1
|
Wang T, Song Y, Bell BA, Anderson BD, Lee TT, Yu W, Dunaief JL. Complement C3 knockout protects photoreceptors in the sodium iodate model. Exp Eye Res 2025; 250:110161. [PMID: 39557279 PMCID: PMC11625604 DOI: 10.1016/j.exer.2024.110161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Complement factor 3 (C3) has emerged as a primary therapeutic target in age-related macular degeneration (AMD) supported by genetic, histologic, and clinical trial evidence. Yet, the site(s) of action are unclear. The purpose of this study was to test the effect of C3 knockout on photoreceptors and retinal pigment epithelial cells (RPE) in the sodium iodate (NaIO3) model, which mirrors some features of AMD. C3-/- and WT mice, both on a C57Bl/6J background, were injected intraperitoneally with 25 mg/kg NaIO3. Electroretinography and optical coherence tomography were performed 7 days later to assess retinal function and structure, respectively. Then, mice were euthanized for retinal immunohistochemistry, quantitative real-time PCR and enzyme-linked immunosorbent assays. NaIO3 increased C3 protein levels in the neural retina but not RPE. WT but not C3-/- mice showed NaIO3-induced iC3b deposition on photoreceptor outer segments. C3-/- mice were partially protected against photoreceptor layer thinning. There was partial preservation of rod and cone function in the C3-/- group. Neither RPE structure nor function was protected. These results suggest outer segment opsonization contributes to photoreceptor death in this model, and that targeting C3 can protect photoreceptor structure and function when RPE cells are stressed.
Collapse
Affiliation(s)
- Tan Wang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China; FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Ying Song
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Brent A Bell
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Brandon D Anderson
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Timothy T Lee
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Weihong Yu
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| | - Joshua L Dunaief
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
2
|
Ajona D, Cragg MS, Pio R. The complement system in clinical oncology: Applications, limitations and challenges. Semin Immunol 2024; 77:101921. [PMID: 39700788 DOI: 10.1016/j.smim.2024.101921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/21/2024]
Abstract
The complement system, a key component of innate immunity, is involved in seemingly contradictory aspects of tumor progression and cancer therapy. It can act as an immune effector against cancer and modulate the antitumor activity of certain therapeutic antibodies, but it can also contribute to a tumor-promoting microenvironment. Understanding this dual role should lead to the development of better therapeutic tools, strategies for cancer treatment and biomarkers for the clinical management of cancer patients. Here, we review recent advances in the understanding of the role of complement in cancer, focusing on how these findings are being translated into the clinic. We highlight the activity of therapeutic agents that modulate the complement system, as well as combination therapies that integrate complement modulation with existing therapies. We conclude that the role of complement activation in cancer is a rapidly evolving field with the potential to translate findings into new therapeutic strategies and clinically useful biomarkers.
Collapse
Affiliation(s)
- Daniel Ajona
- Laboratory of Translational Oncology, Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain; Department of Biochemistry and Genetics, School of Sciences, Universidad de Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Mark S Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ruben Pio
- Laboratory of Translational Oncology, Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain; Department of Biochemistry and Genetics, School of Sciences, Universidad de Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
3
|
Ruthsatz T, Wymann S, Velkoska E, Mansour M, Schu D, Lichtfuss M, Rossato P, FitzPatrick M, Hosback S, Dyson A, Herzog E, Martin K, Dietrich B, Hardy MP. Preclinical safety and efficacy of the recombinant CR1 drug product CSL040 in rats and cynomolgus monkeys. Toxicol Appl Pharmacol 2024; 495:117191. [PMID: 39647511 DOI: 10.1016/j.taap.2024.117191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
CSL040 is a soluble, recombinant fragment of the complement receptor 1 (CR1) extracellular domain that acts as an inhibitor of all three pathways of the complement system. Systemic toxicity, toxicokinetics (TK), and pharmacodynamics (PD) of CSL040 were assessed in two-week intravenous (IV) bolus studies in Han Wistar rats and cynomolgus monkeys. Recovery from any effects was evaluated during a four-week recovery period. Daily repeat-dose administration for 2 weeks at doses of up to 500 mg/kg CSL040 IV was well tolerated in rats and cynomolgus monkeys, leading to a no observed adverse effect level (NOAEL) of 500 mg/kg for both species. Safety pharmacology parameters such as electrophysiology of the heart, blood pressure, heart rate, and respiratory rate measurements, and general toxicological readouts were considered unaffected by CSL040 treatment. Anti-drug antibodies (ADAs) were observed in all cynomolgus monkeys and in some rats at the highest dose of CSL040, but with no effect on pharmacokinetics (PK), supportive of adequate exposure levels as required for a safety assessment. All three complement pathways were inhibited dose-dependently by CSL040. Additionally, no effect on cytokine levels by CSL040 was detected in vitro using a cytokine release assay. These non-clinical studies with CSL040 demonstrated PD activity consistent with its mode of action, adequate PK properties, and a safety profile supporting a phase 1 clinical strategy. A small follow-up study comparing the PK/PD effects of CSL040 following IV and subcutaneous (SC) administration also suggested that the latter route of administration might be a viable alternative to IV administration.
Collapse
Affiliation(s)
| | - Sandra Wymann
- CSL Biologics Research Centre, Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | | | | | - Daniel Schu
- CSL Behring Innovation GmbH, Marburg, Germany
| | | | | | | | | | | | - Eva Herzog
- CSL Behring LLC, 1020 First Avenue, King of Prussia, PA, USA
| | | | | | | |
Collapse
|
4
|
Ricklin D. Complement-targeted therapeutics: Are we there yet, or just getting started? Eur J Immunol 2024; 54:e2350816. [PMID: 39263829 PMCID: PMC11628912 DOI: 10.1002/eji.202350816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Therapeutic interventions in the complement system, a key immune-inflammatory mediator and contributor to a broad range of clinical conditions, have long been considered important yet challenging or even unfeasible to achieve. Almost 20 years ago, a spark was lit demonstrating the clinical and commercial viability of complement-targeted therapies. Since then, the field has experienced an impressive expansion of targeted indications and available treatment modalities. Currently, a dozen distinct complement-specific therapeutics covering several intervention points are available in the clinic, benefiting patients suffering from eight disorders, not counting numerous clinical trials and off-label uses. Observing this rapid rise of complement-targeted therapy from obscurity to mainstream with amazement, one might ask whether the peak of this development has now been reached or whether the field will continue marching on to new heights. This review looks at the milestones of complement drug discovery and development achieved so far, surveys the currently approved drug entities and indications, and ventures a glimpse into the future advancements yet to come.
Collapse
Affiliation(s)
- Daniel Ricklin
- Molecular Pharmacy Group, Department of Pharmaceutical SciencesUniversity of BaselBaselSwitzerland
| |
Collapse
|
5
|
Ryder S. Integrated Applied Clinical Pharmacology in the Advancement of Rare and Ultra-Rare Disease Therapeutics. Clin Pharmacol Ther 2024; 116:1485-1495. [PMID: 39034754 DOI: 10.1002/cpt.3382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/29/2024] [Indexed: 07/23/2024]
Abstract
The introduction of safe and effective rare/ultra-rare disease treatments is a focus of many biotherapeutic enterprises. Despite this increased activity, a significant unmet need remains, and the responsibility to meet this need is augmented by enhanced genomic, biologic, medical, analytical, and informatic tools. It is recognized that the development of an effective and safe rare/ultra-rare disease therapeutic faces a number of challenges with an important role noted for clinical pharmacology. Clinical pharmacology is foundationally an integrative discipline which must be embedded in and is interdependent upon understanding the pathogenic biology, clinical presentation, disease progression, and end-point assessment of the disease under study. This manuscript presents an overview and two case examples of this integrative approach, the development of C5-targeted therapeutics for the treatment of generalized myasthenia gravis and asfotase alpha for the treatment of hypophosphatasia. The two presented case examples show the usefulness of understanding the biological drivers and clinical course of a rare disease, having relevant animal models, procuring informative natural history data, importing assessment tools from relevant alternative areas, and using integrated applied clinical pharmacology to inform target engagement, dose, and the cascade of pharmacodynamic and clinical effects that follow. Learnings from these programs include the importance of assuring cross-validation of assays throughout a development program and continued commitment to understanding the relationship among the array of Pd end points and clinical outcomes. Using an integrative approach, substantive work remains to be done to meet the unmet needs of patients with rare/ultra-rare disease.
Collapse
|
6
|
Belo Y, Malach E, Hayouka Z. Recruiting the Immune System against Pathogenic Bacteria Using High-Affinity Chimeric Tags. Bioconjug Chem 2024; 35:1716-1722. [PMID: 39401419 PMCID: PMC11583208 DOI: 10.1021/acs.bioconjchem.4c00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 11/21/2024]
Abstract
The immune system plays a critical role in protecting the host against pathogens. However, mechanisms for evading the immune system have evolved in pathogens, altering their surface proteins or causing the expression of enzymes that interfere with the immune response. These strategies cause pathogens to escape detection and destruction by the immune system, thereby inducing severe infections. Thus, there is a critical need to develop new chemical tools to recruit the immune system against evading pathogens. Here, we describe a novel strategy for targeting pathogens, by labeling them with a chimeric agent that comprises a peptide bacterial binder, conjugated to an immune-protein tag that is recognizable by the complement system, thereby recruiting the immune system against the targeted pathogen. The chimeric tag was developed by conjugating the peptide bacterial binder with the C3b complement system activating protein. We showed that the chimeric C3b tag preserved its activity and was able to bind the C5 complement protein with strong binding affinity. Using this approach, we have demonstrated that the chimeric agent was able to eradicate 90% of complement-resistant E. coli bacterial cells. By showing enhancement of complement sensitivity in complement-resistant pathogens, this work demonstrates the basis for a new therapeutic approach for targeting pathogenic bacteria, which could open a new era in the development of selective and effective antimicrobial agents.
Collapse
Affiliation(s)
- Yael Belo
- Institute of Biochemistry,
Food Science and Nutrition, The Robert H. Smith Faculty of Agricultural,
Food & Environment, The Hebrew University
of Jerusalem, Rehovot 76100, Israel
| | - Einav Malach
- Institute of Biochemistry,
Food Science and Nutrition, The Robert H. Smith Faculty of Agricultural,
Food & Environment, The Hebrew University
of Jerusalem, Rehovot 76100, Israel
| | - Zvi Hayouka
- Institute of Biochemistry,
Food Science and Nutrition, The Robert H. Smith Faculty of Agricultural,
Food & Environment, The Hebrew University
of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
7
|
Attarian S. New treatment strategies in Myasthenia gravis. Rev Neurol (Paris) 2024; 180:971-981. [PMID: 39379218 DOI: 10.1016/j.neurol.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 10/10/2024]
Abstract
Myasthenia gravis (MG) is a chronic autoimmune neuromuscular disorder characterized by muscle weakness and fatigue. The disease is primarily caused by antibodies targeting acetylcholine receptors (AChR) and muscle-specific kinase (MuSK) proteins at the neuromuscular junction. Traditional treatments for MG, such as acetylcholinesterase inhibitors, corticosteroids, and immunosuppressants, have shown efficacy but are often associated with significant long-term side effects and variable patient response rates. Notably, approximately 15% of patients exhibit inadequate responses to these standard therapies. Recent advancements in molecular therapies, including monoclonal antibodies, B cell-depleting agents, complement inhibitors, Fc receptor antagonists, and chimeric antigen receptor (CAR) T cell-based therapies, have introduced promising alternatives for MG treatment. These novel therapeutic approaches offer potential improvements in targeting specific immune pathways involved in MG pathogenesis. This review highlights the progress and challenges in developing and implementing these molecular therapies. It discusses their mechanisms, efficacy, and the potential for personalized medicine in managing MG. The integration of new molecular therapies into clinical practice could significantly transform the treatment landscape of MG, offering more effective and tailored therapeutic options for patients who do not respond adequately to traditional treatments. These innovations underscore the importance of ongoing research and clinical trials to optimize therapeutic strategies and improve the quality of life for individuals with MG.
Collapse
Affiliation(s)
- S Attarian
- Referral center for Neuromuscular disorders, Timone Hospital University, AIX-Marseille Université, Marseille, France; Filnemus, ERN NMD, Marseille, France.
| |
Collapse
|
8
|
Magdy A, Kim HJ, Go H, Lee JM, Sohn HA, Haam K, Jung HJ, Park JL, Yoo T, Kwon ES, Lee DH, Choi M, Kang KW, Kim W, Kim M. DNA methylome analysis reveals epigenetic alteration of complement genes in advanced metabolic dysfunction-associated steatotic liver disease. Clin Mol Hepatol 2024; 30:824-844. [PMID: 39048522 PMCID: PMC11540403 DOI: 10.3350/cmh.2024.0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND/AIMS Blocking the complement system is a promising strategy to impede the progression of metabolic dysfunction-associated steatotic liver disease (MASLD). However, the interplay between complement and MASLD remains to be elucidated. This comprehensive approach aimed to investigate the potential association between complement dysregulation and the histological severity of MASLD. METHODS Liver biopsy specimens were procured from a cohort comprising 106 Korean individuals, which included 31 controls, 17 with isolated steatosis, and 58 with metabolic dysfunction-associated steatohepatitis (MASH). Utilizing the Infinium Methylation EPIC array, thorough analysis of methylation alterations in 61 complement genes was conducted. The expression and methylation of nine complement genes in a murine MASH model were examined using quantitative RT-PCR and pyrosequencing. RESULTS Methylome and transcriptome analyses of liver biopsies revealed significant (P<0.05) hypermethylation and downregulation of C1R, C1S, C3, C6, C4BPA, and SERPING1, as well as hypomethylation (P<0.0005) and upregulation (P<0.05) of C5AR1, C7, and CD59, in association with the histological severity of MASLD. Furthermore, DNA methylation and the relative expression of nine complement genes in a MASH diet mouse model aligned with human data. CONCLUSION Our research provides compelling evidence that epigenetic alterations in complement genes correlate with MASLD severity, offering valuable insights into the mechanisms driving MASLD progression, and suggests that inhibiting the function of certain complement proteins may be a promising strategy for managing MASLD.
