1
|
Garcia-Erill G, Liu S, Le MD, Hurley MM, Nguyen HD, Nguyen DQ, Nguyen DH, Santander CG, Sánchez Barreiro F, Gomes Martins NF, Hanghøj K, Salleh FM, Ramos-Madrigal J, Wang X, Sinding MHS, Morales HE, Stæger FF, Wilkinson N, Meng G, Pečnerová P, Yang C, Rasmussen MS, Schubert M, Dunn RR, Moltke I, Zhang G, Chen L, Wang W, Cao TT, Nguyen HM, Siegismund HR, Albrechtsen A, Gilbert MTP, Heller R. Genomes of critically endangered saola are shaped by population structure and purging. Cell 2025:S0092-8674(25)00390-3. [PMID: 40328258 DOI: 10.1016/j.cell.2025.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/20/2024] [Accepted: 03/25/2025] [Indexed: 05/08/2025]
Abstract
The saola is one of the most elusive large mammals, standing at the brink of extinction. We constructed a reference genome and resequenced 26 saola individuals, confirming the saola as a basal member of the Bovini. Despite its small geographic range, we found that the saola is partitioned into two populations with high genetic differentiation (FST = 0.49). We estimate that these populations diverged and started declining 5,000-20,000 years ago, possibly due to climate changes and exacerbated by increasing human activities. The saola has long tracts without genomic diversity; however, most of these tracts are not shared by the two populations. Saolas carry a high genetic load, yet their gradual decline resulted in the purging of the most deleterious genetic variation. Finally, we find that combining the two populations, e.g., in an eventual captive breeding program, would mitigate the genetic load and increase the odds of species survival.
Collapse
Affiliation(s)
- Genís Garcia-Erill
- Department of Biology, University of Copenhagen, Copenhagen, Denmark; Bioinformatics Research Centre, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Shanlin Liu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Minh Duc Le
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai Road, Hanoi, Vietnam; Vietnam and Central Institute for Natural Resources and Environmental Studies, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
| | - Martha M Hurley
- Center for Biodiversity and Conservation, American Museum of Natural History, New York, NY, USA
| | - Hung Dinh Nguyen
- Forest Inventory and Planning Institute, Ministry of Agriculture and Rural Development, Hanoi, Vietnam
| | - Dzung Quoc Nguyen
- Forest Inventory and Planning Institute, Ministry of Agriculture and Rural Development, Hanoi, Vietnam
| | - Dzung Huy Nguyen
- Forest Inventory and Planning Institute, Ministry of Agriculture and Rural Development, Hanoi, Vietnam
| | - Cindy G Santander
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Kristian Hanghøj
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Faezah Mohd Salleh
- Globe Institute, University of Copenhagen, Copenhagen, Denmark; Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | | | - Xi Wang
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | - Guanliang Meng
- Zoological Research Museum Alexander Koenig, LIB, Bonn, Germany
| | | | | | | | - Mikkel Schubert
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Robert R Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Ida Moltke
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Guojie Zhang
- Department of Biology, University of Copenhagen, Copenhagen, Denmark; Center of Evolutionary & Organismal Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lei Chen
- Center for Ecological and Environmental Science, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wen Wang
- Center for Ecological and Environmental Science, Northwestern Polytechnical University, Xi'an 710072, China
| | - Trung Tien Cao
- Institute of Biology, Chemistry and Environment, Vinh University, Vinh, Vietnam
| | - Ha Manh Nguyen
- Center for Nature Conservation and Development, No. 05, 56/119 Tu Lien Street, Hanoi, Vietnam
| | - Hans R Siegismund
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - M Thomas P Gilbert
- Globe Institute, University of Copenhagen, Copenhagen, Denmark; University Museum, NTNU, Trondheim, Norway.
