1
|
Geisler L, Detjen K, Hellberg T, Kohlhepp M, Grötzinger C, Knorr J, Eichhorn I, Mohr R, Holtmann T, Wiedenmann B, Tacke F, Roderburg C, Wree A. miR-223 and Chromogranin A Affect Inflammatory Immune Cell Activation in Liver Metastasis of Neuroendocrine Neoplasms. Cells 2025; 14:111. [PMID: 39851539 PMCID: PMC11763622 DOI: 10.3390/cells14020111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
Neuroendocrine neoplasms (NENs) are a diverse group originating from endocrine cells/their precursors in pancreas, small intestine, or lung. The key serum marker is chromogranin A (CgA). While commonly elevated in patients with NEN, its prognostic value is still under discussion. Secretion/posttranslational proteolytic cleavage of CgA results in multiple bioactive fragments, which are essential regulators of the cardiovascular and immune system. miR-223, regulator of Nrlp3 inflammasome and neutrophil activation, was recently found to have decreased in patients with NEN. We performed flow cytometry of circulating neutrophils in a patient cohort (n = 10) with NEN, microdissection and histology of tumor tissue. Subsequently, in vitro transfections using the well-established human pancreatic NEN cell line (BON), and co-culture experiments with primary macrophages and neutrophils were performed. Serum miR-223 in patients correlated with the expression of the neutrophil activation marker CD15 in circulating cells. Neutrophilic CD62L/CD63 showed good discrimination compared to healthy controls. Immune cell-derived miR-155, miR-193 and miR-223 colocalize with neutrophil in the extra-tumoral tissue alongside Nlrp3-associated caspase-1 activation. miR-223 knockdown in BON decreased the CgA intracellularly, increased in cellular granularity and caspase-1 activation. Plasmin inhibitor a2-aP reverted those effects. Western Blot showed fragmented CgA following miR-223 knockdown, which altered the inflammatory potential of neutrophils. Our data hence provide initial insights into an immunoregulatory mechanism via miR-223 and CgA in NEN cells, as regulation of miR-223 in NEN may affect tumor-associated inflammation.
Collapse
Affiliation(s)
- Lukas Geisler
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, 13353 Berlin, Germany
- Department of Biology, Humboldt University of Berlin, 10099 Berlin, Germany
| | - Katharina Detjen
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Teresa Hellberg
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Marlene Kohlhepp
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Carsten Grötzinger
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Jana Knorr
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Ines Eichhorn
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Raphael Mohr
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Theresa Holtmann
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Bertram Wiedenmann
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Christoph Roderburg
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, 40225 Düsseldorf, Germany
| | - Alexander Wree
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, 13353 Berlin, Germany
| |
Collapse
|
2
|
Rekhtman N, Tischfield SE, Febres-Aldana CA, Lee JJK, Chang JC, Herzberg BO, Selenica P, Woo HJ, Vanderbilt CM, Yang SR, Xu F, Bowman AS, da Silva EM, Noronha AM, Mandelker DL, Mehine M, Mukherjee S, Blanco-Heredia J, Orgera JJ, Nanjangud GJ, Baine MK, Aly RG, Sauter JL, Travis WD, Savari O, Moreira AL, Falcon CJ, Bodd FM, Wilson CE, Sienty JV, Manoj P, Sridhar H, Wang L, Choudhury NJ, Offin M, Yu HA, Quintanal-Villalonga A, Berger MF, Ladanyi M, Donoghue MT, Reis-Filho JS, Rudin CM. Chromothripsis-Mediated Small Cell Lung Carcinoma. Cancer Discov 2025; 15:83-104. [PMID: 39185963 PMCID: PMC11726019 DOI: 10.1158/2159-8290.cd-24-0286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/13/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
Small cell lung carcinoma (SCLC) is a highly aggressive malignancy that is typically associated with tobacco exposure and inactivation of RB1 and TP53 genes. Here, we performed detailed clinicopathologic, genomic, and transcriptomic profiling of an atypical subset of SCLC that lacked RB1 and TP53 co-inactivation and arose in never/light smokers. We found that most cases were associated with chromothripsis-massive, localized chromosome shattering-recurrently involving chromosome 11 or 12 and resulting in extrachromosomal amplification of CCND1 or co-amplification of CCND2/CDK4/MDM2, respectively. Uniquely, these clinically aggressive tumors exhibited genomic and pathologic links to pulmonary carcinoids, suggesting a previously uncharacterized mode of SCLC pathogenesis via transformation from lower-grade neuroendocrine tumors or their progenitors. Conversely, SCLC in never-smokers harboring inactivated RB1 and TP53 exhibited hallmarks of adenocarcinoma-to-SCLC derivation, supporting two distinct pathways of plasticity-mediated pathogenesis of SCLC in never-smokers. Significance: Here, we provide the first detailed description of a unique SCLC subset lacking RB1/TP53 alterations and identify extensive chromothripsis and pathogenetic links to pulmonary carcinoids as its hallmark features. This work defines atypical SCLC as a novel entity among lung cancers, highlighting its exceptional histogenesis, clinicopathologic characteristics, and therapeutic vulnerabilities. See related commentary by Nadeem and Drapkin, p. 8.