Collapse
Affiliation(s)
- Amal Magdy
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Hee-Jin Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Hanyong Go
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Jun Min Lee
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Hyun Ahm Sohn
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Keeok Haam
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Hyo-Jung Jung
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Jong-Lyul Park
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Taekyeong Yoo
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Eun-Soo Kwon
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, UST, Daejeon, Korea
| | - Dong Hyeon Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Won Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Korea
| | - Mirang Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - on behalf of the Innovative Target Exploration of NAFLD (ITEN) Consortium
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, UST, Daejeon, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
9
|
Li Y, Young Na J, Zhu Y, Oh J, Zhao A, Jang IJ, Tang L. Pharmacokinetics, pharmacodynamics, safety, and tolerability of a single-dose riliprubart, an anti-C1s humanized monoclonal antibody in East-Asian adults: results from a Phase 1, randomized, open-label trial. Expert Opin Investig Drugs 2024; 33:1063-1074. [PMID: 39171350 DOI: 10.1080/13543784.2024.2394186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
OBJECTIVES This Phase 1 trial was planned to investigate the pharmacokinetics (PK), pharmacodynamics (PD), safety, and tolerability of a single dose of riliprubart in healthy East-Asian adult participants. METHODS A single-center, parallel-group, randomized, open-label, single-dose study was performed to evaluate the PK, PD, safety, and tolerability of riliprubart (50 mg/kg intravenous [IV] or 600 mg subcutaneous [SC]) in 37 healthy East-Asian (Chinese, Japanese, and Korean) participants. RESULTS Riliprubart was slowly absorbed after SC administration (median tmax: 7.01-10.48 days) and showed a long half-life after IV or SC administration (mean: 9.52-11.0 weeks), with a bioavailability of 74.6% after SC administration. The PD profiles, which are evaluated by classical complement pathway activity or CH50, were similar and largely overlapped across East-Asian participants after a single IV or SC dose. Riliprubart was safe and well tolerated in participants following a single IV or SC dose. CONCLUSIONS Riliprubart was safe and well tolerated and demonstrated favorable PK and PD profiles in healthy East-Asian participants following a single IV or SC dose. These results are comparable to first-in-human study results from non-East-Asian participants and support the same dosing regimen of riliprubart for global simultaneous clinical development. CLINICAL TRIAL REGISTRATION This trial is registered at https://cris.nih.go.kr (identifier: KCT0006571).
Collapse
Affiliation(s)
- Yingxin Li
- Translational Medicine and Clinical Pharmacology, Sanofi, Beijing, China
| | - Joo Young Na
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Yunting Zhu
- Pharmacokinetics, Dynamics and Metabolism, Sanofi, Beijing, China
| | - Jaeseong Oh
- Department of Clinical Pharmacology and Therapeutics, Seoul National University Hospital, Seoul, South Korea
| | - Amy Zhao
- Evidence Generation & Decision Science, Sanofi, Beijing, China
| | - In-Jin Jang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, South Korea
| | - Lei Tang
- Translational Medicine and Early Development, Sanofi, Suzhou, China
| |
Collapse
|
10
|
Stark K, Kilani B, Stockhausen S, Busse J, Schubert I, Tran TD, Gaertner F, Leunig A, Pekayvaz K, Nicolai L, Fumagalli V, Stermann J, Stephan F, David C, Müller MB, Heyman B, Lux A, da Palma Guerreiro A, Frenzel LP, Schmidt CQ, Dopler A, Moser M, Chandraratne S, von Brühl ML, Lorenz M, Korff T, Rudelius M, Popp O, Kirchner M, Mertins P, Nimmerjahn F, Iannacone M, Sperandio M, Engelmann B, Verschoor A, Massberg S. Antibodies and complement are key drivers of thrombosis. Immunity 2024; 57:2140-2156.e10. [PMID: 39226900 DOI: 10.1016/j.immuni.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/17/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024]
Abstract
Venous thromboembolism (VTE) is a common, deadly disease with an increasing incidence despite preventive efforts. Clinical observations have associated elevated antibody concentrations or antibody-based therapies with thrombotic events. However, how antibodies contribute to thrombosis is unknown. Here, we show that reduced blood flow enabled immunoglobulin M (IgM) to bind to FcμR and the polymeric immunoglobulin receptor (pIgR), initiating endothelial activation and platelet recruitment. Subsequently, the procoagulant surface of activated platelets accommodated antigen- and FcγR-independent IgG deposition. This leads to classical complement activation, setting in motion a prothrombotic vicious circle. Key elements of this mechanism were present in humans in the setting of venous stasis as well as in the dysregulated immunothrombosis of COVID-19. This antibody-driven thrombosis can be prevented by pharmacologically targeting complement. Hence, our results uncover antibodies as previously unrecognized central regulators of thrombosis. These findings carry relevance for therapeutic application of antibodies and open innovative avenues to target thrombosis without compromising hemostasis.
Collapse
Affiliation(s)
- Konstantin Stark
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany; Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany.
| | - Badr Kilani
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany; Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Sven Stockhausen
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany; Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Johanna Busse
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Irene Schubert
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Thuy-Duong Tran
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Florian Gaertner
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany; Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany; Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Alexander Leunig
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany; Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Kami Pekayvaz
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany; Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Leo Nicolai
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany; Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Valeria Fumagalli
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Julia Stermann
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany; Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Felix Stephan
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany; Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Christian David
- Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine, Biomedical Center (BMC) LMU Munich, Munich, Germany
| | - Martin B Müller
- Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany; Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Birgitta Heyman
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Anja Lux
- Department of Biology, Institute of Genetics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany; Medical Immunology Campus Erlangen (MICE), Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Alexandra da Palma Guerreiro
- Department I of Internal Medicine, University Hospital Cologne, Cologne 50937, Germany; Center of Integrated Oncology ABCD, University Hospital of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50937, Germany
| | - Lukas P Frenzel
- Department I of Internal Medicine, University Hospital Cologne, Cologne 50937, Germany; Center of Integrated Oncology ABCD, University Hospital of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50937, Germany
| | - Christoph Q Schmidt
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, University of Ulm Medical Center, Ulm, Germany
| | - Arthur Dopler
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, University of Ulm Medical Center, Ulm, Germany
| | - Markus Moser
- Department of Molecular Medicine, Max-Planck-Institute of Biochemistry, Martinsried, Germany; Institute of Experimental Hematology, TranslaTUM, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Sue Chandraratne
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Marie-Luise von Brühl
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Michael Lorenz
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Thomas Korff
- Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Martina Rudelius
- Institute of Pathology, Ludwig-Maximilian University, Munich, Germany
| | - Oliver Popp
- Max Delbrück Center for Molecular Medicine (MDC) and Berlin Institute of Health (BIH), Berlin, Germany; German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Marieluise Kirchner
- Max Delbrück Center for Molecular Medicine (MDC) and Berlin Institute of Health (BIH), Berlin, Germany; German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Philipp Mertins
- Max Delbrück Center for Molecular Medicine (MDC) and Berlin Institute of Health (BIH), Berlin, Germany; German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Falk Nimmerjahn
- Department of Biology, Institute of Genetics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany; Medical Immunology Campus Erlangen (MICE), Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Matteo Iannacone
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Markus Sperandio
- Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine, Biomedical Center (BMC) LMU Munich, Munich, Germany
| | - Bernd Engelmann
- Institut für Laboratoriumsmedizin, University Hospital, LMU Munich, Munich, Germany
| | - Admar Verschoor
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany; Department of Otorhinolaryngology, Technische Universität München and Klinikum Rechts der Isar, Munich, Germany.
| | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany; Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| |
Collapse
|
11
|
McMurray JC, Schornack BJ, Weskamp AL, Park KJ, Pollock JD, Day WG, Brockshus AT, Beakes DE, Schwartz DJ, Mikita CP, Pittman LM. Immunodeficiency: Complement disorders. Allergy Asthma Proc 2024; 45:305-309. [PMID: 39294906 PMCID: PMC11441536 DOI: 10.2500/aap.2024.45.240050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
The complement system is an important component of innate and adaptive immunity that consists of three activation pathways. The classic complement pathway plays a role in humoral immunity, whereas the alternative and lectin pathways augment the innate response. Impairment, deficiency, or overactivation of any of the known 50 complement proteins may lead to increased susceptibility to infection with encapsulated organisms, autoimmunity, hereditary angioedema, or thrombosis, depending on the affected protein. Classic pathway defects result from deficiencies of complement proteins C1q, C1r, C1s, C2, and C4, and typically manifest with features of systemic lupus erythematosus and infections with encapsulated organisms. Alternative pathway defects due to deficiencies of factor B, factor D, and properdin may present with increased susceptibility to Neisseria infections. Lectin pathway defects, including Mannose-binding protein-associated serine protease 2 (MASP2) and ficolin 3, may be asymptomatic or lead to pyogenic infections and autoimmunity. Complement protein C3 is common to all pathways, deficiency of which predisposes patients to severe frequent infections and glomerulonephritis. Deficiencies in factor H and factor I, which regulate the alternative pathway, may lead to hemolytic uremic syndrome. Disseminated Neisseria infections result from terminal pathway defects (i.e., C5, C6, C7, C8, and C9). Diagnosis of complement deficiencies involves screening with functional assays (i.e., total complement activity [CH50], alternative complement pathway activity [AH50], enzyme-linked immunosorbent assay [ELISA]) followed by measurement of individual complement factors by immunoassay. Management of complement deficiencies requires a comprehensive and individualized approach with special attention to vaccination against encapsulated bacteria, consideration of prophylactic antibiotics, treatment of comorbid autoimmunity, and close surveillance.
Collapse
Affiliation(s)
- Jeremy C. McMurray
- From the Allergy and Immunology Service, Walter Reed National Military Medical Center, Bethesda, Maryland; and
| | - Brandon J. Schornack
- From the Allergy and Immunology Service, Walter Reed National Military Medical Center, Bethesda, Maryland; and
| | - Andrew L. Weskamp
- From the Allergy and Immunology Service, Walter Reed National Military Medical Center, Bethesda, Maryland; and
| | - Katherine J. Park
- From the Allergy and Immunology Service, Walter Reed National Military Medical Center, Bethesda, Maryland; and
| | - Joshua D. Pollock
- From the Allergy and Immunology Service, Walter Reed National Military Medical Center, Bethesda, Maryland; and
| | - W. Grant Day
- From the Allergy and Immunology Service, Walter Reed National Military Medical Center, Bethesda, Maryland; and
| | - Aaron T. Brockshus
- From the Allergy and Immunology Service, Walter Reed National Military Medical Center, Bethesda, Maryland; and
| | - Douglas E. Beakes
- From the Allergy and Immunology Service, Walter Reed National Military Medical Center, Bethesda, Maryland; and
| | - David J. Schwartz
- From the Allergy and Immunology Service, Walter Reed National Military Medical Center, Bethesda, Maryland; and
| | - Cecilia P. Mikita
- Immunization Healthcare Division, Defense Health Agency – Public Health, Falls Church, Virginia
| | - Luke M. Pittman
- From the Allergy and Immunology Service, Walter Reed National Military Medical Center, Bethesda, Maryland; and
| |
Collapse
|
12
|
Zhu F, He P, Jiang W, Afridi SK, Xu H, Alahmad M, Alvin Huang YW, Qiu W, Wang G, Tang C. Astrocyte-secreted C3 signaling impairs neuronal development and cognition in autoimmune diseases. Prog Neurobiol 2024; 240:102654. [PMID: 38945516 DOI: 10.1016/j.pneurobio.2024.102654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/05/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
Neuromyelitis optica (NMO) arises from primary astrocytopathy induced by autoantibodies targeting the astroglial protein aquaporin 4 (AQP4), leading to severe neurological sequelae such as vision loss, motor deficits, and cognitive decline. Mounting evidence has shown that dysregulated activation of complement components contributes to NMO pathogenesis. Complement C3 deficiency has been shown to protect against hippocampal neurodegeneration and cognitive decline in neurodegenerative disorders (e.g., Alzheimer's disease, AD) and autoimmune diseases (e.g., multiple sclerosis, MS). However, whether inhibiting the C3 signaling can ameliorate cognitive dysfunctions in NMO remains unclear. In this study, we found that the levels of C3a, a split product of C3, significantly correlate with cognitive impairment in our patient cohort. In response to the stimulation of AQP4 autoantibodies, astrocytes were activated to secrete complement C3, which inhibited the development of cultured neuronal dendritic arborization. NMO mouse models exhibited reduced adult hippocampal newborn neuronal dendritic and spine development, as well as impaired learning and memory functions, which could be rescued by decreasing C3 levels in astrocytes. Mechanistically, we found that C3a engaged with C3aR to impair neuronal development by dampening β-catenin signalling. Additionally, inhibition of the C3-C3aR-GSK3β/β-catenin cascade restored neuronal development and ameliorated cognitive impairments. Collectively, our results suggest a pivotal role of the activation of the C3-C3aR network in neuronal development and cognition through mediating astrocyte and adult-born neuron communication, which represents a potential therapeutic target for autoimmune-related cognitive impairment diseases.
Collapse
Affiliation(s)
- Fan Zhu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Pengyan He
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Wei Jiang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Shabbir Khan Afridi
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; China Graduate School, University of Chinese Academy of Sciences, Beijing, China
| | - Huiming Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Maali Alahmad
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Yu-Wen Alvin Huang
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, United States
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Guangyou Wang
- Department of Neurology, First Affiliated Clinical Hospital of Harbin Medical University, and Department of Neurobiology, Harbin Medical University, Harbin 150081, China.
| | - Changyong Tang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China.
| |
Collapse
|
13
|
Silawal S, Gögele C, Pelikan P, Werner C, Levidou G, Mahato R, Schulze-Tanzil G. A Histological Analysis and Detection of Complement Regulatory Protein CD55 in SARS-CoV-2 Infected Lungs. Life (Basel) 2024; 14:1058. [PMID: 39337843 PMCID: PMC11432792 DOI: 10.3390/life14091058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND A complement imbalance in lung alveolar tissue can play a deteriorating role in COVID-19, leading to acute respiratory distress syndrome (ARDS). CD55 is a transmembrane glycoprotein that inhibits the activation of the complement system at the intermediate cascade level, blocking the activity of the C3 convertase. OBJECTIVE In our study, lung specimens from COVID-19 and ARDS-positive COVID+/ARDS+ patients were compared with COVID-19 and ARDS-negative COVID-/ARDS- as well as COVID-/ARDS+ patients. METHODS Histochemical staining and immunolabeling of CD55 protein were performed. RESULTS The COVID-/ARDS- specimen showed higher expression and homogeneous distribution of glycosaminoglycans as well as compactly arranged elastic and collagen fibers of the alveolar walls in comparison to ARDS-affected lungs. In addition, COVID-/ARDS- lung tissues revealed stronger and homogenously distributed CD55 expression on the alveolar walls in comparison to the disrupted COVID-/ARDS+ lung tissues. CONCLUSIONS Even though the collapse of the alveolar linings and the accumulation of cellular components in the alveolar spaces were characteristic of COVID+/ARDS+ lung tissues, evaluating CD55 expression could be relevant to understand its relation to the disease. Furthermore, targeting CD55 upregulation as a potential therapy could be an option for post-infectious complications of COVID-19 and other inflammatory lung diseases in the future.