| | - Rasmus Heller
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Ewers C, Brandis D, da Silva N, Hayer S, Immel A, Moesges Z, Susat J, Torres-Oliva M, Krause-Kyora B. Museomics of an extinct European flat oyster population. Sci Rep 2025; 15:13906. [PMID: 40263463 PMCID: PMC12015263 DOI: 10.1038/s41598-025-96743-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/31/2025] [Indexed: 04/24/2025] Open
Abstract
Understanding the factors that predispose species and populations to decline and extinction is a major challenge of biodiversity research. In the present study, we investigated the historical population genomics of an extinct population of the European oyster (Ostrea edulis L.) from the Wadden Sea collected between 1868 and 1888, and compared it to French and English populations sampled at the same time. Our museomic results indicate that the now-extinct population was genetically isolated from the French and English populations and showed signs of local adaptation in the form of Fst outlier loci between the Wadden Sea and the other two populations. Thus the Wadden Sea oysters may have been predisposed for extinction because they were not naturally replenished from other populations. A comparison of population-wide genomic diversity may hint towards a sudden population contraction of the Wadden Sea population, possibly being the result of stronger - or earlier - population decline in this population than in the others. In summary, our historical population genomic exploration hints at some potential causes of population decline in flat oysters from the Wadden Sea, which might have led to their extinction.
Collapse
Affiliation(s)
- Christine Ewers
- Zoological Museum, Kiel University, Hegewischstraße 3, 24105, Kiel, Germany.
| | - Dirk Brandis
- Zoological Museum, Kiel University, Hegewischstraße 3, 24105, Kiel, Germany
| | - Nicolas da Silva
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany
| | - Sarah Hayer
- Zoological Museum, Kiel University, Hegewischstraße 3, 24105, Kiel, Germany
| | - Alex Immel
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany
| | - Zoe Moesges
- Zoological Museum, Kiel University, Hegewischstraße 3, 24105, Kiel, Germany
| | - Julian Susat
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany
| | - Montserrat Torres-Oliva
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany
| | - Ben Krause-Kyora
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany
| |
Collapse
|
3
|
Dussex N, Jansson I, van der Valk T, Packer C, Norman A, Kissui BM, E Mjingo E, Spong G. Constraints to gene flow increase the risk of genome erosion in the Ngorongoro Crater lion population. Commun Biol 2025; 8:640. [PMID: 40258987 PMCID: PMC12012037 DOI: 10.1038/s42003-025-07986-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/21/2025] [Indexed: 04/23/2025] Open
Abstract
Small, isolated populations are at greater risk of genome erosion than larger populations. Successful conservation efforts may lead to demographic recovery and mitigate the negative genetic effects of bottlenecks. However, constrained gene flow can hamper genomic recovery. Here, we use population genomic analyses and forward simulations to assess the genomic impacts of near extinction in the isolated Ngorongoro Crater lion (Panthera leo) sub-population. We show that 200 years of quasi-isolation and the recent epizootic in 1962 resulted in a two-fold increase in inbreeding and an excess in the frequency of highly deleterious mutations relative to other populations of the Greater Serengeti. There was little evidence for purging of genetic load. Furthermore, forward simulations indicate that higher gene flow from outside of the Crater is needed to prevent future genomic erosion in the population, with a minimum of one to five effective male migrants per decade required to reduce the risk of long-term inbreeding depression and reduction in genetic diversity. Our results suggest that in spite of a rapid post-epizootic demographic recovery since the 1970s, continued isolation of the population driven by habitat fragmentation and potentially male territoriality, exacerbate the effects of genome erosion.
Collapse
Affiliation(s)
- Nicolas Dussex
- Department of Population Analysis and Monitoring, Swedish Museum of Natural History, SE-106 91, Stockholm, Sweden.
| | - Ingela Jansson
- Molecular Ecology Group, Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Tom van der Valk
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, SE-106 91, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, SE-106 91, Stockholm, Sweden
| | - Craig Packer
- Department of Ecology, Evolution and Behavior, University of Minnesota, MN 55108, St. Paul, MN, USA
| | - Anita Norman
- Molecular Ecology Group, Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Bernard M Kissui
- School for Field Studies, Centre for Wildlife Management Studies, Karatu, Tanzania
| | - Ernest E Mjingo
- Tanzania Wildlife Research Institute (TAWIRI), Arusha, Tanzania
| | - Göran Spong
- Molecular Ecology Group, Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden.