Collapse
Affiliation(s)
- Natasha Rekhtman
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sam E. Tischfield
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christopher A. Febres-Aldana
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jake June-Koo Lee
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jason C. Chang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Benjamin O. Herzberg
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center and the Herbert Irving Comprehensive Cancer Center, New York, New York
| | - Pier Selenica
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hyung Jun Woo
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Chad M. Vanderbilt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Soo-Ryum Yang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Fei Xu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anita S. Bowman
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Edaise M. da Silva
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anne Marie Noronha
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Diana L. Mandelker
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Miika Mehine
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Semanti Mukherjee
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Juan Blanco-Heredia
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John J. Orgera
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gouri J. Nanjangud
- Department of Molecular Cytogenetics Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marina K. Baine
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rania G. Aly
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jennifer L. Sauter
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - William D. Travis
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Omid Savari
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology, University Hospitals Cleveland Medical Center- Case Western Reserve University, Cleveland, Ohio
| | - Andre L. Moreira
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology, New York University Grossman School of Medicine, New York, New York
| | - Christina J. Falcon
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Francis M. Bodd
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christina E. Wilson
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jacklynn V. Sienty
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Division of Biostatistics Research Scientists, New York University, New York, New York
| | - Parvathy Manoj
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Harsha Sridhar
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lu Wang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Noura J. Choudhury
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Michael Offin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Helena A. Yu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | | | - Michael F. Berger
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mark T.A. Donoghue
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jorge S. Reis-Filho
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Charles M. Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
3
|
Hong R, Wang H, Lin Y, Yin X, Fang J, Pang J, Chen L, Wu H, Liang Z. The clinicopathological and molecular features of primary high-grade neuroendocrine tumour in the breast. Histopathology 2024. [PMID: 39688109 DOI: 10.1111/his.15398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/17/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024]
Abstract
AIMS Nottingham grade for breast cancers, rather than gastro-entero-pancreatic (GEP) grade for neuroendocrine tumours (NETs), is currently applied to primary breast NETs, which need further clarification. High-grade NETs in breast also remain poorly recognised. METHODS AND RESULTS Among 595 breast carcinomas with diffuse synaptophysin (Syn) or chromogranin A (CgA) immunostaining (≥ 90%), 197 eligible cases were selected, including 69 NETs, 123 invasive breast carcinomas of no special type (IBC-NSTs) and five neuroendocrine carcinomas (NECs). The prognostic significance of these two grading systems in breast NETs was assessed. Furthermore, the clinicopathological features were compared in Nottingham G3 cases among three entities. Targeted sequencing and immunostaining (INSM1/p53/Rb/p16) were also performed in all Nottingham G3 NETs, NECs and 10 Nottingham G3 IBC-NSTs. All Nottingham G3 NETs (9 of 69, 13.0%) fell into GEP G3 cases (20 of 69, 29.0%). Nottingham grade provided better prognostic discrimination between G1/G2 and G3 NETs than GEP grade. Among Nottingham G3 cases, there was a trend towards reduced progression-free survival (PFS) in NETs compared with IBC-NSTs (P = 0.057), and the former were more often immunoreactive for INSM1 (44.4 versus 0%, P = 0.033). Nottingham G3 NETs were all of luminal-like phenotype (P < 0.001) and exhibited less aberrant p53 patterns (11.1 versus 80.0%, P = 0.023) as well as more favourable PFS (P = 0.012) and disease-specific survival (P = 0.002) than NECs. Rb loss (4 of 5, 80%), p16 overexpression (5 of 5, 100%) and RB1 mutation (2 of 5, 40%) were observed exclusively in NECs. Based on expression data, epithelial-mesenchymal transition and KRAS signalling pathways were significantly up-regulated in Nottingham G3 NETs (P < 0.05). CONCLUSIONS Nottingham grade, rather than GEP grade, holds important prognostic significance in primary breast NETs. Nottingham G3 NETs represent a small proportion of breast NETs, and may demonstrate distinct clinicopathological and molecular features from other high-grade breast carcinomas with diffuse neuroendocrine markers expression.
Collapse
Affiliation(s)
- Ruping Hong
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hao Wang
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yan Lin
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xianglin Yin
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jiuyuan Fang
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Junyi Pang
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Longyun Chen
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Huanwen Wu
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhiyong Liang
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Suo M, Zhang T, Liang XJ. Biomedical applications of the engineered AIEgen-lipid nanostructure in vitroand in vivo. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 7:012006. [PMID: 39688206 DOI: 10.1088/2516-1091/ad9aeb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024]
Abstract
Since the concept of aggregation-induced emission (AIE) was first coined by Tang and co-workers, AIE-active luminogens (AIEgens) have drawn widespread attention among chemists and biologists due to their unique advantages such as high fluorescence efficiency, large Stokes shift, good photostability, low background noise, and high biological visualization capabilities in the aggregated state, surpassing conventional fluorophores. A growing number of AIEgens have been engineered to possess multifunctional properties, including near-infrared emission, two-photon absorption, reactive oxygen species (ROS) generation and photothermal conversion, making them suitable for deep-tissue imaging and phototherapy. AIEgens show great potential in biomedical applicationsin vitroandin vivo. However, despite the favorable photophysical stability and ROS/heat generation capability in the aggregated state, limitations including uncontrolled size, low targeting efficiency, and unexpected dispersion in physiological environments have hindered their biomedical applications. The combination of AIEgens with lipids offers a simple, promising, and widely adopted solution to these challenges. This review article provides an overview of the synthesis methods of AIEgen-lipid nanostructures and their applications in the biomedical engineering field, aiming to serve as a guideline for developing these AIEgens-lipid nanostructures with promising biological applications.
Collapse
Affiliation(s)
- Meng Suo
- School of Biomedical Engineering, The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou 510260, People's Republic of China
| | - Tianfu Zhang
- School of Biomedical Engineering, The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou 510260, People's Republic of China
| | - Xing-Jie Liang
- School of Biomedical Engineering, The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou 510260, People's Republic of China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
5
|
Ireland AS, Hawgood SB, Xie DA, Barbier MW, Lucas-Randolph S, Tyson DR, Zuo LY, Witt BL, Govindan R, Dowlati A, Moser JC, Puri S, Rudin CM, Chan JM, Elliott A, Oliver TG. Basal cell of origin resolves neuroendocrine-tuft lineage plasticity in cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623500. [PMID: 39605338 PMCID: PMC11601426 DOI: 10.1101/2024.11.13.623500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Neuroendocrine and tuft cells are rare, chemosensory epithelial lineages defined by expression of ASCL1 and POU2F3 transcription factors, respectively1,2. Neuroendocrine cancers, including small cell lung cancer (SCLC), frequently display tuft-like subsets, a feature linked to poor patient outcomes3-13. The mechanisms driving neuroendocrine-tuft tumour heterogeneity, and the origins of tuft-like cancers are unknown. Using multiple genetically-engineered animal models of SCLC, we demonstrate that a basal cell of origin (but not the accepted neuroendocrine origin) generates neuroendocrine-tuft-like tumours that highly recapitulate human SCLC. Single-cell clonal analyses of basal-derived SCLC further uncovers unexpected transcriptional states and lineage trajectories underlying neuroendocrine-tuft plasticity. Uniquely in basal cells, introduction of genetic alterations enriched in human tuft-like SCLC, including high MYC, PTEN loss, and ASCL1 suppression, cooperate to promote tuft-like tumours. Transcriptomics of 944 human SCLCs reveal a basal-like subset and a tuft-ionocyte-like state that altogether demonstrate remarkable conservation between cancer states and normal basal cell injury response mechanisms14-18. Together, these data suggest that the basal cell is a plausible origin for SCLC and other neuroendocrine-tuft cancers that can explain neuroendocrine-tuft heterogeneity-offering new insights for targeting lineage plasticity.