Collapse
Affiliation(s)
- Sandeep Silawal
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, General Hospital Nuremberg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| | - Clemens Gögele
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, General Hospital Nuremberg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| | - Petr Pelikan
- Institute for Pathology, Paracelsus Medical University, Nuremberg, General Hospital, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| | - Christian Werner
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, General Hospital Nuremberg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| | - Georgia Levidou
- Institute for Pathology, Paracelsus Medical University, Nuremberg, General Hospital, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| | - Raman Mahato
- Department of Emergency and Intensive Care Medicine, Klinikum Ernst von Bergmann, Charlottenstraße 72, 14467 Potsdam, Germany
| | - Gundula Schulze-Tanzil
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, General Hospital Nuremberg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| |
Collapse
|
14
|
Narasipura SD, Zayas JP, Ash MK, Reyes A, Shull T, Gambut S, Schneider JR, Lorenzo-Redondo R, Al-Harthi L, Mamede JI. HIV-1 infection promotes neuroinflammation and neuron pathogenesis in novel microglia-containing cerebral organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598579. [PMID: 38915632 PMCID: PMC11195220 DOI: 10.1101/2024.06.13.598579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Cerebral organoids (COs) are a valuable tool to study the intricate interplay between glial cells and neurons in brain development and disease, including HIV-associated neuroinflammation. We developed a novel approach to generate microglia containing COs (CO-iMs) by co-culturing hematopoietic progenitors and induced pluripotent stem cells. This approach allowed for the differentiation of microglia within the organoids concomitantly to the neuronal progenitors. CO- iMs exhibited higher efficiency in generation of CD45 + /CD11b + /Iba-1 + microglia cells compared to conventional COs with physiologically relevant proportion of microglia (∼7%). CO-iMs exhibited substantially higher expression of microglial homeostatic and sensome markers as well as markers for the complement cascade. CO-iMs showed susceptibility to HIV infection resulting in a significant increase in several pro-inflammatory cytokines/chemokines and compromised neuronal function, which were abrogated by addition of antiretrovirals. Thus, CO-iM is a robust model to decipher neuropathogenesis, neurological disorders, and viral infections of brain cells in a 3D culture system.
Collapse
|
15
|
Fageräng B, Götz MP, Cyranka L, Lau C, Nilsson PH, Mollnes TE, Garred P. The Inflammatory Response Induced by Aspergillus fumigatus Conidia Is Dependent on Complement Activation: Insight from a Whole Blood Model. J Innate Immun 2024; 16:324-336. [PMID: 38768576 PMCID: PMC11250388 DOI: 10.1159/000539368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/13/2024] [Indexed: 05/22/2024] Open
Abstract
INTRODUCTION We aimed to elucidate the inflammatory response of Aspergillus fumigatus conidia in a whole-blood model of innate immune activation and to compare it with the well-characterized inflammatory reaction to Escherichia coli. METHODS Employing a human lepirudin whole-blood model, we analyzed complement and leukocyte activation by measuring the sC5b-9 complex and assessing CD11b expression. A 27-multiplex system was used for quantification of cytokines. Selective cell removal from whole blood and inhibition of C3, C5, and CD14 were also applied. RESULTS Our findings demonstrated a marked elevation in sC5b-9 and CD11b post-A. fumigatus incubation. Thirteen cytokines (TNF, IL-1β, IL-1ra, IL-4, IL-6, IL-8, IL-17, IFNγ, MCP-1, MIP-1α, MIP-1β, FGF-basic, and G-CSF) showed increased levels. A generally lower level of cytokine release and CD11b expression was observed with A. fumigatus conidia than with E. coli. Notably, monocytes were instrumental in releasing all cytokines except MCP-1. IL-1ra was found to be both monocyte and granulocyte-dependent. Pre-inhibiting with C3 and CD14 inhibitors resulted in decreased release patterns for six cytokines (TNF, IL-1β, IL-6, IL-8, MIP-1α, and MIP-1β), with minimal effects by C5-inhibition. CONCLUSION A. fumigatus conidia induced complement activation comparable to E. coli, whereas CD11b expression and cytokine release were lower, underscoring distinct inflammatory responses between these pathogens. Complement C3 inhibition attenuated cytokine release indicating a C3-level role of complement in A. fumigatus immunity.
Collapse
Affiliation(s)
- Beatrice Fageräng
- Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maximilian Peter Götz
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Leon Cyranka
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Corinna Lau
- Research Laboratory, Nordland Hospital, Bodø, Norway
| | - Per H. Nilsson
- Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
- Linnæus Center of Biomaterials Chemistry, Linnæus University, Kalmar, Sweden
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
- Research Laboratory, Nordland Hospital, Bodø, Norway
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Shangguan W, Li X, Wang Y, Huang Z, Dong Y, Feng M, Feng J. Design and Biological Evaluation of the Long-Acting C5-Inhibited Ornithodoros moubata Complement Inhibitor (OmCI) Modified with Fatty Acid. Bioconjug Chem 2024; 35:653-664. [PMID: 38593046 DOI: 10.1021/acs.bioconjchem.4c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Disorder of complement response is a significant pathogenic factor causing some autoimmune and inflammation diseases. The Ornithodoros moubata Complement Inhibitor (OmCI), a small 17 kDa natural protein, was initially extracted from soft tick salivary glands. The protein was found binding to complement C5 specifically, inhibiting the activation of the complement pathway, which is a successful therapeutic basis of complement-mediated diseases. However, a short half-life due to rapid renal clearance is a common limitation of small proteins for clinical application. In this study, we extended the half-life of OmCI by modifying it with fatty acid, which was a method used to improve the pharmacokinetics of native peptides and proteins. Five OmCI mutants were initially designed, and single-site cysteine mutation was introduced to each of them. After purification, four OmCI mutants were obtained that showed similar in vitro biological activities. Three mutants of them were subsequently coupled with different fatty acids by nucleophilic substitution. In total, 15 modified derivatives were screened and tested for anticomplement activity in vitro. The results showed that coupling with fatty acid would not significantly affect their complement-inhibitory activity (CH50 and AH50). OmCIT90C-CM02 and OmCIT90C-CM05 were validated as the applicable OmCI bioconjugates for further pharmacokinetic assessments, and both showed improved plasma half-life in mice compared with unmodified OmCI (15.86, 17.96 vs 2.57 h). In summary, our data demonstrated that OmCI conjugated with fatty acid could be developed as the potential long-acting C5 complement inhibitor in the clinic.
Collapse
Affiliation(s)
- Wenwen Shangguan
- School of Pharmacy, Fudan University, 201203 Shanghai, China
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 201203 Shanghai, China
| | - Xiaowan Li
- School of Pharmacy, Fudan University, 201203 Shanghai, China
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 201203 Shanghai, China
| | - Yandan Wang
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 201203 Shanghai, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Zongqing Huang
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 201203 Shanghai, China
- Shanghai Duomirui Biotechnology Co Ltd, 201203 Shanghai, China
| | - Yuanzhen Dong
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 201203 Shanghai, China
- Shanghai Duomirui Biotechnology Co Ltd, 201203 Shanghai, China
| | - Meiqing Feng
- School of Pharmacy, Fudan University, 201203 Shanghai, China
| | - Jun Feng
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 201203 Shanghai, China
| |
Collapse
|
17
|
Wilke GA, Apte RS. Complement regulation in the eye: implications for age-related macular degeneration. J Clin Invest 2024; 134:e178296. [PMID: 38690727 PMCID: PMC11060743 DOI: 10.1172/jci178296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024] Open
Abstract
Careful regulation of the complement system is critical for enabling complement proteins to titrate immune defense while also preventing collateral tissue damage from poorly controlled inflammation. In the eye, this balance between complement activity and inhibition is crucial, as a low level of basal complement activity is necessary to support ocular immune privilege, a prerequisite for maintaining vision. Dysregulated complement activation contributes to parainflammation, a low level of inflammation triggered by cellular damage that functions to reestablish homeostasis, or outright inflammation that disrupts the visual axis. Complement dysregulation has been implicated in many ocular diseases, including glaucoma, diabetic retinopathy, and age-related macular degeneration (AMD). In the last two decades, complement activity has been the focus of intense investigation in AMD pathogenesis, leading to the development of novel therapeutics for the treatment of atrophic AMD. This Review outlines recent advances and challenges, highlighting therapeutic approaches that have advanced to clinical trials, as well as providing a general overview of the complement system in the posterior segment of the eye and selected ocular diseases.
Collapse
Affiliation(s)
- Georgia A. Wilke
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences
| | - Rajendra S. Apte
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences
- Department of Medicine, and
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
18
|
Watanabe-Kusunoki K, Anders HJ. Balancing efficacy and safety of complement inhibitors. J Autoimmun 2024; 145:103216. [PMID: 38552408 DOI: 10.1016/j.jaut.2024.103216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/17/2024] [Accepted: 03/26/2024] [Indexed: 05/15/2024]
Abstract
Complement inhibitors have been approved for several immune-mediated diseases and they are considered the next paradigm-shifting approach in the treatment of glomerulonephritis. The hierarchical organization of the complement system offers numerous molecular targets for therapeutic intervention. However, complement is an integral element of host defense and therefore complement inhibition can be associated with serious infectious complications. Here we give a closer look to the hierarchical complement system and how interfering with proximal versus distal or selective versus unselective molecular targets could determine efficacy and safety. Furthermore, we propose to consider the type of disease, immunological activity, and patient immunocompetence when stratifying patients, e.g., proximal/unselective targets for highly active and potentially fatal diseases while distal and selective targets may suit more chronic disease conditions with low or moderate disease activity requiring persistent complement blockade in patients with concomitant immunodeficiency. Certainly, there exists substantial promise for anti-complement therapeutics. However, balancing efficacy and safety will be key to establish powerful treatment effects with minimal adverse events, especially when complement blockade is continued over longer periods of time in chronic disorders.
Collapse
Affiliation(s)
- Kanako Watanabe-Kusunoki
- Renal Division, Department of Medicine IV, Ludwig-Maximilians (LMU) University Hospital, LMU Munich, Germany; Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hans-Joachim Anders
- Renal Division, Department of Medicine IV, Ludwig-Maximilians (LMU) University Hospital, LMU Munich, Germany.
| |
Collapse
|
19
|
Yu SMW, Deoliveira M, Chung M, Lafayette R. Membranoproliferative Glomerulonephritis Pattern of Injury. ADVANCES IN KIDNEY DISEASE AND HEALTH 2024; 31:216-222. [PMID: 39004461 PMCID: PMC11251708 DOI: 10.1053/j.akdh.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 02/24/2024] [Accepted: 03/13/2024] [Indexed: 07/16/2024]
Abstract
Membranoproliferative glomerulonephritis (MPGN) is no longer a disease but a pattern of injury in various diseases. Characterized by electron-dense deposits, mesangial proliferation, and duplication of the glomerular basement membrane, MPGN was previously classified by findings seen by electron microscopy. However, recognizing complement dysfunction in relation to cases with the MPGN pattern of injury substantially changed our view of its pathogenesis. A new classification, including immune complex-mediated and complement-mediated MPGN, has become preferable and has been adopted by international guidelines. Despite these advancements, accurate diagnosis of MPGN remains a clinical challenge, given the pathological and clinical similarities between immune complex-mediated and complement-mediated MPGN. Additional testing, such as molecular and genetic testing, is often necessary. Here, we will summarize our current understanding of the MPGN pattern of injury from a pathology perspective as an introductory article in the following chapters.
Collapse
Affiliation(s)
| | | | - Miriam Chung
- Division of Nephrology, Mount Sinai Hospital, New York, NY
| | - Richard Lafayette
- Division of Nephrology, Stanford University Medical Center, Stanford, CA
| |
Collapse
|
20
|
Peterson SL, Krishnan A, Patel D, Khanehzar A, Lad A, Shaughnessy J, Ram S, Callanan D, Kunimoto D, Genead MA, Tolentino MJ. PolySialic Acid Nanoparticles Actuate Complement-Factor-H-Mediated Inhibition of the Alternative Complement Pathway: A Safer Potential Therapy for Age-Related Macular Degeneration. Pharmaceuticals (Basel) 2024; 17:517. [PMID: 38675477 PMCID: PMC11053938 DOI: 10.3390/ph17040517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The alternative pathway of the complement system is implicated in the etiology of age-related macular degeneration (AMD). Complement depletion with pegcetacoplan and avacincaptad pegol are FDA-approved treatments for geographic atrophy in AMD that, while effective, have clinically observed risks of choroidal neovascular (CNV) conversion, optic neuritis, and retinal vasculitis, leaving room for other equally efficacious but safer therapeutics, including Poly Sialic acid (PSA) nanoparticle (PolySia-NP)-actuated complement factor H (CFH) alternative pathway inhibition. Our previous paper demonstrated that PolySia-NP inhibits pro-inflammatory polarization and cytokine release. Here, we extend these findings by investigating the therapeutic potential of PolySia-NP to attenuate the alternative complement pathway. First, we show that PolySia-NP binds CFH and enhances affinity to C3b. Next, we demonstrate that PolySia-NP treatment of human serum suppresses alternative pathway hemolytic activity and C3b deposition. Further, we show that treating human macrophages with PolySia-NP is non-toxic and reduces markers of complement activity. Finally, we describe PolySia-NP-treatment-induced decreases in neovascularization and inflammatory response in a laser-induced CNV mouse model of neovascular AMD. In conclusion, PolySia-NP suppresses alternative pathway complement activity in human serum, human macrophage, and mouse CNV without increasing neovascularization.
Collapse
Affiliation(s)
- Sheri L. Peterson
- Aviceda Therapeutics Inc., Cambridge, MA 02142, USA; (A.K.); (A.L.); (D.C.); (D.K.); (M.A.G.)
| | - Anitha Krishnan
- Aviceda Therapeutics Inc., Cambridge, MA 02142, USA; (A.K.); (A.L.); (D.C.); (D.K.); (M.A.G.)
| | - Diyan Patel
- Aviceda Therapeutics Inc., Cambridge, MA 02142, USA; (A.K.); (A.L.); (D.C.); (D.K.); (M.A.G.)
| | - Ali Khanehzar
- Aviceda Therapeutics Inc., Cambridge, MA 02142, USA; (A.K.); (A.L.); (D.C.); (D.K.); (M.A.G.)
| | - Amit Lad
- Aviceda Therapeutics Inc., Cambridge, MA 02142, USA; (A.K.); (A.L.); (D.C.); (D.K.); (M.A.G.)
| | - Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (J.S.); (S.R.)