- Luke, FI 00790, Helsinki, Finland.
| |
Collapse
|
4
|
Stuart OP, Cleave R, Pearce K, Magrath MJL, Mikheyev AS. Purging of Highly Deleterious Mutations Through an Extreme Bottleneck. Mol Biol Evol 2025; 42:msaf079. [PMID: 40178369 PMCID: PMC12008769 DOI: 10.1093/molbev/msaf079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 04/05/2025] Open
Abstract
Transitions to captivity often produce population bottlenecks. On the one hand, bottlenecks increase inbreeding and decrease effective population size, thus increasing extinction risk. On the other hand, elevated homozygosity associated with inbreeding may purge deleterious mutations. Previous empirical studies of purging in captive breeding programs have focused on phenotypic measurements. We test natural selection's ability to purge deleterious mutations following an extreme population bottleneck by analyzing patterns of genetic diversity in wild and captive-bred individuals of the Lord Howe Island stick insect, Dryococelus australis. Dryococelus australis has been bred in captivity for two decades, having passed through an extreme bottleneck-only two mating pairs with few new additions since then. The magnitude of the bottleneck together with high female fecundity but low offspring recruitment set up nearly ideal conditions for the purging of deleterious mutations. As expected, captive-bred individuals had a greater number of long runs of homozygosity compared with wild individuals, implying strong inbreeding in captivity which would facilitate purging in homozygous regions. Stop-codon mutations were preferentially depleted in captivity compared with other mutations in coding and noncoding regions. The more deleterious a mutation was predicted to be, the more likely it was found outside of runs of homozygosity, implying that inbreeding facilitates the expression and thus removal of deleterious mutations, even after such an extreme bottleneck and under the benign conditions of captivity. These data implicate inbreeding and recessive deleterious mutation load in fitness variation among captive and wild D. australis.
Collapse
Affiliation(s)
- Oliver P Stuart
- Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | | | - Kate Pearce
- Zoos Victoria, Parkville, VIC 3052, Australia
| | - Michael J L Magrath
- Zoos Victoria, Parkville, VIC 3052, Australia
- School of Biosciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Alexander S Mikheyev
- Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
5
|
Kwakye A, Reid K, Wund MA, Heins DC, Bell MA, Veeramah KR. Rare "Jackpot" Individuals Drive Rapid Adaptation in Threespine Stickleback. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.642177. [PMID: 40196559 PMCID: PMC11974937 DOI: 10.1101/2025.03.25.642177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Recombination has long been considered the primary mechanism to bring beneficial alleles together, which can increase the speed of adaptation from standing genetic variation. Recombination is fundamental to the transporter hypothesis proposed to explain precise parallel adaptation in Threespine Stickleback. We studied an instance of freshwater adaptation in the Threespine Stickleback system using whole genomic data from an evolutionary time series to observe the genomic dynamics underlying rapid parallel adaptation. Our experiment showed that rapid adaptation to a freshwater environment depended on a few individuals with large haploblocks of freshwater-adaptive alleles (jackpot carriers) present among the anadromous (i.e., sea-run) founders at low frequencies. Biological kinship analyses indicate that mating among jackpot carriers and between jackpot carriers and non-jackpot individuals led to a rapid increase in freshwater-adaptive alleles within the first few generations. This process allowed the population to overcome a substantial bottleneck likely caused by the low fitness of first-generation stickleback with a few freshwater-adaptive alleles born in the lake. Additionally, we found evidence that the genetic load that emerged from population growth after the bottleneck may have been reduced through an increase in homozygosity by inbreeding, ultimately purging deleterious alleles. Recombination likely played a limited role in this case of very rapid adaptation.