Collapse
Affiliation(s)
- Abbie S. Ireland
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Sarah B. Hawgood
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Daniel A. Xie
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Margaret W. Barbier
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | | | - Darren R. Tyson
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Lisa Y. Zuo
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Benjamin L. Witt
- Department of Pathology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Ramaswamy Govindan
- Division of Oncology, Department of Medicine, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Afshin Dowlati
- Division of Hematology and Oncology, Department of Medicine, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | | | - Sonam Puri
- Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Charles M. Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Joseph M. Chan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | | | - Trudy G. Oliver
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| |
Collapse
|
6
|
Ren Z, Shang S, Chen D. Recent advances in immunotherapy for small cell lung cancer. Curr Opin Oncol 2024:00001622-990000000-00220. [PMID: 39526685 DOI: 10.1097/cco.0000000000001105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
PURPOSE OF REVIEW This review aims to provide an overview of recent advances in immunotherapy for small cell lung cancer (SCLC), with a focus on the current status of immune checkpoint inhibitors (ICIs), novel combination strategies, and key biomarkers. RECENT FINDINGS The integration of ICIs into standard chemotherapy has established them as the first-line treatment for extensive-stage SCLC (ES-SCLC). The ADRIATIC trial further demonstrated the efficacy of ICI maintenance therapy in limited-stage SCLC. Additionally, combining radiotherapy with ICIs has shown promising synergistic effects, including the abscopal and radscopal effects. Ongoing investigations into the combination of ICIs with targeted therapies, such as antiangiogenic agents and DNA damage response inhibitors, have yielded encouraging preliminary results. Notably, the novel therapeutic agent tarlatamab, the first bispecific DLL3-directed CD3 T-cell engager, has recently received FDA approval for second-line treatment of ES-SCLC. Advances in omics technologies have shed light on the intra-tumor and inter-tumor heterogeneity of SCLC, leading to the identification of new molecular subtypes and biomarkers, thereby paving the way for precision medicine. SUMMARY Despite the improved outcomes associated with immunotherapy in SCLC, the overall clinical benefit remains modest. Further preclinical and clinical studies are essential to identify optimal treatment regimens and enhance therapeutic efficacy.
Collapse
Affiliation(s)
- Ziyuan Ren
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | | | | |
Collapse
|
7
|
Jesinghaus M. [Neuroendocrine carcinomas of the gastrointestinal tract : Morphology, molecular pathology, cellular origin]. PATHOLOGIE (HEIDELBERG, GERMANY) 2024; 45:8-13. [PMID: 39535611 DOI: 10.1007/s00292-024-01386-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Neuroendocrine carcinomas (NEC) are poorly differentiated neuroendocrine neoplasms that can occur ubiquitously in the mucosa-bearing organs of the gastrointestinal tract. Based on their morphology, they are classified into large cell (LCNEC) and small cell NEC (SCNEC). The most common form of mixed differentiation is the combination with an adenocarcinoma, referred to as mixed adenoneuroendocrine carcinoma (MANEC). NEC/MANEC exhibit a significantly poorer prognosis than the adenocarcinomas of their respective primary sites, which is inextricably linked to their typical histomorphology. Adenocarcinomas with aberrant expression of neuroendocrine markers do not show a worse clinical course. Molecularly, NEC/MANEC have a profile comparable to the adenocarcinomas of their site of origin and a profile divergent from neuroendocrine tumors. Analyses of gastric NEC/MANEC have shown frequent MYC amplifications, which are reflected in MYC signatures in various transcriptome analyses.The cellular origin of NEC remains a subject of controversial discussion. New insights are provided by a MYC-driven, genetically modified mouse model that led to the development of large gastric tumors. These tumors were histologically identified as LCNEC and were accompanied by both neuroendocrine and non-neuroendocrine precursor lesions. Using immunofluorescence, a derivation from resident neuroendocrine cells in the gastric corpus was demonstrated, suggesting that at least a portion of LCNEC may originate directly from neuroendocrine cells.
Collapse
Affiliation(s)
- Moritz Jesinghaus
- Institut für Pathologie, Philipps-Universität Marburg und Universitätsklinikum Gießen und Marburg, Standort Marburg, Marburg, Deutschland.
| |
Collapse
|
8
|
Ye Z, Zhou Y, Hu Y, Li Q, Xu Z, Lou X, Zhang W, Zhu D, Xie C, Zhou Q, Gao J, Zhou H, Yang D, Qin Y, Xu X, Chen J, Ji S, Wang MW, Yu X. Single-cell sequencing reveals the heterogeneity of pancreatic neuroendocrine tumors under genomic instability and histological grading. iScience 2024; 27:110836. [PMID: 39310774 PMCID: PMC11416505 DOI: 10.1016/j.isci.2024.110836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/10/2024] [Accepted: 08/23/2024] [Indexed: 09/25/2024] Open
Abstract
Histological grading is the key factors affecting the prognosis and instructive in guiding treatment and assessing recurrence in non-functional pancreatic neuroendocrine tumor (NF-Pan-NET). Approximately one-third of patients without copy number variation (CNV) alteration and the prognosis of these patients are better than that of patients with CNV alteration. However, the difference between CNV and histological grading is unclear. Here, we analyzed the heterogeneity of tumor cells according to two classification criteria, genomic instability (including CNV alteration and tumor mutation burden) and histological grading. We revealed that the activated core pathways of tumor cells were significantly different under different histological grading's and genomic instability patterns. We also found that tip cells, lymphatic endothelial cells, macrophages, CD1A + dendritic cell, Treg, MAIT, ILC, and CAFs might participate in the process of hepatic metastases, which will facilitate the understanding of the patterns to decode the malignant potential and of NF-Pan-NET.
Collapse
Affiliation(s)
- Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Yan Zhou
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuheng Hu
- Department of Hepatobiliary and Pancreatic Surgery, Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Qiang Li
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Marchioninistr. 15 81377 Munich, Germany
| | - Zijin Xu
- General Surgery Department, Qingpu Branch of Zhongshan Hospital, Shanghai 200032, China
| | - Xin Lou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Wuhu Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Di Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Cao Xie
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Research Center for Deepsea Bioresources, Sanya, Hainan 572025, China
| | - Jing Gao
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hu Zhou
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dehua Yang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Research Center for Deepsea Bioresources, Sanya, Hainan 572025, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jie Chen
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Ming-Wei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Research Center for Deepsea Bioresources, Sanya, Hainan 572025, China
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| |
Collapse
|
9
|
Mishima K, Obika S, Shimojo M. Splice-switching antisense oligonucleotide controlling tumor suppressor REST is a novel therapeutic medicine for neuroendocrine cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102250. [PMID: 39377066 PMCID: PMC11456559 DOI: 10.1016/j.omtn.2024.102250] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/10/2024] [Indexed: 10/09/2024]
Abstract
RNA splicing regulation has revolutionized the treatment of challenging diseases. Neuroendocrine cancers, including small cell lung cancer (SCLC) and neuroendocrine prostate cancer (PCa), are highly aggressive, with metastatic neuroendocrine phenotypes, leading to poor patient outcomes. We investigated amido-bridged nucleic acid (AmNA)-based splice-switching oligonucleotides (SSOs) targeting RE1-silencing transcription factor (REST) splicing as a novel therapy. We designed AmNA-based SSOs to alter REST splicing. Tumor xenografts were generated by subcutaneously implanting SCLC or PCa cells into mice. SSOs or saline were intraperitoneally administered and tumor growth was monitored. Blood samples were collected from mice after SSO administration, and serum alanine aminotransferase and aspartate aminotransferase levels were measured to assess hepatotoxicity using a biochemical analyser. In vitro, REST_SSO reduced cancer cell viability. In a tumor xenograft model, it exhibited significant antitumor effects. It repressed REST-controlled RE1-harboring genes and upregulated miR-4516, an SCLC biomarker. Our findings suggest that REST_SSO suppresses tumorigenesis in neuroendocrine cancers by restoring REST function. This novel therapeutic approach holds promise for intractable neuroendocrine cancers such as SCLC and neuroendocrine PCa.
