. Purinergic Signal 2024:10.1007/s11302-024-10027-w. [PMID: 38874752 DOI: 10.1007/s11302-024-10027-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024] Open
Abstract
P2Y12 receptor (P2Y12R) is an adenosine-activated G protein-coupled receptor (GPCR) that plays a central role in platelet function, hemostasis, and thrombosis. P2Y12R activation can promote platelet aggregation and adhesion to cancer cells, promote tumor angiogenesis, and affect the tumor immune microenvironment (TIME) and tumor drug resistance, which is conducive to the progression of cancers. Meanwhile, P2Y12R inhibitors can inhibit this effect, suggesting that P2Y12R may be a potential therapeutic target for cancer. P2Y12R is involved in cancer development and metastasis, while P2Y12R inhibitors are effective in inhibiting cancer. However, a new study suggests that long-term use of P2Y12R inhibitors may increase the risk of cancer and the mechanism remains to be explored. In this paper, we reviewed the structural and functional characteristics of P2Y12R and its role in cancer. We explored the role of P2Y12R inhibitors in different tumors and the latest advances by summarizing the basic and clinical studies on the effects of P2Y12R inhibitors on tumors.
Collapse
Affiliation(s)
- Yanni Xi
- Department of General Surgery, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332007, People's Republic of China
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Republic of China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, Republic of China
| | - Zhenya Min
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Republic of China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, Republic of China
| | - Mianxue Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Republic of China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, Republic of China
| | - Xueqin Lin
- Department of Nursing, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Republic of China
| | - Zhao-Hua Yuan
- Department of General Surgery, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332007, People's Republic of China.
| |
Collapse
|
44
|
Martínez-Pérez J, Torrado C, Domínguez-Cejudo MA, Valladares-Ayerbes M. Targeted Treatment against Cancer Stem Cells in Colorectal Cancer. Int J Mol Sci 2024; 25:6220. [PMID: 38892410 PMCID: PMC11172446 DOI: 10.3390/ijms25116220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
The cancer stem cell (SC) theory proposes that a population of SCs serves as the driving force behind fundamental tumor processes, including metastasis, recurrence, and resistance to therapy. The standard of care for patients with stage III and high-risk stage II colorectal cancer (CRC) includes surgery and adjuvant chemotherapy. Fluoropyrimidines and their combination with oxaliplatin increased the cure rates, being able to eradicate the occult metastatic SC in a fraction of patients. The treatment for unresectable metastatic CRC is based on chemotherapy, antibodies to VEGF and EGFR, and tyrosine-kinase inhibitors. Immunotherapy is used in MSI-H tumors. Currently used drugs target dividing cells and, while often effective at debulking tumor mass, these agents have largely failed to cure metastatic disease. SCs are generated either due to genetic and epigenetic alterations in stem/progenitor cells or to the dedifferentiation of somatic cells where diverse signaling pathways such as Wnt/β-catenin, Hedgehog, Notch, TGF-β/SMAD, PI3K/Akt/mTOR, NF-κB, JAK/STAT, DNA damage response, and Hippo-YAP play a key role. Anti-neoplastic treatments could be improved by elimination of SCs, becoming an attractive target for the design of novel agents. Here, we present a review of clinical trials assessing the efficacy of targeted treatment focusing on these pathways in CRC.