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (J.S.); (S.R.)
| | - David Callanan
- Aviceda Therapeutics Inc., Cambridge, MA 02142, USA; (A.K.); (A.L.); (D.C.); (D.K.); (M.A.G.)
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Derek Kunimoto
- Aviceda Therapeutics Inc., Cambridge, MA 02142, USA; (A.K.); (A.L.); (D.C.); (D.K.); (M.A.G.)
| | - Mohamed A. Genead
- Aviceda Therapeutics Inc., Cambridge, MA 02142, USA; (A.K.); (A.L.); (D.C.); (D.K.); (M.A.G.)
| | - Michael J. Tolentino
- Aviceda Therapeutics Inc., Cambridge, MA 02142, USA; (A.K.); (A.L.); (D.C.); (D.K.); (M.A.G.)
- Department of Ophthalmology, University of Central Florida School of Medicine, Orlando, FL 32827, USA
- Department of Ophthalmology, Orlando College of Osteopathic Medicine, Orlando, FL 34787, USA
| |
Collapse
|
21
|
Li Y, Jacques S, Gaikwad H, Wang G, Banda NK, Holers VM, Scheinman RI, Tomlinson S, Moghimi SM, Simberg D. Inhibition of acute complement responses towards bolus-injected nanoparticles using targeted short-circulating regulatory proteins. NATURE NANOTECHNOLOGY 2024; 19:246-254. [PMID: 37798566 PMCID: PMC11034866 DOI: 10.1038/s41565-023-01514-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/25/2023] [Indexed: 10/07/2023]
Abstract
Effective inhibition of the complement system is needed to prevent the accelerated clearance of nanomaterials by complement cascade and inflammatory responses. Here we show that a fusion construct consisting of human complement receptor 2 (CR2) (which recognizes nanosurface-deposited complement 3 (C3)) and complement receptor 1 (CR1) (which blocks C3 convertases) inhibits complement activation with picomolar to low nanomolar efficacy on many types of nanomaterial. We demonstrate that only a small percentage of nanoparticles are randomly opsonized with C3 both in vitro and in vivo, and CR2-CR1 immediately homes in on this subpopulation. Despite rapid in vivo clearance, the co-injection of CR2-CR1 in rats, or its mouse orthologue CR2-Crry in mice, with superparamagnetic iron oxide nanoparticles nearly completely blocks complement opsonization and unwanted granulocyte/monocyte uptake. Furthermore, the inhibitor completely prevents lethargy caused by bolus-injected nanoparticles, without inducing long-lasting complement suppression. These findings suggest the potential of the targeted complement regulators for clinical evaluation.
Collapse
Affiliation(s)
- Yue Li
- Translational Bio-Nanosciences Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sarah Jacques
- Translational Bio-Nanosciences Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Hanmant Gaikwad
- Translational Bio-Nanosciences Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Guankui Wang
- Translational Bio-Nanosciences Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nirmal K Banda
- Division of Rheumatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - V Michael Holers
- Division of Rheumatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Robert I Scheinman
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Stephen Tomlinson
- Medical University of South Carolina Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Ralph Johnson Veterans Affairs Medical Center, Charleston, SC, USA
| | - S Moein Moghimi
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- School of Pharmacy, Newcastle University, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Faculty of Health and Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Dmitri Simberg
- Translational Bio-Nanosciences Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
22
|
Iorio R. Myasthenia gravis: the changing treatment landscape in the era of molecular therapies. Nat Rev Neurol 2024; 20:84-98. [PMID: 38191918 DOI: 10.1038/s41582-023-00916-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 01/10/2024]
Abstract
Myasthenia gravis (MG) is an autoimmune disorder that affects the neuromuscular junction, leading to muscle weakness and fatigue. MG is caused by antibodies against the acetylcholine receptor (AChR), the muscle-specific kinase (MuSK) or other AChR-related proteins that are expressed in the postsynaptic muscle membrane. The standard therapeutic approach for MG has relied on acetylcholinesterase inhibitors, corticosteroids and immunosuppressants, which have shown good efficacy in improving MG-related symptoms in most people with the disease; however, these therapies can carry a considerable burden of long-term adverse effects. Moreover, up to 15% of individuals with MG exhibit limited or no response to these standard therapies. The emergence of molecular therapies, including monoclonal antibodies, B cell-depleting agents and chimeric antigen receptor T cell-based therapies, has the potential to revolutionize the MG treatment landscape. This Review provides a comprehensive overview of the progress achieved in molecular therapies for MG associated with AChR antibodies and MuSK antibodies, elucidating both the challenges and the opportunities these therapies present to the field. The latest developments in MG treatment are described, exploring the potential for personalized medicine approaches.
Collapse
Affiliation(s)
- Raffaele Iorio
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.
- Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
23
|
Alayash Z, Baumeister SE, Holtfreter B, Kocher T, Baurecht H, Ehmke B, Nolde M, Reckelkamm SL. Complement C3 as a potential drug target in periodontitis: Evidence from the cis-Mendelian randomization approach. J Clin Periodontol 2024; 51:127-134. [PMID: 37926509 DOI: 10.1111/jcpe.13894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 10/12/2023] [Accepted: 10/15/2023] [Indexed: 11/07/2023]
Abstract
AIM Evidence from a Phase IIa trial showed that a complement C3-targeted drug reduced gingival inflammation in patients with gingivitis. Using drug-target Mendelian randomization (MR), we investigated whether genetically proxied C3 inhibition alters the risk of periodontitis. MATERIALS AND METHODS We used multiple 'cis' instruments from the vicinity of the encoding loci of C3. Instrument selection was restricted to the drug target encoding loci (chromosome 19; 6,677,715-6,730,573 (GRCh37/hg19)). We selected three uncorrelated single-nucleotide polymorphisms (rs141552034, rs145406915, rs11569479) that were associated with serum C3 levels (p value <1 × 10-4 ) from a genome-wide association study (GWAS) of 5368 European descent individuals. We extracted association statistics from a GWAS of 17,353 clinical periodontitis cases and 28,210 European controls. Wald ratios were combined using inverse-variance weighted meta-analysis to estimate the odds ratio (OR) of the genetically proxied inhibition of C3 in relation to periodontitis. RESULTS MR analysis revealed that the inhibition of C3 reduces the odds of periodontitis (OR 0.91 per 1 standard deviation reduction in C3; 95% confidence interval 0.87-0.96, p value = .0003). CONCLUSIONS Findings from our MR analysis suggest a potential protective effect of C3 blockade against periodontitis.
Collapse
Affiliation(s)
- Zoheir Alayash
- Institute of Health Services Research in Dentistry, University of Münster, Münster, Germany
| | | | - Birte Holtfreter
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, Greifswald, Germany
| | - Thomas Kocher
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, Greifswald, Germany
| | - Hansjörg Baurecht
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Benjamin Ehmke
- Clinic for Periodontology and Conservative Dentistry, University of Münster, Münster, Germany
| | - Michael Nolde
- Institute of Health Services Research in Dentistry, University of Münster, Münster, Germany
| | - Stefan Lars Reckelkamm
- Institute of Health Services Research in Dentistry, University of Münster, Münster, Germany
- Clinic for Periodontology and Conservative Dentistry, University of Münster, Münster, Germany
| |
Collapse
|
24
|
Mastellos DC, Hajishengallis G, Lambris JD. A guide to complement biology, pathology and therapeutic opportunity. Nat Rev Immunol 2024; 24:118-141. [PMID: 37670180 DOI: 10.1038/s41577-023-00926-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2023] [Indexed: 09/07/2023]
Abstract
Complement has long been considered a key innate immune effector system that mediates host defence and tissue homeostasis. Yet, growing evidence has illuminated a broader involvement of complement in fundamental biological processes extending far beyond its traditional realm in innate immunity. Complement engages in intricate crosstalk with multiple pattern-recognition and signalling pathways both in the extracellular and intracellular space. Besides modulating host-pathogen interactions, this crosstalk guides early developmental processes and distinct cell trajectories, shaping tissue immunometabolic and regenerative programmes in different physiological systems. This Review provides a guide to the system-wide functions of complement. It highlights illustrative paradigm shifts that have reshaped our understanding of complement pathobiology, drawing examples from evolution, development of the central nervous system, tissue regeneration and cancer immunity. Despite its tight spatiotemporal regulation, complement activation can be derailed, fuelling inflammatory tissue pathology. The pervasive contribution of complement to disease pathophysiology has inspired a resurgence of complement therapeutics with major clinical developments, some of which have challenged long-held dogmas. We thus highlight major therapeutic concepts and milestones in clinical complement intervention.
Collapse
Affiliation(s)
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
25
|
Gutierrez J, Kurz C, Sandoval C, Edmonds R, Bittner T, Perneczky R, Biever A. Impact of Preanalytical Procedures on Complement Biomarkers in Cerebrospinal Fluid and Plasma from Controls and Alzheimer's Disease Patients. J Alzheimers Dis 2024; 101:563-576. [PMID: 39213066 PMCID: PMC11492022 DOI: 10.3233/jad-240287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 09/04/2024]
Abstract
Background Studies comparing cerebrospinal fluid (CSF) and plasma complement proteins in Alzheimer's disease (AD) patients versus healthy controls (HC) have yielded inconsistent results. Discrepancies in the preanalytical sample handling could contribute to the heterogeneity in the reported findings. Objective Using qualified immunoassays, we aimed at assessing the impact of preanalytical procedures on complement proteins in blood and CSF from AD patients and HCs. Methods We supplemented HC and AD CSF/plasma with complement stabilizers and measured the complement proteins C4a, C4, C3a, C3, Factor Bb and Factor B by immunoassay. We tested the impact of freeze-thaw (FT) cycles on fluid complement proteins. Results Most complement proteins were mildly impacted by FT cycles in plasma but not CSF, except for C3a which displayed greater sensitivity to FTs in CSF than in plasma. In CSF, the effect of FTs on C3a was reduced but not prevented by the supplementation with EDTA (±Futhan). Conclusions Our findings provide recommendations for CSF/plasma sample handling to ensure robust and reproducible complement biomarker analyses in AD.
Collapse
Affiliation(s)
- Johnny Gutierrez
- Department of Translational Medicine, Genentech Inc., South San Francisco, CA, USA
| | - Carolin Kurz
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Cosme Sandoval
- Department of Translational Medicine, Genentech Inc., South San Francisco, CA, USA
| | - Rose Edmonds
- Department of Translational Medicine, Genentech Inc., South San Francisco, CA, USA
| | - Tobias Bittner
- Department of Translational Medicine, Genentech Inc., South San Francisco, CA, USA
| | - Robert Perneczky
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, UK
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Anne Biever
- Department of Translational Medicine, Genentech Inc., South San Francisco, CA, USA
| |
Collapse
|
26
|
Dejanovic B, Sheng M, Hanson JE. Targeting synapse function and loss for treatment of neurodegenerative diseases. Nat Rev Drug Discov 2024; 23:23-42. [PMID: 38012296 DOI: 10.1038/s41573-023-00823-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2023] [Indexed: 11/29/2023]
Abstract
Synapse dysfunction and loss are hallmarks of neurodegenerative diseases that correlate with cognitive decline. However, the mechanisms and therapeutic strategies to prevent or reverse synaptic damage remain elusive. In this Review, we discuss recent advances in understanding the molecular and cellular pathways that impair synapses in neurodegenerative diseases, including the effects of protein aggregation and neuroinflammation. We also highlight emerging therapeutic approaches that aim to restore synaptic function and integrity, such as enhancing synaptic plasticity, preventing synaptotoxicity, modulating neuronal network activity and targeting immune signalling. We discuss the preclinical and clinical evidence for each strategy, as well as the challenges and opportunities for developing effective synapse-targeting therapeutics for neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Morgan Sheng
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jesse E Hanson
- Department of Neuroscience, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
27
|
Choi K. Structure-property Relationships Reported for the New Drugs Approved in 2023. Mini Rev Med Chem 2024; 24:1822-1833. [PMID: 38676492 DOI: 10.2174/0113895575308674240415074629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/29/2024]
Abstract
Drug-like properties play pivotal roles in drug adsorption, distribution, metabolism, excretion, and toxicity. Therefore, efficiently optimizing these properties is essential for the successful development of novel therapeutics. Understanding the structure-property relationships of clinically approved drugs can provide valuable insights for drug design and optimization strategies. Among the new drugs approved in 2023, which include 31 small-molecule drugs in the US, the structureproperty relationships of nine drugs were compiled from the medicinal chemistry literature, in which detailed information on pharmacokinetic and/or physicochemical properties was reported not only for the final drug but also for its key analogs generated during drug development. The structure- property relationships of nine newly approved drugs are summarized, including three kinase inhibitors and three G-protein-coupled receptor antagonists. Several optimization strategies, such as bioisosteric replacement and steric handle installation, have successfully produced clinical candidates with enhanced physicochemical and pharmacokinetic properties. The summarized structure- property relationships demonstrate how appropriate structural modifications can effectively improve overall drug-like properties. The ongoing exploration of structure-property relationships of clinically approved drugs is expected to offer valuable guidance for developing future drugs.