Collapse
Affiliation(s)
- Keishiro Mishima
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka 565-0871, Japan
- National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), Osaka 567-0085, Japan
| | - Masahito Shimojo
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
10
|
Meyer HJ, Frille A, Tiepolt S, Denecke T. [Pulmonary neuroendocrine tumors : Current review]. RADIOLOGIE (HEIDELBERG, GERMANY) 2024; 64:546-552. [PMID: 38806730 DOI: 10.1007/s00117-024-01319-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 05/30/2024]
Abstract
CLINICAL ISSUE Neuroendocrine neoplasms of the lung are a heterogenous tumor group. The pathological classification comprises diffuse idiopathic pulmonary neuroendocrine cell hyperplasia, classic neuroendocrine tumors, and neuroendocrine carcinoma. Classic neuroendocrine tumors include typical and atypical carcinoid tumors. DIAGNOSTIC WORK-UP Imaging plays an important role in diagnosis and can help in identifying the tumor biology. Overall, this tumor group is rare, comprising less than 2% of all thoracic tumors. PRACTICAL RECOMMENDATIONS In the current review, the various tumors are presented and important aspects regarding pathological classification, imaging modalities, and treatment are described.
Collapse
Affiliation(s)
- Hans-Jonas Meyer
- Klinik und Poliklinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Leipzig, Liebigstr. 20, 04103, Leipzig, Deutschland.
| | - Armin Frille
- Klinik und Poliklinik für Onkologie, Gastroenterologie, Hepatologie und Pneumologie, Universitätsklinikum Leipzig, Liebigstr. 20, 04103, Leipzig, Deutschland
| | - Solveig Tiepolt
- Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Leipzig, Liebigstr. 20, 04103, Leipzig, Deutschland
| | - Timm Denecke
- Klinik und Poliklinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Leipzig, Liebigstr. 20, 04103, Leipzig, Deutschland.
| |
Collapse
|
11
|
Tömböl Z, Tőke J, Tóth G, Varga Z, Balázs E, Tóth E, Gergely L, Danihel Ľ, Medvecz M, Borka K, Tóth M. Multiple bronchial carcinoids associated with Cowden syndrome. Endocrine 2024; 84:880-884. [PMID: 38353885 PMCID: PMC11208178 DOI: 10.1007/s12020-024-03693-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/10/2024] [Indexed: 06/27/2024]
Abstract
Cowden syndrome (CS) is a rare genetic condition due to the various germline mutations in the phosphatase and tensin homologue on chromosome ten (PTEN) tumour suppressor gene. As a result, CS is characterised by an increased risk of developing various benign and malignant tumours, such as thyroid, breast, endometrial and urogenital neoplasms, as well as gastrointestinal tract tumours. However, the neuroendocrine tumour association with CS is not elucidated yet. We present a case of a 46-year-old male patient diagnosed with testicular seminoma and follicular thyroid cancer in his medical history. Our patient met the clinical diagnostic criteria of Cowden syndrome. Genetic analysis established the clinical diagnosis; a known heterozygous PTEN mutation was detected [PTEN (LRG_311t1)c.388 C > T (p.Arg130Ter)]. Incidentally, he was also seen with multiple pulmonary lesions during his oncological follow-up. A video-assisted thoracoscopic left lingula wedge resection and later resections from the right lung were performed. Histological findings revealed typical pulmonary carcinoid tumours and smaller tumorlets. Somatostatin receptor SPECT-CT, 18F-FDG-PET-CT and 18F-FDOPA-PET-CT scans and endoscopy procedures could not identify any primary tumours in other locations. Our patient is the first published case of Cowden syndrome, associated with multifocal pulmonary carcinoids. Besides multiple endocrine neoplasia type 1, we propose Cowden syndrome as another hereditary condition predisposing to multiple pulmonary tumorlets and carcinoid tumours.
Collapse
Affiliation(s)
- Zsófia Tömböl
- Department of Medicine and Oncology, ENETS Center of Excellence, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Division of Endocrinology, 2nd Department of Medicine, Health Center, Hungarian Defense Forces, Budapest, Hungary
| | - Judit Tőke
- Department of Medicine and Oncology, ENETS Center of Excellence, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Géza Tóth
- Department of Endocrinology, Szent Lázár County Hospital, Salgótarján, Hungary
| | - Zsolt Varga
- Medical Imaging Centre, Department of Nuclear Medicine, Semmelweis University, Budapest, Hungary
| | - Eszter Balázs
- Medical Imaging Centre, Department of Radiology, Semmelweis University, Budapest, Hungary
| | - Erika Tóth
- National Institute of Oncology, Department of Surgical and Molecular Pathology, Tumour Pathology Center, Budapest, Hungary
| | - Lajos Gergely
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, University Hospital Bratislava, Bratislava, Slovak Republic
| | - Ľudovít Danihel
- Institute of Pathological Anatomy, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Márta Medvecz
- Department of Dermatology, Venereology and Dermatooncology, ERN-Skin HCP, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Katalin Borka
- Department of Pathology, Forensic and Insurance Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Miklós Tóth
- Department of Medicine and Oncology, ENETS Center of Excellence, Faculty of Medicine, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
12
|
Ji M, Sun L, Zhang M, Liu Y, Zhang Z, Wang P. RN0D, a galactoglucan from Panax notoginseng flower induces cancer cell death via PINK1/Parkin mitophagy. Carbohydr Polym 2024; 332:121889. [PMID: 38431406 DOI: 10.1016/j.carbpol.2024.121889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/15/2024] [Accepted: 01/28/2024] [Indexed: 03/05/2024]
Abstract
Metabolic alterations within mitochondria, encompassing processes such as autophagy and energy metabolism, play a pivotal role in facilitating the swift proliferation, invasion, and metastasis of cancer cells. Despite this, there is a scarcity of currently available medications with proven anticancer efficacy through the modulation of mitochondrial dysfunction in a clinical setting. Here, we introduce the structural characteristics of RN0D, a galactoglucan isolated and purified from Panax notoginseng flowers, mainly composed of β-1,4-galactan and β-1,3/1,6-glucan. RN0D demonstrates the capacity to induce mitochondrial impairment in cancer cells, leading to the accumulation of reactive oxygen species, initiation of mitophagy, and reduction in both mitochondrial number and size. This sequence of events ultimately results in the inhibition of mitochondrial and glycolytic bioenergetics, culminating in the demise of cancer cells due to adenosine triphosphate (ATP) deprivation. Notably, the observed bioactivity is attributed to RN0D's direct targeting of Galectin-3, as affirmed by surface plasmon resonance studies. Furthermore, RN0D is identified as an activator of the PTEN-induced kinase 1 (PINK1)/Parkin pathway, ultimately instigating cytotoxic mitophagy in tumor cells. This comprehensive study substantiates the rationale for advancing RN0D as a potentially efficacious anticancer therapeutic.