Collapse
Affiliation(s)
- Julia Martínez-Pérez
- Medical Oncology Department, Hospital Universitario Virgen del Rocio (HUVR), Avenida de Manuel Siurot s/n, 41013 Seville, Spain;
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocio (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Avenida de Manuel Siurot s/n, 41013 Seville, Spain;
| | - Carlos Torrado
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - María A. Domínguez-Cejudo
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocio (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Avenida de Manuel Siurot s/n, 41013 Seville, Spain;
| | - Manuel Valladares-Ayerbes
- Medical Oncology Department, Hospital Universitario Virgen del Rocio (HUVR), Avenida de Manuel Siurot s/n, 41013 Seville, Spain;
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocio (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Avenida de Manuel Siurot s/n, 41013 Seville, Spain;
| |
Collapse
|
45
|
Yang Q, Gao W, Li X, Li X, Zhou X, Li W, Zhou C, Luo A, Liu Z. Targeting ABCA1 via Extracellular Vesicle-Encapsulated Staurosporine as a Therapeutic Strategy to Enhance Radiosensitivity. Adv Healthc Mater 2024; 13:e2400381. [PMID: 38467587 DOI: 10.1002/adhm.202400381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Indexed: 03/13/2024]
Abstract
Cancer stem cells (CSCs) are essential for tumor initiation, recurrence, metastasis, and resistance. However, targeting CSCs as a therapeutic approach remains challenging. Here, a stemness signature based on 22-gene is developed to predict prognosis in esophageal squamous cell carcinoma (ESCC). Staurosporine (STS) is identified as a radioresistance suppressor by high-throughput screening of a library of 2131 natural compounds, leading to dramatically improved radiotherapy efficacy in subcutaneous tumor models. Mechanistically, STS inhibits cell proliferation through the mTOR/AKT signaling pathway and suppressed stemness by targeting ATP-binding cassette A1 (ABCA1), which is transcriptionally regulated by liver X receptor alpha (LXRα). STS can selectively bind to the nucleotide-binding domain (NBD) of ABCA1 and compete for ATP, blocking ABCA1-mediated drug efflux and facilitating intracellular accumulation of STS. Considering the cytotoxicity of STS, an extracellular vesicle-encapsulated STS system (EV-STS) is established for effective STS delivery. EV-STS shows remarkable tumor growth inhibition, even at half the dose of STS, with superior safety and efficacy. These findings indicate that ABCA1 may serve as a predictor of response to neoadjuvant chemotherapy and/or radiotherapy in ESCC patients. EV-STS has shown improved antitumor efficacy and low systemic toxicity, offering a promising therapeutic approach for ESCC.
Collapse
Affiliation(s)
- Qi Yang
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wenyan Gao
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xinyue Li
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xin Li
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xuantong Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Wenxin Li
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Changchun Zhou
- Biobank, Cancer Research Center, Shandong Cancer Hospital, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Aiping Luo
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhihua Liu
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| |
Collapse
|
46
|
Zhao Z, Deng Y, Han J, Ma L, Zhu Y, Zhang H, He Z, Song Y. CircMALAT1 promotes cancer stem-like properties and chemoresistance via regulating Musashi-2/c-Myc axis in esophageal squamous cell carcinoma. MedComm (Beijing) 2024; 5:e612. [PMID: 38881674 PMCID: PMC11176741 DOI: 10.1002/mco2.612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/18/2024] Open
Abstract
The primary challenge in treating esophageal squamous cell carcinoma (ESCC) is resistance to chemotherapy. Cancer stem cell (CSC) is the root cause of tumor drug resistance. Therefore, targeting CSCs has been considered promising therapeutic strategy for tumor treatment. Here, we report that circMALAT1 was significantly upregulated in ESCC CSC-like cells and primary tumors from ESCC patients. Clinically, there was a positive correlation between circMALAT1 expression and ESCC stage and lymph node metastasis, as well as poor prognosis for ESCC patients. In vitro and in vivo functional studies revealed that circMALAT1 promoted CSC-like cells expansion, tumor growth, lung metastasis and drug resistance of ESCC. Mechanistically, circMALAT1 directly interacted with CSC-functional protein Musashi RNA Binding Protein 2 (MSI2). CircMALAT1 inhibited MSI2 ubiquitination by preventing it from interacting with β-transducin repeat containing protein (BTRC) E3 ubiquitin ligase. Also, circMALAT1 knockdown inhibited the expression of MSI2-regulating CSC-markers c-Myc in ESCC. Collectively, circMALAT1 modulated the ubiquitination and degradation of the MSI2 protein signaling with ESCC CSCs and accelerated malignant progression of ESCC. CircMALAT1 has the potential to serve as a biomarker for drug resistance and as a target for therapy in CSCs within ESCC.