Collapse
Affiliation(s)
- Kihang Choi
- Department of Chemistry, Korea University, Seoul 02841, Korea (ROK)
| |
Collapse
|
28
|
Jindal S, Pedersen DV, Gera N, Chandler J, Patel R, Neill A, Cone J, Zhang Y, Yuan CX, Millman EE, Carlin D, Puffer B, Sheridan D, Andersen GR, Tamburini P. Characterization of the bispecific VHH antibody gefurulimab (ALXN1720) targeting complement component 5, and designed for low volume subcutaneous administration. Mol Immunol 2024; 165:29-41. [PMID: 38142486 DOI: 10.1016/j.molimm.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/29/2023] [Accepted: 12/09/2023] [Indexed: 12/26/2023]
Abstract
The bispecific antibody gefurulimab (also known as ALXN1720) was developed to provide patients with a subcutaneous treatment option for chronic disorders involving activation of the terminal complement pathway. Gefurulimab blocks the enzymatic cleavage of complement component 5 (C5) into the biologically active C5a and C5b fragments, which triggers activation of the terminal complement cascade. Heavy-chain variable region antigen-binding fragment (VHH) antibodies targeting C5 and human serum albumin (HSA) were isolated from llama immune-based libraries and humanized. Gefurulimab comprises an N-terminal albumin-binding VHH connected to a C-terminal C5-binding VHH via a flexible linker. The purified bispecific VHH antibody has the expected exact size by mass spectrometry and can be formulated at greater than 100 mg/mL. Gefurulimab binds tightly to human C5 and HSA with dissociation rate constants at pH 7.4 of 54 pM and 0.9 nM, respectively, and cross-reacts with C5 and serum albumin from cynomolgus monkeys. Gefurulimab can associate with C5 and albumin simultaneously, and potently inhibits the terminal complement activity from human serum initiated by any of the three complement pathways in Wieslab assays. Electron microscopy and X-ray crystallography revealed that the isolated C5-binding VHH recognizes the macroglobulin (MG) 4 and MG5 domains of the antigen and thereby is suggested to sterically prevent C5 binding to its activating convertase. Gefurulimab also inhibits complement activity supported by the rare C5 allelic variant featuring an R885H substitution in the MG7 domain. Taken together, these data suggest that gefurulimab may be a promising candidate for the potential treatment of complement-mediated disorders.
Collapse
Affiliation(s)
- Siddharth Jindal
- Alexion, AstraZeneca Rare Disease, 100 College Street, New Haven, CT 06510, USA
| | | | - Nimish Gera
- Alexion, AstraZeneca Rare Disease, 100 College Street, New Haven, CT 06510, USA
| | - Julian Chandler
- Alexion, AstraZeneca Rare Disease, 100 College Street, New Haven, CT 06510, USA
| | - Rekha Patel
- Alexion, AstraZeneca Rare Disease, 100 College Street, New Haven, CT 06510, USA
| | - Alyssa Neill
- Alexion, AstraZeneca Rare Disease, 100 College Street, New Haven, CT 06510, USA
| | - Josh Cone
- Alexion, AstraZeneca Rare Disease, 100 College Street, New Haven, CT 06510, USA
| | - Yuchun Zhang
- Alexion, AstraZeneca Rare Disease, 100 College Street, New Haven, CT 06510, USA
| | - Chao-Xing Yuan
- Alexion, AstraZeneca Rare Disease, 100 College Street, New Haven, CT 06510, USA
| | - Ellen E Millman
- Alexion, AstraZeneca Rare Disease, 100 College Street, New Haven, CT 06510, USA
| | - Dan Carlin
- Alexion, AstraZeneca Rare Disease, 100 College Street, New Haven, CT 06510, USA.
| | - Bridget Puffer
- Alexion, AstraZeneca Rare Disease, 100 College Street, New Haven, CT 06510, USA
| | - Douglas Sheridan
- Alexion, AstraZeneca Rare Disease, 100 College Street, New Haven, CT 06510, USA
| | - Gregers Rom Andersen
- Department of Molecular Biology and Genetics, Universitetsbyen 83, Aarhus University, Aarhus, Denmark
| | - Paul Tamburini
- Alexion, AstraZeneca Rare Disease, 100 College Street, New Haven, CT 06510, USA
| |
Collapse
|
29
|
Nilsson PH, Skattum L, Toonen EJM. Editorial: Current challenges in complement diagnostics. Front Immunol 2023; 14:1334050. [PMID: 38077347 PMCID: PMC10704809 DOI: 10.3389/fimmu.2023.1334050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Affiliation(s)
- Per H Nilsson
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Lillemor Skattum
- Clinical Immunology and Transfusion Medicine, Region Skåne, Lund, Sweden
- Department of Laboratory Medicine, Section of Microbiology, Immunology and Glycobiology, Lund University, Lund, Sweden
| | - Erik J M Toonen
- Research & Development Department, Hycult Biotech, Uden, Netherlands
| |
Collapse
|
30
|
Ma Y, Zhang K, Wu Y, Fu X, Liang S, Peng M, Guo J, Liu M. Revisiting the relationship between complement and ulcerative colitis. Scand J Immunol 2023; 98:e13329. [PMID: 38441324 DOI: 10.1111/sji.13329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/13/2023] [Accepted: 08/28/2023] [Indexed: 03/07/2024]
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disorder (IBD) characterized by relapsing chronic inflammation of the colon that causes continuous mucosal inflammation. The global incidence of UC is steadily increasing. Immune mechanisms are involved in the pathogenesis of UC, of which complement is shown to play a critical role by inducing local chronic inflammatory responses that promote tissue damage. However, the function of various complement components in the development of UC is complex and even paradoxical. Some components (e.g. C1q, CD46, CD55, CD59, and C6) are shown to safeguard the intestinal barrier and reduce intestinal inflammation, while others (e.g. C3, C5, C5a) can exacerbate intestinal damage and accelerate the development of UC. The complement system was originally thought to function primarily in an extracellular mode; however, recent evidence indicates that it can also act intracellularly as the complosome. The current study provides an overview of current studies on complement and its role in the development of UC. While there are few studies that describe how intracellular complement contributes to UC, we discuss potential future directions based on related publications. We also highlight novel methods that target complement for IBD treatment.
Collapse
Affiliation(s)
- Yujie Ma
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Kaicheng Zhang
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Yuanyuan Wu
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Xiaoyan Fu
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Shujuan Liang
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Meiyu Peng
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Juntang Guo
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Meifang Liu
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| |
Collapse
|
31
|
Duan H, Abram TG, Cruz AR, Rooijakkers SHM, Geisbrecht BV. New Insights into the Complement Receptor of the Ig Superfamily Obtained from Structural and Functional Studies on Two Mutants. Immunohorizons 2023; 7:806-818. [PMID: 38032267 PMCID: PMC10696418 DOI: 10.4049/immunohorizons.2300064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Abstract
The extracellular region of the complement receptor of the Ig superfamily (CRIg) binds to certain C3 cleavage products (C3b, iC3b, C3c) and inhibits the alternative pathway (AP) of complement. In this study, we provide further insight into the CRIg protein and describe two CRIg mutants that lack multiple lysine residues as a means of facilitating chemical modifications of the protein. Structural analyses confirmed preservation of the native CRIg architecture in both mutants. In contrast to earlier reports suggesting that CRIg binds to C3b with an affinity of ∼1 μM, we found that wild-type CRIg binds to C3b and iC3b with affinities <100 nM, but to C3c with an affinity closer to 1 μM. We observed this same trend for both lysine substitution mutants, albeit with an apparent ∼2- to 3-fold loss of affinity when compared with wild-type CRIg. Using flow cytometry, we confirmed binding to C3 fragment-opsonized Staphylococcus aureus cells by each mutant, again with an ∼2- to 3-fold decrease when compared with wild-type. Whereas wild-type CRIg inhibits AP-driven lysis of rabbit erythrocytes with an IC50 of 1.6 μM, we observed an ∼3-fold reduction in inhibition for both mutants. Interestingly, we found that amine-reactive crosslinking of the CRIg mutant containing only a single lysine results in a significant improvement in inhibitory potency across all concentrations examined when compared with the unmodified mutant, but in a manner sensitive to the length of the crosslinker. Collectively, our findings provide new insights into the CRIg protein and suggest an approach for engineering increasingly potent CRIg-based inhibitors of the AP.
Collapse
Affiliation(s)
- Huiquan Duan
- Department of Biochemistry and Molecular Biophysics, Kansas State University; Manhattan, KS
| | - Troy G. Abram
- Department of Biochemistry and Molecular Biophysics, Kansas State University; Manhattan, KS
| | - Ana Rita Cruz
- Department of Medical Microbiology and Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Suzan H. M. Rooijakkers
- Department of Medical Microbiology and Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Brian V. Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University; Manhattan, KS
| |
Collapse
|
32
|
Li Y, Maimaiti M, Yang B, Lu Z, Zheng Q, Lin Y, Luo W, Wang R, Ding L, Wang H, Chen X, Xu Z, Wang M, Li G, Gao L. Comprehensive analysis of subtypes and risk model based on complement system associated genes in ccRCC. Cell Signal 2023; 111:110888. [PMID: 37717714 DOI: 10.1016/j.cellsig.2023.110888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/11/2023] [Accepted: 09/10/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND Immune therapy is widely used in treating clear cell renal cell carcinoma (ccRCC), yet identifying patient subgroups that are expected to response remains challenging. As complement system can mediate immune effects, including the progression of tumors, a correlation between complement system and immune therapy may exist. METHODS Based on 11 complement system associated genes (CSAGs) identified from The Cancer Genome Atlas (TCGA), we performed unsupervised clustering and classified the tumors into two different complement system (CS) patterns. The clinical significance, tumor microenvironment (TME), functional enrichment, and immune infiltration were further analyzed. A novel scoring system named CSscore was developed based on the expression levels of the 11 CSAGs. RESULTS Two distinct CS patterns were identified, classified as Cluster1 and Cluster2, and Cluster1 showed poor clinical outcome. Further analysis of functional enrichment, immune cell infiltration, and genetic variation revealed that Cluster1 had high infiltration of TME immune cells, but also exhibited high immune escape. The novel prognostic model, CSscore could act as an independent prognostic factor and effectively predict patients' prognosis and distinguish the therapeutic efficacy of different immune treatment strategies. The pan-cancer analysis of the CSscore indicates its potential to be further generalized to other types of cancer. CONCLUSIONS Two distinct CS patterns were identified and were further analyzed in terms of infiltration of TME immune cells and immune escape, providing potential explanations for the impact on prognosis of ccRCC. Our CSscore prognostic model may offer a novel perspective in the management of ccRCC patients, and potentially other types of cancer as well.
Collapse
Affiliation(s)
- Yang Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Muzhapaer Maimaiti
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Bowen Yang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Zeyi Lu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Qiming Zheng
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yudong Lin
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Wenqin Luo
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Ruyue Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Lifeng Ding
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Huan Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Xianjiong Chen
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Zhehao Xu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Mingchao Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
| | - Lei Gao
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
| |
Collapse
|
33
|
Gu X, Shen H, Zhu G, Li X, Zhang Y, Zhang R, Su F, Wang Z. Prognostic Model and Tumor Immune Microenvironment Analysis of Complement-Related Genes in Gastric Cancer. J Inflamm Res 2023; 16:4697-4711. [PMID: 37872955 PMCID: PMC10590588 DOI: 10.2147/jir.s422903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023] Open
Abstract
Introduction The complement system is integral to the innate and adaptive immune response, helping antibodies eliminate pathogens. However, the potential role of complement and its modulators in the tumor microenvironment (TME) of gastric cancer (GC) remains unclear. Methods This study assessed the expression, frequency of somatic mutations, and copy number variations of complement family genes in GC derived from The Cancer Genome Atlas (TCGA). Lasso and Cox regression analyses were conducted to develop a prognostic model based on the complement genes family, with the training and validation sets taken from the TCGA-GC cohort (n=371) and the International Gene Expression Omnibus (GEO) cohort (n=433), correspondingly. The nomogram assessment model was used to predict patient outcomes. Additionally, the link between immune checkpoints, immune cells, and the prognostic model was investigated. Results In contrast to patients at low risk, those at high risk had a less favorable outcome. The prognostic model-derived risk score was shown to serve as a prognostic marker of GC independently, as per the multivariate Cox analysis. Nomogram assessment showed that the model had high reliability for predicting the survival of patients with GC in the 1, 3, 5 years. Additionally, the risk score was positively linked to the expression of immune checkpoints, notably CTLA4, LAG3, PDCD1, and CD274, according to an analysis of immune processes. The core gene C5aR1 in the prognostic model was found to be upregulated in GC tissues in contrast to adjoining normal tissues, and patients with elevated expressed levels of C5aR1 had lower 10-year overall survival (OS) rates. Conclusion Our work reveals that complement genes are associated with the diversity and complexity of TME. The complement prognosis model help improves our understanding of TME infiltration characteristics and makes immunotherapeutic strategies more effective.
Collapse
Affiliation(s)
- Xianhua Gu
- Department of Gynecology Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, People’s Republic of China
| | - Honghong Shen
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, People’s Republic of China
| | - Guangzheng Zhu
- Department of Surgical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, People’s Republic of China
| | - Xinwei Li
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, People’s Republic of China
| | - Yue Zhang
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, People’s Republic of China
| | - Rong Zhang
- Department of Gynecology Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, People’s Republic of China
| | - Fang Su
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, People’s Republic of China
| | - Zishu Wang
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, People’s Republic of China
| |
Collapse
|
34
|
Appeltshauser L, Doppler K. Pan-Neurofascin autoimmune nodopathy - a life-threatening, but reversible neuropathy. Curr Opin Neurol 2023; 36:394-401. [PMID: 37639464 DOI: 10.1097/wco.0000000000001195] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
PURPOSE OF REVIEW Autoimmune nodopathies are immune-mediated neuropathies associated with antibodies targeting the peripheral node of Ranvier. Recently, antibodies against all neurofascin-isoforms (pan-neurofascin) have been linked to a clinical phenotype distinct from previously described autoimmune nodopathies. Here, we aim at highlighting the molecular background and the red flags for diagnostic assessment and provide treatment and surveillance approaches for this new disease. RECENT FINDINGS Neurofascin-isoforms are located at different compartments of the node of Ranvier: Neurofascin-186 at the axonal nodal gap, and Neurofascin-155 at the terminal Schwann cell loops at the paranode. Pan-neurofascin antibodies recognize a common epitope on both isoforms and can access the node of Ranvier directly. Depending on their subclass profile, antibodies can induce direct structural disorganization and complement activation. Affected patients present with acute and immobilizing sensorimotor neuropathy, with cranial nerve involvement and long-term respiratory insufficiency. Early antibody-depleting therapy is crucial to avoid axonal damage, and remission is possible despite extended disease and high mortality. The antibody titer and serum neurofilament light chain levels can serve as biomarkers for diagnosis and therapy monitoring. SUMMARY Pan-neurofascin-associated autoimmune nodopathies has unique molecular and clinical features. Testing should be considered in severe and prolonged Guillain-Barré-like phenotype.