Collapse
Affiliation(s)
- Meng Ji
- Department of Pancreatic-biliary Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai 200011, China
| | - Long Sun
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Minghui Zhang
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yulin Liu
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhenqing Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Peipei Wang
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-Gang Special Area, Shanghai 201306, China.
| |
Collapse
|
13
|
Zeng L, Zhang L, Yin C, Chen X, Chen X, Sun L, Sun J. Characterization of zinc finger protein 536, a neuroendocrine regulator, using pan-cancer analysis. Eur J Med Res 2024; 29:273. [PMID: 38720348 PMCID: PMC11077744 DOI: 10.1186/s40001-024-01792-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/12/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Previous studies suggested that zinc finger protein 536 (ZNF536) was abundant in the central brain and regulated neuronal differentiation. However, the role of ZNF536 in cancer has remained unclear. METHODS ZNF536 mutation, copy number alteration, DNA methylation, and RNA expression were explored using public portals. Data from The Cancer Genome Atlas (TCGA) were utilized to analyze pathways and tumor microenvironment (TME), with a focus on prognosis in both TCGA and immunotherapy pan-cancer cohorts. Methylated ZNF536 from small cell lung cancer (SCLC) cell lines were utilized to train with probes for conducting enrichment analysis. Single-cell RNA profile demonstrated the sublocalization and co-expression of ZNF536, and validated its targets by qPCR. RESULTS Genetic alterations in ZNF536 were found to be high-frequency and a single sample could harbor different variations. ZNF536 at chromosome 19q12 exerted a bypass effect on CCNE1, supported by CRISPR data. For lung cancer, ZNF536 mutation was associated with longer survival in primary lung adenocarcinoma (LUAD), but its prognosis was poor in metastatic LUAD and SCLC. Importantly, ZNF536 mutation and amplification had opposite prognoses in Stand Up To Cancer-Mark Foundation (SU2C-MARK) LUAD cohort. ZNF536 mutation altered the patterns of genomic alterations in tumors, and had distinct impacts on the signaling pathways and TME compared to ZNF536 amplification. Additionally, ZNF536 expression was predominantly in endocrine tumors and brain tissues. High-dimensional analysis supported this finding and further revealed regulators of ZNF536. Considering that the methylation of ZNF536 was involved in the synaptic pathway associated with neuroendocrine neoplasms, demonstrating both diagnostic and prognostic value. Moreover, we experimentally verified ZNF536 upregulated neuroendocrine markers. CONCLUSIONS Our results showed that ZNF536 alterations in cancer, including variations in copy number, mutation, and methylation. We proved the involvement of ZNF536 in neuroendocrine regulation, and identified highly altered ZNF536 as a potential biomarker for immunotherapy.
Collapse
Affiliation(s)
- Longjin Zeng
- Department of Basic Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Longyao Zhang
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Chenrui Yin
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Xu Chen
- Department of Medical Affairs, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Xiewan Chen
- Department of Basic Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Lingyou Sun
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Jianguo Sun
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China.
| |
Collapse
|
14
|
Ye Z, Li Q, Hu Y, Hu H, Xu J, Guo M, Zhang W, Lou X, Wang Y, Gao H, Jing D, Fan G, Qin Y, Zhang Y, Chen X, Chen J, Xu X, Yu X, Liu M, Ji S. The stromal microenvironment endows pancreatic neuroendocrine tumors with spatially specific invasive and metastatic phenotypes. Cancer Lett 2024; 588:216769. [PMID: 38438098 DOI: 10.1016/j.canlet.2024.216769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/06/2024]
Abstract
Cancer-associated fibroblasts (CAFs) play an important role in a variety of cancers. However, the role of tumor stroma in nonfunctional pancreatic neuroendocrine tumors (NF-PanNETs) is often neglected. Profiling the heterogeneity of CAFs can reveal the causes of malignant phenotypes in NF-PanNETs. Here, we found that patients with high stromal proportion had poor prognosis, especially for that with infiltrating stroma (stroma and tumor cells that presented an infiltrative growth pattern and no regular boundary). In addition, myofibroblastic CAFs (myCAFs), characterized by FAP+ and α-SMAhigh, were spatially closer to tumor cells and promoted the EMT and tumor growth. Intriguingly, only tumor cells which were spatially closer to myCAFs underwent EMT. We further elucidated that myCAFs stimulate TGF-β expression in nearby tumor cells. Then, TGF-β promoted the EMT in adjacent tumor cells and promoted the expression of myCAFs marker genes in tumor cells, resulting in distant metastasis. Our results indicate that myCAFs cause spatial heterogeneity of EMT, which accounts for liver metastasis of NF-PanNETs. The findings of this study might provide possible targets for the prevention of liver metastasis.