Collapse
Affiliation(s)
- Zitong Zhao
- Key Laboratory of Cancer and Microbiome State Key Laboratory of Molecular Oncology National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Yingni Deng
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine Zunyi Medical University Zunyi China
| | - Jing Han
- Department of Oncology The Fourth Hospital of Hebei Medical University Shijiazhuang Hebei China
| | - Liying Ma
- Key Laboratory of Cancer and Microbiome State Key Laboratory of Molecular Oncology National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Yumeng Zhu
- Key Laboratory of Cancer and Microbiome State Key Laboratory of Molecular Oncology National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
- Beijing No.4 High School International Campus Beijing China
| | - Hua Zhang
- School of Continuing Education Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine Zunyi Medical University Zunyi China
| | - Yongmei Song
- Key Laboratory of Cancer and Microbiome State Key Laboratory of Molecular Oncology National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| |
Collapse
|
47
|
Zhang Y, Zhang H, Wang C, Cao S, Cheng X, Jin L, Ren R, Zhou F. circRNA6448-14/miR-455-3p/OTUB2 axis stimulates glycolysis and stemness of esophageal squamous cell carcinoma. Aging (Albany NY) 2024; 16:9485-9497. [PMID: 38819228 PMCID: PMC11210236 DOI: 10.18632/aging.205879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/28/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is a gastrointestinal malignancy with high incidence. This study aimed to reveal the complete circRNA-miRNA-mRNA regulatory network in ESCC and validate its function mechanism. METHOD Expression of OTU Domain-Containing Ubiquitin Aldehyde-Binding Protein 2 (OTUB2) in ESCC was analyzed by bioinformatics to find the binding sites between circRNA6448-14 and miR-455-3p, as well as miR-455-3p and OTUB2. The binding relationships were verified by RNA Immunoprecipitation (RIP) and dual-luciferase assay. The expressions of circRNA6448-14, miR-455-3p, and OTUB2 were detected by quantitative real-time polymerase chain reaction (qRT-PCR). MTT assay measured cell viability, and the spheroid formation assay assessed the ability of stem cell sphere formation. Western blot (WB) determined the expression of marker proteins of stem cell surface and rate-limiting enzyme of glycolysis. The Seahorse XFe96 extracellular flux analyzer measured the rate of extracellular acidification rate and cellular oxygen consumption. Corresponding assay kits assessed cellular glucose consumption, lactate production, and adenosine triphosphate (ATP) generation. RESULTS In ESCC, circRNA6448-14 and OTUB2 were highly expressed in contrast to miR-455-3p. Knocking down circRNA6448-14 could prevent the glycolysis and stemness of ESCC cells. Additionally, circRNA6448-14 enhanced the expression of OTUB2 by sponging miR-455-3p. Overexpression of OTUB2 or silencing miR-455-3p reversed the inhibitory effect of knockdown of circRNA6448-14 on ESCC glycolysis and stemness. CONCLUSION This research demonstrated that the circRNA6448-14/miR-455-3p/OTUB2 axis induced the glycolysis and stemness of ESCC cells. Our study revealed a novel function of circRNA6448-14, which may serve as a potential therapeutic target for ESCC.
Collapse
Affiliation(s)
- Yaowen Zhang
- Department of Radiation Oncology, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang 455000, China
| | - Heming Zhang
- Department of Radiation Oncology, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang 455000, China
| | - Chenyu Wang
- Department of Radiation Oncology, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang 455000, China
| | - Shasha Cao
- Department of Radiation Oncology, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang 455000, China
| | - Xinyu Cheng
- Department of Radiation Oncology, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang 455000, China
| | - Linzhi Jin
- Department of Radiation Oncology, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang 455000, China
| | - Runchuan Ren
- Department of Radiation Oncology, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang 455000, China
| | - Fuyou Zhou
- Department of Radiation Oncology, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang 455000, China
| |
Collapse
|
48
|
Shi Q, Xue C, Zeng Y, Yuan X, Chu Q, Jiang S, Wang J, Zhang Y, Zhu D, Li L. Notch signaling pathway in cancer: from mechanistic insights to targeted therapies. Signal Transduct Target Ther 2024; 9:128. [PMID: 38797752 PMCID: PMC11128457 DOI: 10.1038/s41392-024-01828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/31/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Notch signaling, renowned for its role in regulating cell fate, organ development, and tissue homeostasis across metazoans, is highly conserved throughout evolution. The Notch receptor and its ligands are transmembrane proteins containing epidermal growth factor-like repeat sequences, typically necessitating receptor-ligand interaction to initiate classical Notch signaling transduction. Accumulating evidence indicates that the Notch signaling pathway serves as both an oncogenic factor and a tumor suppressor in various cancer types. Dysregulation of this pathway promotes epithelial-mesenchymal transition and angiogenesis in malignancies, closely linked to cancer proliferation, invasion, and metastasis. Furthermore, the Notch signaling pathway contributes to maintaining stem-like properties in cancer cells, thereby enhancing cancer invasiveness. The regulatory role of the Notch signaling pathway in cancer metabolic reprogramming and the tumor microenvironment suggests its pivotal involvement in balancing oncogenic and tumor suppressive effects. Moreover, the Notch signaling pathway is implicated in conferring chemoresistance to tumor cells. Therefore, a comprehensive understanding of these biological processes is crucial for developing innovative therapeutic strategies targeting Notch signaling. This review focuses on the research progress of the Notch signaling pathway in cancers, providing in-depth insights into the potential mechanisms of Notch signaling regulation in the occurrence and progression of cancer. Additionally, the review summarizes pharmaceutical clinical trials targeting Notch signaling for cancer therapy, aiming to offer new insights into therapeutic strategies for human malignancies.