Collapse
Affiliation(s)
- Luise Appeltshauser
- Department of Neurology, University Hospital Würzburg (UKW), Würzburg, Germany
| | | |
Collapse
|
35
|
Kareem S, Jacob A, Mathew J, Quigg RJ, Alexander JJ. Complement: Functions, location and implications. Immunology 2023; 170:180-192. [PMID: 37222083 PMCID: PMC10524990 DOI: 10.1111/imm.13663] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/09/2023] [Indexed: 05/25/2023] Open
Abstract
The complement system, an arm of the innate immune system plays a critical role in both health and disease. The complement system is highly complex with dual possibilities, helping or hurting the host, depending on the location and local microenvironment. The traditionally known functions of complement include surveillance, pathogen recognition, immune complex trafficking, processing and pathogen elimination. The noncanonical functions of the complement system include their roles in development, differentiation, local homeostasis and other cellular functions. Complement proteins are present in both, the plasma and on the membranes. Complement activation occurs both extra- and intracellularly, which leads to considerable pleiotropy in their activity. In order to design more desirable and effective therapies, it is important to understand the different functions of complement, and its location-based and tissue-specific responses. This manuscript will provide a brief overview into the complex nature of the complement cascade, outlining some of their complement-independent functions, their effects at different locale, and their implication in disease settings.
Collapse
Affiliation(s)
- Samer Kareem
- Department of Medicine, University at Buffalo, Buffalo, New York, United States
| | - Alexander Jacob
- Department of Medicine, University at Buffalo, Buffalo, New York, United States
| | - John Mathew
- Department of Rheumatology, Christian Medical College, Vellore, India
| | - Richard J Quigg
- Department of Medicine, University at Buffalo, Buffalo, New York, United States
| | - Jessy J Alexander
- Department of Medicine, University at Buffalo, Buffalo, New York, United States
| |
Collapse
|
36
|
Nording H, Baron L, Lübken A, Emami H, von Esebeck J, Meusel M, Sadik C, Schanze N, Duerschmied D, Köhl J, Münch G, Langer HF. The Platelet Anaphylatoxin Receptor C5aR1 (CD88) Is a Promising Target for Modulating Vessel Growth in Response to Ischemia a. TH OPEN 2023; 7:e289-e293. [PMID: 37868192 PMCID: PMC10586890 DOI: 10.1055/a-2156-8048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023] Open
Affiliation(s)
- Henry Nording
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Lasse Baron
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Antje Lübken
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Hossein Emami
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Jacob von Esebeck
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Moritz Meusel
- Medical Clinic II, University Hospital, University Heart Center Lübeck, Lübeck, Germany
| | - Christian Sadik
- Clinic for Dermatology, University of Lübeck, University Hospital, Lübeck, Germany
| | - Nancy Schanze
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Daniel Duerschmied
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jörg Köhl
- ISEF, University of Lübeck, Lübeck, Germany
| | | | - Harald F. Langer
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
- Clinic for Dermatology, University of Lübeck, University Hospital, Lübeck, Germany
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Germany
| |
Collapse
|
37
|
Laumonnier Y, Korkmaz RÜ, Nowacka AA, Köhl J. Complement-mediated immune mechanisms in allergy. Eur J Immunol 2023; 53:e2249979. [PMID: 37381711 DOI: 10.1002/eji.202249979] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 06/30/2023]
Abstract
Allergic conditions are associated with canonical and noncanonical activation of the complement system leading to the release of several bioactive mediators with inflammatory and immunoregulatory properties that regulate the immune response in response to allergens during the sensitization and/or the effector phase of allergic diseases. Further, immune sensors of complement and regulator proteins of the cascade impact on the development of allergies. These bioactive mediators comprise the small and large cleavage fragments of C3 and C5. Here, we provide an update on the multiple roles of immune sensors, regulators, and bioactive mediators of complement in allergic airway diseases, food allergies, and anaphylaxis. A particular emphasis is on the anaphylatoxins C3a and C5a and their receptors, which are expressed on many of the effector cells in allergy such as mast cells, eosinophils, basophils, macrophages, and neutrophils. Also, we will discuss the multiple pathways, by which the anaphylatoxins initiate and control the development of maladaptive type 2 immunity including their impact on innate lymphoid cell recruitment and activation. Finally, we briefly comment on the potential to therapeutically target the complement system in different allergic conditions.
Collapse
Affiliation(s)
- Yves Laumonnier
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
- Institute for Nutritional Medicine, University of Lübeck, Lübeck, Germany
- Airway Research Center North, Member of the German Center for Lung Research (DZL), Lübeck, Germany
| | - Rabia Ülkü Korkmaz
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Alicja A Nowacka
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
- Airway Research Center North, Member of the German Center for Lung Research (DZL), Lübeck, Germany
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, USA
| |
Collapse
|
38
|
Gong Z, He Y, Mi X, Li C, Sun X, Wang G, Li L, Han Y, Xu C, Wang W, Cai S, Wang L, Liu Z. Complement and coagulation cascades pathway-related signature as a predictor of immunotherapy in metastatic urothelial cancer. Aging (Albany NY) 2023; 15:9479-9498. [PMID: 37747262 PMCID: PMC10564431 DOI: 10.18632/aging.205022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have shown efficacy in patients with metastatic urothelial cancer (mUC), however, only a small subset of patients could benefit from ICIs. Identifying predictive biomarkers of ICIs in patients with mUC is clinical meaningful for patient stratification and administration. METHODS Clinical and transcriptomic data of mUC patients treated with ICIs from mUC cohort (IMvigor210 study) was utilized to explore the predictive biomarkers. LASSO Cox regression was performed to construct a predictive model. The predictive model was trained and tested in the mUC cohort, and then exploratively tested in clear cell renal cell carcinoma (ccRCC) and melanoma cohorts in which patients also received ICIs regimens. RESULTS The differentially expressed genes (DEGs) in complement and coagulation cascades pathway (CCCP) were mainly enriched in non-responders of ICIs in the mUC cohort. A CCCP risk score was constructed based on the DEGs in CCCP. Patients with a low-risk score were more responsive to ICIs and had better overall survival (OS) than those with a high-risk score in the training set (HR, 0.38; 95%CI, 0.27-0.53, P<0.001) and the test set (HR, 0.34; 95%CI, 0.17-0.71, P=0.003). The association between the CCCP risk score and OS remained significant in the multivariable cox regression by adjusting PD-L1 expression and TMB (P<0.05). In addition, there was no difference for OS in the bladder cancer patients without ICIs (TCGA-BLCA cohort, HR, 0.76, 95%CI, 0.49-1.18, P=0.22), suggesting a predictive but not prognostic effect of the risk score. For the exploratory analysis, consistent results were observed that low-risk group showed superior OS in ccRCC cohort (HR, 0.52, 95%CI, 0.37-0.75, P<0.001) and melanoma cohort (HR, 0.27, 95%CI, 0.12-0.62, P=0.001). CONCLUSIONS Our study showed that the CCCP risk score is an independent biomarker that predicts the efficacy of ICIs in mUC patients. The patients with a low-risk score tend to have a better response to ICIs and a longer life time probably due to the immune-activated TME. Further studies are needed to validate the clinical utility of the seven-gene signature.
Collapse
Affiliation(s)
- Zheng Gong
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110001, China
| | - Yuming He
- Burning Rock Biotech, Guangzhou 510300, China
| | - Xiao Mi
- Burning Rock Biotech, Guangzhou 510300, China
| | | | - Xiaoran Sun
- Burning Rock Biotech, Guangzhou 510300, China
| | | | - Leo Li
- Burning Rock Biotech, Guangzhou 510300, China
| | - Yusheng Han
- Burning Rock Biotech, Guangzhou 510300, China
| | - Chunwei Xu
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Wenxian Wang
- Department of Clinical Trial, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Shangli Cai
- Burning Rock Biotech, Guangzhou 510300, China
| | - Liang Wang
- The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Zhongyuan Liu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
39
|
Tang A, Zhao X, Tao T, Xie D, Xu B, Huang Y, Li M. Unleashing the power of complement activation: unraveling renal damage in human anti-glomerular basement membrane disease. Front Immunol 2023; 14:1229806. [PMID: 37781380 PMCID: PMC10540768 DOI: 10.3389/fimmu.2023.1229806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Anti-glomerular basement membrane (GBM) disease is a rare but life-threatening autoimmune disorder characterized by rapidly progressive glomerulonephritis with or without pulmonary hemorrhage. Renal biopsies of anti-GBM patients predominantly show linear deposition of IgG and complement component 3 (C3), indicating a close association between antigen-antibody reactions and subsequent complement activation in the pathogenesis of the disease. All three major pathways of complement activation, including the classical, lectin, and alternative pathways, are involved in human anti-GBM disease. Several complement factors, such as C3, C5b-9, and factor B, show a positive correlation with the severity of the renal injury and act as risk factors for renal outcomes. Furthermore, compared to patients with single positivity for anti-GBM antibodies, individuals who are double-seropositive for anti-neutrophil cytoplasmic antibody (ANCA) and anti-GBM antibodies exhibit a unique clinical phenotype that lies between ANCA-associated vasculitis (AAV) and anti-GBM disease. Complement activation may serve as a potential "bridge" for triggering both AAV and anti-GBM conditions. The aim of this article is to provide a comprehensive review of the latest clinical evidence regarding the role of complement activation in anti-GBM disease. Furthermore, potential therapeutic strategies targeting complement components and associated precautions are discussed, to establish a theoretical basis for complement-targeted therapies.
Collapse
Affiliation(s)
- Anqi Tang
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Zhao
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tian Tao
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dengpiao Xie
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bojun Xu
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Youqun Huang
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingquan Li
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
40
|
Schanzenbacher J, Hendrika Kähler K, Mesler E, Kleingarn M, Marcel Karsten C, Leonard Seiler D. The role of C5a receptors in autoimmunity. Immunobiology 2023; 228:152413. [PMID: 37598588 DOI: 10.1016/j.imbio.2023.152413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/04/2023] [Accepted: 06/10/2023] [Indexed: 08/22/2023]
Abstract
The complement system is an essential component of the innate immune response and plays a vital role in host defense and inflammation. Dysregulation of the complement system, particularly involving the anaphylatoxin C5a and its receptors (C5aR1 and C5aR2), has been linked to several autoimmune diseases, indicating the potential for targeted therapies. C5aR1 and C5aR2 are seven-transmembrane receptors with distinct signaling mechanisms that play both partially overlapping and opposing roles in immunity. Both receptors are expressed on a broad spectrum of immune and non-immune cells and are involved in cellular functions and physiological processes during homeostasis and inflammation. Dysregulated C5a-mediated inflammation contributes to autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, epidermolysis bullosa acquisita, antiphospholipid syndrome, and others. Therefore, targeting C5a or its receptors may yield therapeutic innovations in these autoimmune diseases by reducing the recruitment and activation of immune cells that lead to tissue inflammation and injury, thereby exacerbating the autoimmune response. Clinical trials focused on the inhibition of C5 cleavage or the C5a/C5aR1-axis using small molecules or monoclonal antibodies hold promise for bringing novel treatments for autoimmune diseases into practice. However, given the heterogeneous nature of (systemic) autoimmune diseases, there are still several challenges, such as patient selection, optimal dosing, and treatment duration, that require further investigation and development to realize the full therapeutic potential of C5a receptor inhibition, ideally in the context of a personalized medicine approach. Here, we aim to provide a brief overview of the current knowledge on the function of C5a receptors, the involvement of C5a receptors in autoimmune disorders, the molecular mechanisms underlying C5a receptor-mediated autoimmunity, and the potential for targeted therapies to modulate their activity.
Collapse
Affiliation(s)
- Jovan Schanzenbacher
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Katja Hendrika Kähler
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Evelyn Mesler
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Marie Kleingarn
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | | | - Daniel Leonard Seiler
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany.
| |
Collapse
|
41
|
Kusakabe J, Hata K, Tajima T, Miyauchi H, Zhao X, Kageyama S, Tsuruyama T, Hatano E. Properdin inhibition ameliorates hepatic ischemia/reperfusion injury without interfering with liver regeneration in mice. Front Immunol 2023; 14:1174243. [PMID: 37662914 PMCID: PMC10469474 DOI: 10.3389/fimmu.2023.1174243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 07/28/2023] [Indexed: 09/05/2023] Open
Abstract
Hepatic ischemia/reperfusion injury (IRI) often causes serious complications in liver surgeries, including transplantation. Complement activation seems to be involved in hepatic IRI; however, no complement-targeted intervention has been clinically applied. We investigated the therapeutic potential of Properdin-targeted complement regulation in hepatic IRI. Male wild-type mice (B10D2/nSn) were exposed to 90-minute partial hepatic IRI to the left and median lobes with either monoclonal anti-Properdin-antibody (Ab) or control-immunoglobulin (IgG) administration. Since the complement system is closely involved in liver regeneration, the influence of anti-Properdin-Ab on liver regeneration was also evaluated in a mouse model of 70% partial hepatectomy. Anti-Properdin-Ab significantly reduced serum transaminases and histopathological damages at 2 and 6 hours after reperfusion (P <0.001, respectively). These improvements at 2 hours was accompanied by significant reductions in CD41+ platelet aggregation (P =0.010) and ssDNA+ cells (P <0.001), indicating significant amelioration in hepatic microcirculation and apoptosis, respectively. Characteristically, F4/80+ cells representing macrophages, mainly Kupffer cells, were maintained by anti-Properdin-Ab (P <0.001). Western blot showed decreased phosphorylation of only Erk1/2 among MAPKs (P =0.004). After 6 hours of reperfusion, anti-Properdin-Ab significantly attenuated the release of HMGB-1, which provokes the release of proinflammatory cytokines/chemokines (P =0.002). Infiltration of CD11b+ and Ly6-G+ cells, representing infiltrating macrophages and neutrophils, respectively, were significantly alleviated by anti-Properdin-Ab (both P <0.001). Notably, anti-Properdin-Ab did not affect remnant liver weight and BrdU+ cells at 48 hours after 70% partial hepatectomy (P =0.13 and 0.31, respectively). In conclusion, Properdin inhibition significantly ameliorates hepatic IRI without interfering with liver regeneration.