Collapse
Affiliation(s)
- Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Qiang Li
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Marchioninistr.15, 81377, Munich, Germany
| | - Yuheng Hu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Haifeng Hu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Junfeng Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Muzi Guo
- Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Wuhu Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xin Lou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Heli Gao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Desheng Jing
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Guixiong Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yue Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Xuemin Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Jie Chen
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Mingyang Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
15
|
Yan Y, Wu D, Wang W, Lv Y, Yang L, Liu Y, Dong P, Yu X. Efficacy and safety of neoadjuvant therapy in gastroenteropancreatic neuroendocrine neoplasms: A systematic review and meta-analysis. J Cancer Res Ther 2024; 20:633-641. [PMID: 38687934 DOI: 10.4103/jcrt.jcrt_1800_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/01/2023] [Indexed: 05/02/2024]
Abstract
OBJECTIVE To determine the effectiveness and safety of neoadjuvant therapy in gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) and provide evidence-based suggestions for clinical treatment. METHODS The Cochrane Library, Embase, PubMed, and Web of Science were searched for articles published that analyzed the effectiveness and safety of GEP-NEN-targeted neoadjuvant therapy before March 2023. A confidence interval (CI) of 95%, a subgroup analysis, heterogeneity, and effect size (ES) were analyzed, and a meta-analysis of the literature was performed using the Stata BE17 software. RESULTS A total of 417 patients from 13 studies were included in this meta-analysis. The primary variables comprised the objective response rate (ORR), disease control rate (DCR), surgical resection rate, and R0 resection rate with ES values of 0.42 (95% CI: 0.25-0.60), 0.96 (95% CI: 0.93-0.99), 0.67 (95% CI: 0.50-0.84), and 0.60 (95% CI: 0.54-0.67), respectively. The secondary variables were the incidence rates of treatment-related adverse events (TRAEs), Grade 3 or higher TRAEs, and surgical complications with ES values of 0.29 (95% CI: -0.03-0.21), 0.13 (95% CI: -0.07-0.33), and 0.35 (95% CI: 0.27-0.44), respectively. CONCLUSION Neoadjuvant therapy is an effective and safe treatment method for GEP-NENs. However, further studies are required to determine the optimal regimen for this therapy in these tumors.
Collapse
Affiliation(s)
- Yu Yan
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, Shandong, China
| | - Danzhu Wu
- Clinical Medical College, Jining Medical University, Jining, China
| | - Weizhen Wang
- Department of Pediatric Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yajuan Lv
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, Shandong, China
| | - Liyuan Yang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, Shandong, China
| | - Yinglong Liu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, Shandong, China
| | - Peng Dong
- Clinical Medical College, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Xinshuang Yu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, Shandong, China
| |
Collapse
|
16
|
Catozzi A, Peiris-Pagès M, Humphrey S, Revill M, Morgan D, Roebuck J, Chen Y, Davies-Williams B, Lallo A, Galvin M, Pearce SP, Kerr A, Priest L, Foy V, Carter M, Caeser R, Chan J, Rudin CM, Blackhall F, Frese KK, Dive C, Simpson KL. Functional Characterisation of the ATOH1 Molecular Subtype Indicates a Pro-Metastatic Role in Small Cell Lung Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.580247. [PMID: 38405859 PMCID: PMC10888785 DOI: 10.1101/2024.02.16.580247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Molecular subtypes of Small Cell Lung Cancer (SCLC) have been described based on differential expression of transcription factors (TFs) ASCL1, NEUROD1, POU2F3 and immune-related genes. We previously reported an additional subtype based on expression of the neurogenic TF ATOH1 within our SCLC Circulating tumour cell-Derived eXplant (CDX) model biobank. Here we show that ATOH1 protein was detected in 7/81 preclinical models and 16/102 clinical samples of SCLC. In CDX models, ATOH1 directly regulated neurogenesis and differentiation programs consistent with roles in normal tissues. In ex vivo cultures of ATOH1-positive CDX, ATOH1 was required for cell survival. In vivo, ATOH1 depletion slowed tumour growth and suppressed liver metastasis. Our data validate ATOH1 as a bona fide oncogenic driver of SCLC with tumour cell survival and pro-metastatic functions. Further investigation to explore ATOH1 driven vulnerabilities for targeted treatment with predictive biomarkers is warranted.
Collapse
Affiliation(s)
- Alessia Catozzi
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Maria Peiris-Pagès
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Sam Humphrey
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Mitchell Revill
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, United Kingdom
| | - Derrick Morgan
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, United Kingdom
| | - Jordan Roebuck
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, United Kingdom
| | - Yitao Chen
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Bethan Davies-Williams
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Alice Lallo
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Melanie Galvin
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, United Kingdom
| | - Simon P Pearce
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, United Kingdom
| | - Alastair Kerr
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, United Kingdom
| | - Lynsey Priest
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, United Kingdom
- Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Victoria Foy
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
- Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Mathew Carter
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, United Kingdom
- Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Rebecca Caeser
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joseph Chan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Charles M. Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Fiona Blackhall
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
- Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Kristopher K Frese
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, United Kingdom
| | - Caroline Dive
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, United Kingdom
| | - Kathryn L Simpson
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
17
|
Fujii M, Sekine S, Sato T. Decoding the basis of histological variation in human cancer. Nat Rev Cancer 2024; 24:141-158. [PMID: 38135758 DOI: 10.1038/s41568-023-00648-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 12/24/2023]
Abstract
Molecular abnormalities that shape human neoplasms dissociate their phenotypic landscape from that of the healthy counterpart. Through the lens of a microscope, tumour pathology optically captures such aberrations projected onto a tissue slide and has categorized human epithelial neoplasms into distinct histological subtypes based on the diverse morphogenetic and molecular programmes that they manifest. Tumour histology often reflects tumour aggressiveness, patient prognosis and therapeutic vulnerability, and thus has been used as a de facto diagnostic tool and for making clinical decisions. However, it remains elusive how the diverse histological subtypes arise and translate into pleiotropic biological phenotypes. Molecular analysis of clinical tumour tissues and their culture, including patient-derived organoids, and add-back genetic reconstruction of tumorigenic pathways using gene engineering in culture models and rodents further elucidated molecular mechanisms that underlie morphological variations. Such mechanisms include genetic mutations and epigenetic alterations in cellular identity codes that erode hard-wired morphological programmes and histologically digress tumours from the native tissues. Interestingly, tumours acquire the ability to grow independently of the niche-driven stem cell ecosystem along with these morphological alterations, providing a biological rationale for histological diversification during tumorigenesis. This Review comprehensively summarizes our current understanding of such plasticity in the histological and lineage commitment fostered cooperatively by molecular alterations and the tumour environment, and describes basic and clinical implications for future cancer therapy.
Collapse
Affiliation(s)
- Masayuki Fujii
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan.
| | - Shigeki Sekine
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Toshiro Sato
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
18
|
Eneholm J, Beka E, Kotán R, Gimm O. A retrospective study comparing minimally invasive versus open surgical resection of small intestinal neuroendocrine neoplasms at a tertiary referral center. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024; 50:107936. [PMID: 38176259 DOI: 10.1016/j.ejso.2023.107936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/07/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024]
Abstract
INTRODUCTION Neuroendocrine neoplasms (SI-NEN) are the commonest malignancies of the small intestine. Traditionally, surgical treatment for SI-NEN has been open surgery. PURPOSE The purpose of this study was to compare minimally invasive surgery (MIS) with the traditional open surgery approach for treating SI-NEN in a Swedish population. METHODS Patients with histopathological confirmed SI-NEN who underwent open surgery or MIS resection within 2009-2021 were extracted from the hospital's medical records. RESULTS 65 patients were included in this study, with 35 (54 %) undergoing MIS and 30 (46 %) undergoing open surgery. We found no statistically significant difference (p = 0.173) in the frequency of R0 resections (MIS group n = 34 (97 %), open surgery group n = 26 (87 %)). Nor was there a significant difference (p = 0.101) when comparing the median number of resected lymph nodes (MIS group n = 13.5, open surgery group n = 10). A post-operative paralytic ileus was more often reported (p = 0.052) in the MIS group (n = 9, 26 %) compared to the open surgery group (n = 2, 7 %). In light of this, the days of hospital stay did not differ significantly (MIS group median = 6, IQR (5-8), open surgery group median = 6, IQR (5-9)). The Kaplan-Meier analysis did not reveal differences concerning cancer-related deaths (p = 0.109). CONCLUSION The results from this study support that a MIS approach for the treatment of SI-NEN may not be inferior to open surgery. The higher number of resected lymph nodes and R0 resections may even speak in favor for a MIS approach. More studies with a longer time of observation are needed to further support this conclusion.