Collapse
Affiliation(s)
- Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shuwen Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jinzhi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yaqi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
49
|
Chen Y, Qu B, Zheng K, Liu Y, Lu L, Zhang X. Global research landscape and trends of cancer stem cells from 1997 to 2023: A bibliometric analysis. Medicine (Baltimore) 2024; 103:e38125. [PMID: 38758889 PMCID: PMC11098227 DOI: 10.1097/md.0000000000038125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/12/2024] [Indexed: 05/19/2024] Open
Abstract
Cancer stem cells (CSCs) are a subset of cells with self-renewal ability and tumor generating potential. Accumulated evidence has revealed that CSCs were shown to contribute to tumorigenesis, metastasis, recurrence and resistance to chemoradiotherapy. Therefore, CSCs were regarded as promising therapeutic targets in cancer. This study is the first to reveal the development process, research hotspots, and trends of entire CSCs research field through bibliometric methods. All relevant publications on CSCs with more than 100 citations (notable papers) and the 100 most cited papers (top papers) during 1997 to 2023 were extracted and analyzed. Cancer research published the largest number of papers (184 papers). The USA accounted for the most publications (1326 papers). Rich, JN was the author with the most publications (56 papers) and the highest M-index (3.111). The most contributive institution was the University of Texas System (164 papers). Before 2007, research mainly focused on the definition and recognition of CSCs. Between 2007 and 2016, with the emergence of the terms such as "sonic hedgehog," "metabolism," "oxidative phosphorylation," and "epithelial mesenchymal transition," research began to shift toward exploring the mechanisms of CSCs. In 2016, the focus transitioned to the tumor microenvironment and the ecological niches. The analysis of papers published in major journals since 2021 showed that "transcription," "inhibition," and "chemoresistance" emerged as new focused issues. In general, the research focus has gradually shifted from basic biology to clinical transformation. "Tumor microenvironment" and "chemo-resistance" should be given more attention in the future.
Collapse
Affiliation(s)
- Yuxian Chen
- College of Medicine, Qingdao University, Qingdao, China
| | - Baozhen Qu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| | - Keke Zheng
- Department of Radiation Oncology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| | - Yanhao Liu
- Department of Radiation Oncology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| | - Linlin Lu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| | - Xiaotao Zhang
- Department of Radiation Oncology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| |
Collapse
|
50
|
Ma Q, Ye S, Liu H, Zhao Y, Zhang W. The emerging role and mechanism of HMGA2 in breast cancer. J Cancer Res Clin Oncol 2024; 150:259. [PMID: 38753081 PMCID: PMC11098884 DOI: 10.1007/s00432-024-05785-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
High mobility group AT-hook 2 (HMGA2) is a member of the non-histone chromosomal high mobility group (HMG) protein family, which participate in embryonic development and other biological processes. HMGA2 overexpression is associated with breast cancer (BC) cell growth, proliferation, metastasis, and drug resistance. Furthermore, HMGA2 expression is positively associated with poor prognosis of patients with BC, and inhibiting HMGA2 signaling can stimulate BC cell progression and metastasis. In this review, we focus on HMGA2 expression changes in BC tissues and multiple BC cell lines. Wnt/β-catenin, STAT3, CNN6, and TRAIL-R2 proteins are upstream mediators of HMGA2 that can induce BC invasion and metastasis. Moreover, microRNAs (miRNAs) can suppress BC cell growth, invasion, and metastasis by inhibiting HMGA2 expression. Furthermore, long noncoding RNAs (LncRNAs) and circular RNAs (CircRNAs) mainly regulate HMGA2 mRNA and protein expression levels by sponging miRNAs, thereby promoting BC development. Additionally, certain small molecule inhibitors can suppress BC drug resistance by reducing HMGA2 expression. Finally, we summarize findings demonstrating that HMGA2 siRNA and HMGA2 siRNA-loaded nanoliposomes can suppress BC progression and metastasis.
Collapse
Affiliation(s)
- Qing Ma
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, China
| | - Sisi Ye
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, China
| | - Hong Liu
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, China
| | - Yu Zhao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, China
| | - Wei Zhang
- Emergency Department of West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China.
| |
Collapse
|