Collapse
Affiliation(s)
- Jiro Kusakabe
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koichiro Hata
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tetsuya Tajima
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hidetaka Miyauchi
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Xiangdong Zhao
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shoichi Kageyama
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tatsuaki Tsuruyama
- Center for Anatomical, Pathological, and Forensic Medical Research, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Etsuro Hatano
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
42
|
Tang GQ, Tang Y, Dhamnaskar K, Hoarty MD, Vyasamneni R, Vadysirisack DD, Ma Z, Zhu N, Wang JG, Bu C, Cong B, Palmer E, Duda PW, Sayegh C, Ricardo A. Zilucoplan, a macrocyclic peptide inhibitor of human complement component 5, uses a dual mode of action to prevent terminal complement pathway activation. Front Immunol 2023; 14:1213920. [PMID: 37622108 PMCID: PMC10446491 DOI: 10.3389/fimmu.2023.1213920] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/17/2023] [Indexed: 08/26/2023] Open
Abstract
Introduction The complement system is a key component of the innate immune system, and its aberrant activation underlies the pathophysiology of various diseases. Zilucoplan is a macrocyclic peptide that binds and inhibits the cleavage/activation of human complement component 5 (C5). We present in vitro and ex vivo data on the mechanism of action of zilucoplan for the inhibition of C5 activation, including two clinically relevant C5 polymorphisms at R885. Methods The interaction of zilucoplan with C5, including for clinical C5 R885 variants, was investigated using surface plasmon resonance (SPR), hemolysis assays, and ELISA. The interference of C5b6 formation by zilucoplan was investigated by native gel analysis and hemolysis assay. The permeability of zilucoplan in a reconstituted basement membrane was assessed by the partition of zilucoplan on Matrigel-coated transwell chambers. Results Zilucoplan specifically bound human complement C5 with high affinity, competitively inhibited the binding of C5 to C3b, and blocked C5 cleavage by C5 convertases and the assembly of the cytolytic membrane attack complex (MAC, or C5b9). Zilucoplan fully prevented the in vitro activation of C5 clinical variants at R885 that have been previously reported to respond poorly to eculizumab treatment. Zilucoplan was further demonstrated to interfere with the formation of C5b6 and inhibit red blood cell (RBC) hemolysis induced by plasmin-mediated non-canonical C5 activation. Zilucoplan demonstrated greater permeability than a monoclonal C5 antibody in a reconstituted basement membrane model, providing a rationale for the rapid onset of action of zilucoplan observed in clinical studies. Conclusion Our findings demonstrate that zilucoplan uses a dual mode of action to potently inhibit the activation of C5 and terminal complement pathway including wild-type and clinical R885 variants that do not respond to eculizumab treatment. These data may be relevant to the clinically demonstrated benefits of zilucoplan.
Collapse
Affiliation(s)
| | - Yalan Tang
- UCB Pharma, Cambridge, MA, United States
| | | | | | | | | | - Zhong Ma
- UCB Pharma/Ra Pharmaceuticals, Cambridge, MA, United States
| | - Nanqun Zhu
- UCB Pharma/Ra Pharmaceuticals, Cambridge, MA, United States
| | | | - Charlie Bu
- UCB Pharma, Cambridge, MA, United States
| | | | | | | | - Camil Sayegh
- UCB Pharma/Ra Pharmaceuticals, Cambridge, MA, United States
| | | |
Collapse
|
43
|
Li X, Wang H, Schmidt CQ, Ferreira VP, Yancopoulou D, Mastellos DC, Lambris JD, Hajishengallis G. The Complement-Targeted Inhibitor Mini-FH Protects against Experimental Periodontitis via Both C3-Dependent and C3-Independent Mechanisms. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:453-461. [PMID: 37306457 PMCID: PMC10524879 DOI: 10.4049/jimmunol.2300242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/23/2023] [Indexed: 06/13/2023]
Abstract
A minimized version of complement factor H (FH), designated mini-FH, was previously engineered combining the N-terminal regulatory domains (short consensus repeat [SCR]1-4) and C-terminal host-surface recognition domains (SCR19-20) of the parent molecule. Mini-FH conferred enhanced protection, as compared with FH, in an ex vivo model of paroxysmal nocturnal hemoglobinuria driven by alternative pathway dysregulation. In the current study, we tested whether and how mini-FH could block another complement-mediated disease, namely periodontitis. In a mouse model of ligature-induced periodontitis (LIP), mini-FH inhibited periodontal inflammation and bone loss in wild-type mice. Although LIP-subjected C3-deficient mice are protected relative to wild-type littermates and exhibit only modest bone loss, mini-FH strikingly inhibited bone loss even in C3-deficient mice. However, mini-FH failed to inhibit ligature-induced bone loss in mice doubly deficient in C3 and CD11b. These findings indicate that mini-FH can inhibit experimental periodontitis even in a manner that is independent of its complement regulatory activity and is mediated by complement receptor 3 (CD11b/CD18). Consistent with this notion, a complement receptor 3-interacting recombinant FH segment that lacks complement regulatory activity (specifically encompassing SCRs 19 and 20; FH19-20) was also able to suppress bone loss in LIP-subjected C3-deficient mice. In conclusion, mini-FH appears to be a promising candidate therapeutic for periodontitis by virtue of its ability to suppress bone loss via mechanisms that both include and go beyond its complement regulatory activity.
Collapse
Affiliation(s)
- Xiaofei Li
- Shanghai Jiao Tong University, School of Life Sciences and Biotechnology, Sheng Yushou Center of Cell Biology and Immunology, Shanghai, China
- University of Pennsylvania, Penn Dental Medicine, Department of Basic and Translational Sciences, Philadelphia, PA, USA
| | - Hui Wang
- University of Pennsylvania, Penn Dental Medicine, Department of Basic and Translational Sciences, Philadelphia, PA, USA
| | - Christoph Q. Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Viviana P. Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | | | - Dimitrios C. Mastellos
- National Center for Scientific Research 'Demokritos’, INRASTES, Division of Biodiagnostic Science and Technologies, Athens, Greece
| | - John D. Lambris
- University of Pennsylvania, Perelman School of Medicine, Department of Pathology and Laboratory Medicine, Philadelphia, PA, USA
| | - George Hajishengallis
- University of Pennsylvania, Penn Dental Medicine, Department of Basic and Translational Sciences, Philadelphia, PA, USA
| |
Collapse
|
44
|
Wang J, Ma R, Wang Y, Zhang S, Wang J, Zheng J, Xue W, Ding X. rhMYDGF Alleviates I/R-induced Kidney Injury by Inhibiting Inflammation and Apoptosis via the Akt Pathway. Transplantation 2023; 107:1729-1739. [PMID: 36698245 PMCID: PMC10358439 DOI: 10.1097/tp.0000000000004497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Renal ischemia/reperfusion (I/R) injury is one of the crucial factors affecting the outcome of renal transplantation. In recent years, myeloid-derived growth factor (MYDGF) has received a lot of attention for its extensive beneficial effects on cardiac repair and protection of cardiomyocytes from cell death. Therefore, we hypothesized that the recombinant human MYDGF (rhMYDGF) protein might play an essential role in safeguarding renal I/R injury. METHODS In vivo experiments were conducted using a mouse unilateral I/R model. Mice were pretreated with rhMYDGF by intraperitoneal injection to study the potential mechanism of renal protection. In vitro, we established hypoxia/reoxygenation and H 2 O 2 treatment models to pretreat cells with rhMYDGF. The expression levels of oxidative stress, inflammation, and apoptosis-related factors in tissues and cells were detected. Finally, we explored the role of the protein kinase B (Akt) pathway in the renal protective mechanism of rhMYDGF. RESULTS In this study, we found that intraperitoneal injection of 1.25 μg rhMYDGF could significantly improve renal function of I/R mice, and reduce oxidative stress, inflammation, and apoptosis. For the human proximal tubular epithelial cell line and human kidney cell line, pretreatment with 0.3 μg/mL rhMYDGF for 24 h significantly downregulated oxidative stress, inflammation, and apoptosis via the phosphorylation of Akt, which could be ameliorated by LY294002. CONCLUSIONS rhMYDGF protects kidney from I/R injury by attenuating oxidative stress, inflammation, and apoptosis through the activation of the Akt pathway.
Collapse
Affiliation(s)
- Jingwen Wang
- Department of Renal Transplantation, Hospital of Nephrology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ruiyang Ma
- Department of Renal Transplantation, Hospital of Nephrology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ying Wang
- Department of Renal Transplantation, Hospital of Nephrology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shucong Zhang
- Department of Renal Transplantation, Hospital of Nephrology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jiale Wang
- Department of Renal Transplantation, Hospital of Nephrology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jin Zheng
- Department of Renal Transplantation, Hospital of Nephrology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wujun Xue
- Department of Renal Transplantation, Hospital of Nephrology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoming Ding
- Department of Renal Transplantation, Hospital of Nephrology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
45
|
Ispasanie E, Muri L, Schmid M, Schubart A, Thorburn C, Zamurovic N, Holbro T, Kammüller M, Pluschke G. In vaccinated individuals serum bactericidal activity against B meningococci is abrogated by C5 inhibition but not by inhibition of the alternative complement pathway. Front Immunol 2023; 14:1180833. [PMID: 37457736 PMCID: PMC10349132 DOI: 10.3389/fimmu.2023.1180833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Several diseases caused by the dysregulation of complement activation can be treated with inhibitors of the complement components C5 and/or C3. However, complement is required for serum bactericidal activity (SBA) against encapsulated Gram-negative bacteria. Therefore, C3 and C5 inhibition increases the risk of invasive disease, in particular by Neisseria meningitidis. As inhibitors against complement components other than C3 and C5 may carry a reduced risk of infection, we compared the effect of inhibitors targeting the terminal pathway (C5), the central complement component C3, the alternative pathway (FB and FD), and the lectin pathway (MASP-2) on SBA against serogroup B meningococci. Methods Serum from adults was collected before and after vaccination with the meningococcal serogroup B vaccine 4CMenB and tested for meningococcal killing. Since the B capsular polysaccharide is structurally similar to certain human polysaccharides, 4CMenB was designed to elicit antibodies against meningococcal outer membrane proteins. Results While only a few pre-vaccination sera showed SBA against the tested B meningococcal isolates, 4CMenB vaccination induced potent complement-activating IgG titers against isolates expressing a matching allele of the bacterial cell surface-exposed factor H-binding protein (fHbp). SBA triggered by these cell surface protein-specific antibodies was blocked by C5 and reduced by C3 inhibition, whereas alternative (factor B and D) and lectin (MASP-2) pathway inhibitors had no effect on the SBA of post-4CMenB vaccination sera. Discussion Compared to the SBA triggered by A,C,W,Y capsule polysaccharide conjugate vaccination, SBA against B meningococci expressing a matching fHbp allele was remarkably resilient against the alternative pathway inhibition.
Collapse
Affiliation(s)
- Emma Ispasanie
- Swiss Tropical and Public Health Institute, Molecular Immunology Unit, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Lukas Muri
- Swiss Tropical and Public Health Institute, Molecular Immunology Unit, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Marc Schmid
- Swiss Tropical and Public Health Institute, Molecular Immunology Unit, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Anna Schubart
- Novartis Institutes for Biomedical Research, Department Autoimmunity, Transplantation and Inflammation, Basel, Switzerland
| | | | - Natasa Zamurovic
- Novartis Institutes for Biomedical Research, Translational Medicine-Preclinical Safety, Basel, Switzerland
| | - Thomas Holbro
- Global Drug Development, Novartis Pharma AG, Basel, Switzerland
| | - Michael Kammüller
- Novartis Institutes for Biomedical Research, Translational Medicine-Preclinical Safety, Basel, Switzerland
| | - Gerd Pluschke
- Swiss Tropical and Public Health Institute, Molecular Immunology Unit, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
46
|
Desai JV, Kumar D, Freiwald T, Chauss D, Johnson MD, Abers MS, Steinbrink JM, Perfect JR, Alexander B, Matzaraki V, Snarr BD, Zarakas MA, Oikonomou V, Silva LM, Shivarathri R, Beltran E, Demontel LN, Wang L, Lim JK, Launder D, Conti HR, Swamydas M, McClain MT, Moutsopoulos NM, Kazemian M, Netea MG, Kumar V, Köhl J, Kemper C, Afzali B, Lionakis MS. C5a-licensed phagocytes drive sterilizing immunity during systemic fungal infection. Cell 2023; 186:2802-2822.e22. [PMID: 37220746 PMCID: PMC10330337 DOI: 10.1016/j.cell.2023.04.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 03/10/2023] [Accepted: 04/21/2023] [Indexed: 05/25/2023]
Abstract
Systemic candidiasis is a common, high-mortality, nosocomial fungal infection. Unexpectedly, it has emerged as a complication of anti-complement C5-targeted monoclonal antibody treatment, indicating a critical niche for C5 in antifungal immunity. We identified transcription of complement system genes as the top biological pathway induced in candidemic patients and as predictive of candidemia. Mechanistically, C5a-C5aR1 promoted fungal clearance and host survival in a mouse model of systemic candidiasis by stimulating phagocyte effector function and ERK- and AKT-dependent survival in infected tissues. C5ar1 ablation rewired macrophage metabolism downstream of mTOR, promoting their apoptosis and enhancing mortality through kidney injury. Besides hepatocyte-derived C5, local C5 produced intrinsically by phagocytes provided a key substrate for antifungal protection. Lower serum C5a concentrations or a C5 polymorphism that decreases leukocyte C5 expression correlated independently with poor patient outcomes. Thus, local, phagocyte-derived C5 production licenses phagocyte antimicrobial function and confers innate protection during systemic fungal infection.