Collapse
Affiliation(s)
- Johan Eneholm
- Department of Surgery and Department of Biomedical and Clinical Sciences, Linköping University, 58185, Linköping, Sweden
| | - Ervin Beka
- Department of Surgery and Department of Biomedical and Clinical Sciences, Linköping University, 58185, Linköping, Sweden
| | - Róbert Kotán
- Department of Surgery and Department of Biomedical and Clinical Sciences, Linköping University, 58185, Linköping, Sweden
| | - Oliver Gimm
- Department of Surgery and Department of Biomedical and Clinical Sciences, Linköping University, 58185, Linköping, Sweden.
| |
Collapse
|
19
|
Nomura M, Ohuchi M, Sakamoto Y, Kudo K, Yaku K, Soga T, Sugiura Y, Morita M, Hayashi K, Miyahara S, Sato T, Yamashita Y, Ito S, Kikuchi N, Sato I, Saito R, Yaegashi N, Fukuhara T, Yamada H, Shima H, Nakayama KI, Hirao A, Kawasaki K, Arai Y, Akamatsu S, Tanuma SI, Sato T, Nakagawa T, Tanuma N. Niacin restriction with NAMPT-inhibition is synthetic lethal to neuroendocrine carcinoma. Nat Commun 2023; 14:8095. [PMID: 38092728 PMCID: PMC10719245 DOI: 10.1038/s41467-023-43630-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) plays a major role in NAD biosynthesis in many cancers and is an attractive potential cancer target. However, factors dictating therapeutic efficacy of NAMPT inhibitors (NAMPTi) are unclear. We report that neuroendocrine phenotypes predict lung and prostate carcinoma vulnerability to NAMPTi, and that NAMPTi therapy against those cancers is enhanced by dietary modification. Neuroendocrine differentiation of tumor cells is associated with down-regulation of genes relevant to quinolinate phosphoribosyltransferase-dependent de novo NAD synthesis, promoting NAMPTi susceptibility in vitro. We also report that circulating nicotinic acid riboside (NAR), a non-canonical niacin absent in culture media, antagonizes NAMPTi efficacy as it fuels NAMPT-independent but nicotinamide riboside kinase 1-dependent NAD synthesis in tumors. In mouse transplantation models, depleting blood NAR by nutritional or genetic manipulations is synthetic lethal to tumors when combined with NAMPTi. Our findings provide a rationale for simultaneous targeting of NAR metabolism and NAMPT therapeutically in neuroendocrine carcinoma.
Collapse
Affiliation(s)
- Miyuki Nomura
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Mai Ohuchi
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Yoshimi Sakamoto
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Kei Kudo
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
- Department of Biochemical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keisuke Yaku
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Yuki Sugiura
- Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mami Morita
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Kayoko Hayashi
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Shuko Miyahara
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
- Department of Biochemical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Taku Sato
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Yoji Yamashita
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Shigemi Ito
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Naohiko Kikuchi
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Ikuro Sato
- Department of Pathology, Miyagi Cancer Center Hospital, Natori, Japan
| | - Rintaro Saito
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Nobuo Yaegashi
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tatsuro Fukuhara
- Department of Respiratory Medicine, Miyagi Cancer Center Hospital, Natori, Japan
| | - Hidekazu Yamada
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Hiroshi Shima
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyusyu University, Fukuoka, Japan
- TMDU Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsushi Hirao
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute and WPI Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
| | - Kenta Kawasaki
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yoichi Arai
- Department of Urology, Miyagi Cancer Center Hospital, Natori, Japan
| | - Shusuke Akamatsu
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sei-Ichi Tanuma
- Meikai University Research Institute of Odontology, Sakado, Japan
- University of Human Arts and Sciences, Saitama, Japan
| | - Toshiro Sato
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Nakagawa
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Nobuhiro Tanuma
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan.
- Department of Biochemical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
20
|
Liu L, Liu W, Jia Z, Li Y, Wu H, Qu S, Zhu J, Liu X, Xu C. Application of machine learning algorithms to predict lymph node metastasis in gastric neuroendocrine neoplasms. Heliyon 2023; 9:e20928. [PMID: 37928390 PMCID: PMC10622622 DOI: 10.1016/j.heliyon.2023.e20928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023] Open
Abstract
Background Neuroendocrine neoplasms (NENs) are tumors that originate from secretory cells of the diffuse endocrine system and typically produce bioactive amines or peptide hormones. This paper describes the development and validation of a predictive model of the risk of lymph node metastasis among gastric NEN patients based on machine learning platform. Methods In this investigation, data from 1256 patients were used, of whom 119 patients from the First Affiliated Hospital of Soochow University in China and 1137 cases from the surveillance epidemiology and end results (SEER) database were combined. Six machine learning algorithms, including the logistic regression model (LR), random forest (RF), decision tree (DT), Naive Bayes (NB), support vector machine (SVM), and k-nearest neighbor algorithm (KNN), were used to build the predictive model. The performance of the models was evaluated using the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity. Results Among the 1256 patients with gastric NENs, 276 patients (21.97 %) developed lymph node metastasis. T stage, tumor size, degree of differentiation, and sex were predictive factors of lymph node metastasis. The RF model achieved the best predictive performance among the six machine learning models, with an AUC, accuracy, sensitivity, and specificity of 0.81, 0.78, 0.76, and 0.82, respectively. Conclusion The RF model provided the best prediction and can help physicians determine the lymph node metastasis risk of gastric NEN patients to formulate individualized medical strategies.
Collapse
Affiliation(s)
- Lu Liu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wen Liu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhenyu Jia
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yao Li
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hongyu Wu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shuting Qu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinzhou Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaolin Liu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chunfang Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
21
|
Fracasso G, Falvo E, Tisci G, Sala G, Colotti G, Cingarlini S, Tito C, Bibbo S, Frusteri C, Tremante E, Giordani E, Giacomini P, Ceci P. Widespread in vivo efficacy of The-0504: A conditionally-activatable nanoferritin for tumor-agnostic targeting of CD71-expressing cancers. Heliyon 2023; 9:e20770. [PMID: 37860543 PMCID: PMC10582389 DOI: 10.1016/j.heliyon.2023.e20770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023] Open
Abstract
Background Cancer is still among the leading causes of death all over the world. Improving chemotherapy and minimizing associated toxicities are major unmet medical needs. Recently, we provided a preliminary preclinical evaluation of a human ferritin (HFt)-based drug carrier (The-0504) that selectively delivers the wide-spectrum topoisomerase I inhibitor Genz-644282 to CD71-expressing tumors. The-0504 has so far been evaluated on four different human tumor xenotransplant models (breast, colorectal, pancreatic and liver cancers). Methods Herein, we extend our studies, by: (a) testing DNA damage in vitro, (b) treating eight additional tumor xenograft models in vivo with The-0504; (c) performing pharmacokinetic (PK) studies in rats; and (d) evaluating The-0504 anti-tumor xenotransplant efficacy by optimizing its administration schedule based on PK considerations. Results Immunofluorescence demonstrated that The-0504 induces foci expressing the DNA double-strand break marker γH2AX. Expression increases up to 4-fold and is more persistent as compared to free Genz-644282. In vivo studies confirmed a remarkable anti-tumor activity of The-0504, resulting in tumor eradication in most murine xenograft models, regardless of embryological origin (e.g. epithelial, mesenchymal or neuroendocrine), and molecular subtypes. PK studies demonstrated a long persistence of The-0504 in rat serum (half-life of about 40 h as compared to 15 h of the free drug), with a 400-fold increase in peak concentrations as compared to the free drug. On this basis, we reduced The-0504 administration frequency from twice to once per week, with no appreciable loss in therapeutic efficacy in mice. Conclusion The results presented here confirm that The-0504 is highly active against several human tumor xenotransplants, even when administered less frequently than previously reported. The-0504 may be a good candidate for further clinical development in a tumor histotype-agnostic setting.
Collapse
Affiliation(s)
- Giulio Fracasso
- Department of Biomedical Sciences, University of Padua, 35131, Padua, Italy
| | - Elisabetta Falvo
- CNR–National Research Council of Italy, Institute of Molecular Biology and Pathology, 00185, Rome, Italy
| | - Giada Tisci
- Department of Biochemical Sciences, Sapienza University of Rome, 00185, Rome, Italy
| | - Gianluca Sala
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), Chieti, Italy
| | - Gianni Colotti
- CNR–National Research Council of Italy, Institute of Molecular Biology and Pathology, 00185, Rome, Italy
| | - Sara Cingarlini
- Section of Oncology, Verona University Hospital Trust, Verona, Italy
| | - Claudia Tito
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, 00185, Rome, Italy
| | - Sandra Bibbo
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), Chieti, Italy
| | | | - Elisa Tremante
- Department of Research, Advanced Diagnostics and Technological Innovation, UOC Translational Oncology Research, IRCCS National Cancer Institute Regina Elena, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Elena Giordani
- Clinical Trial Center, Biostatistics and Bioinformatics, IRCCS National Cancer Institute Regina Elena, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Patrizio Giacomini
- Clinical Trial Center, Biostatistics and Bioinformatics, IRCCS National Cancer Institute Regina Elena, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Pierpaolo Ceci
- CNR–National Research Council of Italy, Institute of Molecular Biology and Pathology, 00185, Rome, Italy
- Thena Biotech, Latina, Italy
| |
Collapse
|
22
|
Quintanal-Villalonga A, Durani V, Sabet A, Redin E, Kawasaki K, Shafer M, Karthaus WR, Zaidi S, Zhan YA, Manoj P, Sridhar H, Shah NS, Chow A, Bhanot UK, Linkov I, Asher M, Yu HA, Qiu J, de Stanchina E, Patel RA, Morrissey C, Haffner MC, Koche RP, Sawyers CL, Rudin CM. Exportin 1 inhibition prevents neuroendocrine transformation through SOX2 down-regulation in lung and prostate cancers. Sci Transl Med 2023; 15:eadf7006. [PMID: 37531417 PMCID: PMC10777207 DOI: 10.1126/scitranslmed.adf7006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 07/12/2023] [Indexed: 08/04/2023]
Abstract
In lung and prostate adenocarcinomas, neuroendocrine (NE) transformation to an aggressive derivative resembling small cell lung cancer (SCLC) is associated with poor prognosis. We previously described dependency of SCLC on the nuclear transporter exportin 1. Here, we explored the role of exportin 1 in NE transformation. We observed up-regulated exportin 1 in lung and prostate pretransformation adenocarcinomas. Exportin 1 was up-regulated after genetic inactivation of TP53 and RB1 in lung and prostate adenocarcinoma cell lines, accompanied by increased sensitivity to the exportin 1 inhibitor selinexor in vitro. Exportin 1 inhibition prevented NE transformation in different TP53/RB1-inactivated prostate adenocarcinoma xenograft models that acquire NE features upon treatment with the aromatase inhibitor enzalutamide and extended response to the EGFR inhibitor osimertinib in a lung cancer transformation patient-derived xenograft (PDX) model exhibiting combined adenocarcinoma/SCLC histology. Ectopic SOX2 expression restored the enzalutamide-promoted NE phenotype on adenocarcinoma-to-NE transformation xenograft models despite selinexor treatment. Selinexor sensitized NE-transformed lung and prostate small cell carcinoma PDXs to standard cytotoxics. Together, these data nominate exportin 1 inhibition as a potential therapeutic target to constrain lineage plasticity and prevent or treat NE transformation in lung and prostate adenocarcinoma.
Collapse
Affiliation(s)
- Alvaro Quintanal-Villalonga
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vidushi Durani
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
| | - Amin Sabet
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Esther Redin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kenta Kawasaki
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Moniquetta Shafer
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Wouter R. Karthaus
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Samir Zaidi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yingqian A. Zhan
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Parvathy Manoj
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Harsha Sridhar
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nisargbhai S. Shah
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrew Chow
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Medical College, New York, NY 10065, USA
| | - Umesh K. Bhanot
- Precision Pathology Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Irina Linkov
- Precision Pathology Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Marina Asher
- Precision Pathology Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Helena A. Yu
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Medical College, New York, NY 10065, USA
| | - Juan Qiu
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Radhika A. Patel
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA 19024, USA
| | - Colm Morrissey
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
- Department of Urology, University of Washington, Seattle, WA 98195, USA
| | - Michael C. Haffner
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA 19024, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Richard P. Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Charles L. Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Charles M. Rudin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|