Collapse
Affiliation(s)
- Jigar V Desai
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases, NIH, Bethesda, MD, USA
| | - Dhaneshwar Kumar
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA; Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Tilo Freiwald
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Daniel Chauss
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | | | - Michael S Abers
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases, NIH, Bethesda, MD, USA
| | - Julie M Steinbrink
- Department of Medicine, Division of Infectious Diseases, Duke University, Durham, NC, USA
| | - John R Perfect
- Department of Medicine, Division of Infectious Diseases, Duke University, Durham, NC, USA
| | - Barbara Alexander
- Department of Medicine, Division of Infectious Diseases, Duke University, Durham, NC, USA
| | - Vasiliki Matzaraki
- Department of Genetics, University of Groningen, Groningen, the Netherlands
| | - Brendan D Snarr
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases, NIH, Bethesda, MD, USA
| | - Marissa A Zarakas
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases, NIH, Bethesda, MD, USA
| | - Vasileios Oikonomou
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases, NIH, Bethesda, MD, USA
| | - Lakmali M Silva
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA
| | - Raju Shivarathri
- Center for Discovery & Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Emily Beltran
- Complement and Inflammation Research Section, National Heart Lung and Blood Institute, NIH, Bethesda, MD, USA
| | - Luciana Negro Demontel
- Complement and Inflammation Research Section, National Heart Lung and Blood Institute, NIH, Bethesda, MD, USA
| | - Luopin Wang
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Jean K Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dylan Launder
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Heather R Conti
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Muthulekha Swamydas
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases, NIH, Bethesda, MD, USA
| | - Micah T McClain
- Department of Medicine, Division of Infectious Diseases, Duke University, Durham, NC, USA
| | - Niki M Moutsopoulos
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University, Nijmegen, the Netherlands
| | - Vinod Kumar
- Department of Genetics, University of Groningen, Groningen, the Netherlands; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University, Nijmegen, the Netherlands
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Claudia Kemper
- Complement and Inflammation Research Section, National Heart Lung and Blood Institute, NIH, Bethesda, MD, USA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases, NIH, Bethesda, MD, USA.
| |
Collapse
|
47
|
Tzoumas N, Riding G, Williams MA, Steel DH. Complement inhibitors for age-related macular degeneration. Cochrane Database Syst Rev 2023; 6:CD009300. [PMID: 37314061 PMCID: PMC10266126 DOI: 10.1002/14651858.cd009300.pub3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND Age-related macular degeneration (AMD) is a common eye disease and leading cause of sight loss worldwide. Despite its high prevalence and increasing incidence as populations age, AMD remains incurable and there are no treatments for most patients. Mounting genetic and molecular evidence implicates complement system overactivity as a key driver of AMD development and progression. The last decade has seen the development of several novel therapeutics targeting complement in the eye for the treatment of AMD. This review update encompasses the results of the first randomised controlled trials in this field. OBJECTIVES To assess the effects and safety of complement inhibitors in the prevention or treatment of AMD. SEARCH METHODS We searched CENTRAL on the Cochrane Library, MEDLINE, Embase, LILACS, Web of Science, ISRCTN registry, ClinicalTrials.gov, and the WHO ICTRP to 29 June 2022 with no language restrictions. We also contacted companies running clinical trials for unpublished data. SELECTION CRITERIA We included randomised controlled trials (RCTs) with parallel groups and comparator arms that studied complement inhibition for advanced AMD prevention/treatment. DATA COLLECTION AND ANALYSIS Two authors independently assessed search results and resolved discrepancies through discussion. Outcome measures evaluated at one year included change in best-corrected visual acuity (BCVA), untransformed and square root-transformed geographic atrophy (GA) lesion size progression, development of macular neovascularisation (MNV) or exudative AMD, development of endophthalmitis, loss of ≥ 15 letters of BCVA, change in low luminance visual acuity, and change in quality of life. We assessed risk of bias and evidence certainty using Cochrane risk of bias and GRADE tools. MAIN RESULTS Ten RCTs with 4052 participants and eyes with GA were included. Nine evaluated intravitreal (IVT) administrations against sham, and one investigated an intravenous agent against placebo. Seven studies excluded patients with prior MNV in the non-study eye, whereas the three pegcetacoplan studies did not. The risk of bias in the included studies was low overall. We also synthesised results of two intravitreal agents (lampalizumab, pegcetacoplan) at monthly and every-other-month (EOM) dosing intervals. Efficacy and safety of IVT lampalizumab versus sham for GA For 1932 participants in three studies, lampalizumab did not meaningfully change BCVA given monthly (+1.03 letters, 95% confidence interval (CI) -0.19 to 2.25) or EOM (+0.22 letters, 95% CI -1.00 to 1.44) (high-certainty evidence). For 1920 participants, lampalizumab did not meaningfully change GA lesion growth given monthly (+0.07 mm², 95% CI -0.09 to 0.23; moderate-certainty due to imprecision) or EOM (+0.07 mm², 95% CI -0.05 to 0.19; high-certainty). For 2000 participants, lampalizumab may have also increased MNV risk given monthly (RR 1.77, 95% CI 0.73 to 4.30) and EOM (RR 1.70, 95% CI 0.67 to 4.28), based on low-certainty evidence. The incidence of endophthalmitis in patients treated with monthly and EOM lampalizumab was 4 per 1000 (0 to 87) and 3 per 1000 (0 to 62), respectively, based on moderate-certainty evidence. Efficacy and safety of IVT pegcetacoplan versus sham for GA For 242 participants in one study, pegcetacoplan probably did not meaningfully change BCVA given monthly (+1.05 letters, 95% CI -2.71 to 4.81) or EOM (-1.42 letters, 95% CI -5.25 to 2.41), as supported by moderate-certainty evidence. In contrast, for 1208 participants across three studies, pegcetacoplan meaningfully reduced GA lesion growth when given monthly (-0.38 mm², 95% CI -0.57 to -0.19) and EOM (-0.29 mm², 95% CI -0.44 to -0.13), with high certainty. These reductions correspond to 19.2% and 14.8% versus sham, respectively. A post hoc analysis showed possibly greater benefits in 446 participants with extrafoveal GA given monthly (-0.67 mm², 95% CI -0.98 to -0.36) and EOM (-0.60 mm², 95% CI -0.91 to -0.30), representing 26.1% and 23.3% reductions, respectively. However, we did not have data on subfoveal GA growth to undertake a formal subgroup analysis. In 1502 participants, there is low-certainty evidence that pegcetacoplan may have increased MNV risk when given monthly (RR 4.47, 95% CI 0.41 to 48.98) or EOM (RR 2.29, 95% CI 0.46 to 11.35). The incidence of endophthalmitis in patients treated with monthly and EOM pegcetacoplan was 6 per 1000 (1 to 53) and 8 per 1000 (1 to 70) respectively, based on moderate-certainty evidence. Efficacy and safety of IVT avacincaptad pegol versus sham for GA In a study of 260 participants with extrafoveal or juxtafoveal GA, monthly avacincaptad pegol probably did not result in a clinically meaningful change in BCVA at 2 mg (+1.39 letters, 95% CI -5.89 to 8.67) or 4 mg (-0.28 letters, 95% CI -8.74 to 8.18), based on moderate-certainty evidence. Despite this, the drug was still found to have probably reduced GA lesion growth, with estimates of 30.5% reduction at 2 mg (-0.70 mm², 95% CI -1.99 to 0.59) and 25.6% reduction at 4 mg (-0.71 mm², 95% CI -1.92 to 0.51), based on moderate-certainty evidence. Avacincaptad pegol may have also increased the risk of developing MNV (RR 3.13, 95% CI 0.93 to 10.55), although this evidence is of low certainty. There were no cases of endophthalmitis reported in this study. AUTHORS' CONCLUSIONS Despite confirmation of the negative findings of intravitreal lampalizumab across all endpoints, local complement inhibition with intravitreal pegcetacoplan meaningfully reduces GA lesion growth relative to sham at one year. Inhibition of complement C5 with intravitreal avacincaptad pegol is also an emerging therapy with probable benefits on anatomical endpoints in the extrafoveal or juxtafoveal GA population. However, there is currently no evidence that complement inhibition with any agent improves functional endpoints in advanced AMD; further results from the phase 3 studies of pegcetacoplan and avacincaptad pegol are eagerly awaited. Progression to MNV or exudative AMD is a possible emergent adverse event of complement inhibition, requiring careful consideration should these agents be used clinically. Intravitreal administration of complement inhibitors is probably associated with a small risk of endophthalmitis, which may be higher than that of other intravitreal therapies. Further research is likely to have an important impact on our confidence in the estimates of adverse effects and may change these. The optimal dosing regimens, treatment duration, and cost-effectiveness of such therapies are yet to be established.
Collapse
Affiliation(s)
- Nikolaos Tzoumas
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK
- Sunderland Eye Infirmary, Sunderland, UK
| | - George Riding
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK
- North Middlesex University Hospital NHS Trust, London, UK
| | - Michael A Williams
- School of Medicine, Dentistry and Biomedical Science, Queen's University of Belfast, Belfast, UK
| | - David Hw Steel
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK
- Sunderland Eye Infirmary, Sunderland, UK
| |
Collapse
|
48
|
Dani R, Oroszlán G, Martinusz R, Farkas B, Dobos B, Vadas E, Závodszky P, Gál P, Dobó J. Quantification of the zymogenicity and the substrate-induced activity enhancement of complement factor D. Front Immunol 2023; 14:1197023. [PMID: 37283768 PMCID: PMC10239819 DOI: 10.3389/fimmu.2023.1197023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/04/2023] [Indexed: 06/08/2023] Open
Abstract
Complement factor D (FD) is a serine protease present predominantly in the active form in circulation. It is synthesized as a zymogen (pro-FD), but it is continuously converted to FD by circulating active MASP-3. FD is a unique, self-inhibited protease. It has an extremely low activity toward free factor B (FB), while it is a highly efficient enzyme toward FB complexed with C3b (C3bB). The structural basis of this phenomenon is known; however, the rate enhancement was not yet quantified. It has also been unknown whether pro-FD has any enzymatic activity. In this study, we aimed to measure the activity of human FD and pro-FD toward uncomplexed FB and C3bB in order to quantitatively characterize the substrate-induced activity enhancement and zymogenicity of FD. Pro-FD was stabilized in the proenzyme form by replacing Arg25 (precursor numbering) with Gln (pro-FD-R/Q). Activated MASP-1 and MASP-3 catalytic fragments were also included in the study for comparison. We found that the complex formation with C3b enhanced the cleavage rate of FB by FD approximately 20 million-fold. C3bB was also a better substrate for MASP-1, approximately 100-fold, than free FB, showing that binding to C3b renders the scissile Arg-Lys bond in FB to become more accessible for proteolysis. Though easily measurable, this cleavage by MASP-1 is not relevant physiologically. Our approach provides quantitative data for the two-step mechanism characterized by the enhanced susceptibility of FB for cleavage upon complex formation with C3b and the substrate-induced activity enhancement of FD upon its binding to C3bB. Earlier MASP-3 was also implicated as a potential FB activator; however, MASP-3 does not cleave C3bB (or FB) at an appreciable rate. Finally, pro-FD cleaves C3bB at a rate that could be physiologically significant. The zymogenicity of FD is approximately 800, i.e., the cleavage rate of C3bB by pro-FD-R/Q was found to be approximately 800-fold lower than that by FD. Moreover, pro-FD-R/Q at approximately 50-fold of the physiological FD concentration could restore half-maximal AP activity of FD-depleted human serum on zymosan. The observed zymogen activity of pro-FD might be relevant in MASP-3 deficiency cases or during therapeutic MASP-3 inhibition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - József Dobó
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
49
|
Gullipalli D, Miwa T, Golla M, Sato S, Angampalli S, Song WC. MASP3 Deficiency in Mice Reduces but Does Not Abrogate Alternative Pathway Complement Activity Due to Intrinsic Profactor D Activity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1543-1551. [PMID: 36988282 PMCID: PMC10159988 DOI: 10.4049/jimmunol.2200932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/06/2023] [Indexed: 05/03/2023]
Abstract
Complement factor D (FD) is a rate-limiting enzyme of the alternative pathway (AP). Recent studies have suggested that it is synthesized as an inactive precursor and that its conversion to enzymatically active FD is catalyzed by mannan-binding lectin-associated serine protease 3 (MASP3). However, whether MASP3 is essential for AP complement activity remains uncertain. It has been shown that Masp1/3 gene knockout did not prevent AP complement overactivation in a factor H-knockout mouse, and a human patient lacking MASP3 still retained AP complement activity. In this study, we have assessed AP complement activity in a Masp3-knockout mouse generated by CRISPR/Cas9 editing of the Masp1/3 gene. We confirmed specific Masp3 gene inactivation by showing intact MASP1 protein expression and absence of mature FD in the mutant mice. Using several assays, including LPS- and zymosan-induced C3b deposition and rabbit RBC lysis tests, we detected plasma concentration-dependent AP complement activity in Masp3 gene-inactivated mice. Thus, although not measurable in 5% plasma, significant AP complement activity was detected in 20-50% plasma of Masp3 gene-inactivated mice. Furthermore, whereas FD gene deletion provided more than 90% protection of CD55/Crry-deficient RBCs from AP complement-mediated extravascular hemolysis, Masp3 gene deletion only provided 30% protection in the same study. We also found pro-FD to possess intrinsic catalytic activity, albeit at a much lower level than mature FD. Our data suggest that MASP3 deficiency reduces but does not abrogate AP complement activity and that this is explained by intrinsic pro-FD activity, which can be physiologically relevant in vivo.
Collapse
Affiliation(s)
- Damodar Gullipalli
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Takashi Miwa
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Madhu Golla
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sayaka Sato
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sree Angampalli
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Wen-Chao Song
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
50
|
Simmons K, Chan J, Hussain S, Rose EL, Markham K, Byun TS, Panicker S, Parry GC, Storek M. Anti-C1s humanized monoclonal antibody SAR445088: A classical pathway complement inhibitor specific for the active form of C1s. Clin Immunol 2023; 251:109629. [PMID: 37149117 DOI: 10.1016/j.clim.2023.109629] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/28/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
The objective of this study was to characterize the complement-inhibiting activity of SAR445088, a novel monoclonal antibody specific for the active form of C1s. Wieslab® and hemolytic assays were used to demonstrate that SAR445088 is a potent, selective inhibitor of the classical pathway of complement. Specificity for the active form of C1s was confirmed in a ligand binding assay. Finally, TNT010 (a precursor to SAR445088) was assessed in vitro for its ability to inhibit complement activation associated with cold agglutinin disease (CAD). TNT010 inhibited C3b/iC3b deposition on human red blood cells incubated with CAD patient serum and decreased their subsequent phagocytosis by THP-1 cells. In summary, this study identifies SAR445088 as a potential therapeutic for the treatment of classical pathway-driven diseases and supports its continued assessment in clinical trials.
Collapse
Affiliation(s)
| | - Joanne Chan
- Sanofi, Cambridge, MA, USA; Former Sanofi Employee Affiliated with Sanofi at Time of Study
| | - Sami Hussain
- Sanofi, Cambridge, MA, USA; Former Sanofi Employee Affiliated with Sanofi at Time of Study
| | - Eileen L Rose
- Sanofi, Cambridge, MA, USA; Former Sanofi Employee Affiliated with Sanofi at Time of Study
| | - Kate Markham
- Sanofi, Cambridge, MA, USA; Former Sanofi Employee Affiliated with Sanofi at Time of Study
| | - Tony S Byun
- Sanofi, Cambridge, MA, USA; Former Sanofi Employee Affiliated with Sanofi at Time of Study
| | - Sandip Panicker
- Sanofi, Cambridge, MA, USA; Former Sanofi Employee Affiliated with Sanofi at Time of Study
| | - Graham C Parry
- Sanofi, Cambridge, MA, USA; Former Sanofi Employee Affiliated with Sanofi at Time of Study
| | | |
Collapse
|