Collapse
Affiliation(s)
- Alexander Kwakye
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
- The Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Kerry Reid
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Matthew A. Wund
- Department of Biology, The College of New Jersey, Ewing, NJ 08628, USA
| | - David C. Heins
- Department of Ecology & Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA
| | - Michael A. Bell
- University of California Museum of Paleontology, University of California, Berkeley, CA 94720, USA
| | - Krishna R. Veeramah
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
6
|
Jiang J, Chen JF, Li XT, Wang L, Mao JF, Wang BS, Guo YL. Incorporating genetic load contributes to predicting Arabidopsis thaliana's response to climate change. Nat Commun 2025; 16:2752. [PMID: 40113777 PMCID: PMC11926394 DOI: 10.1038/s41467-025-58021-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/06/2025] [Indexed: 03/22/2025] Open
Abstract
Understanding how species respond to climate change can facilitate species conservation and crop breeding. Current prediction frameworks about population vulnerability focused on predicting range shifts or local adaptation but ignored genetic load, which is also crucial for adaptation. By analyzing 1115 globally distributed Arabidopsis thaliana natural accessions, we find that effective population size (Ne) is the major contributor of genetic load variation, both along genome and among populations, and can explain 74-94% genetic load variation in natural populations. Intriguingly, Ne affects genetic load by changing both effectiveness of purifying selection and GC biased gene conversion strength. In particular, by incorporating genetic load, genetic offset and species distribution models (SDM), we predict that, the populations at species' range edge are generally at higher risk. The populations at the eastern range perform poorer in all aspects, southern range have higher genetic offset and lower SDM suitability, while northern range have higher genetic load. Among the diverse natural populations, the Yangtze River basin population is the most vulnerable population under future climate change. Overall, here we deciphered the driving forces of genetic load in A. thaliana, and incorporated SDM, local adaptation and genetic load to predict the fate of populations under future climate change.
Collapse
Affiliation(s)
- Juan Jiang
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jia-Fu Chen
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xin-Tong Li
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Li Wang
- Agricultural Synthetic Biology Center, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jian-Feng Mao
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Bao-Sheng Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ya-Long Guo
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- China National Botanical Garden, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Liu X, Milesi E, Fontsere C, Owens HL, Heinsohn R, Gilbert MTP, Crates R, Nogués-Bravo D, Morales HE. Time-lagged genomic erosion and future environmental risks in a bird on the brink of extinction. Proc Biol Sci 2025; 292:20242480. [PMID: 40132633 PMCID: PMC11936686 DOI: 10.1098/rspb.2024.2480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/30/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
Global biodiversity is rapidly declining due to habitat degradation and genomic erosion, highlighting the urgent need to monitor endangered species and their genetic health. Temporal genomics and ecological modelling offer finer resolution than single-time-point measurements, providing a comprehensive view of species' recent and future trajectories. We investigated genomic erosion and environmental suitability in the critically endangered regent honeyeater (Anthochaera phrygia) by sequencing whole genomes of historical and modern specimens and building multi-temporal species distribution models (SDMs) across the last century. The species has declined from hundreds of thousands of individuals to fewer than 300 over the past 100 years. SDMs correctly predicted known patterns of local extinction in southeast Australia. Our demographic reconstructions revealed a gradual population decline from 2000 to 2500 years ago, sharply accelerating in the last 500 years due to climate variability and habitat loss. Despite this substantial demographic collapse, the regent honeyeater has lost only 9% of its genetic diversity, with no evidence of inbreeding or connectivity loss. Also, it exhibits higher diversity than many other threatened bird species. Forward-in-time genomic simulations indicate that this time lag between population decline and genetic diversity loss conceals the risk of ongoing genomic erosion into a future of rapidly degrading environmental suitability. Our work underscores the need for targeted conservation efforts and continuous genetic monitoring to prevent species extinction.
Collapse
Affiliation(s)
- Xufen Liu
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ester Milesi
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Hannah L. Owens
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Informatics Department, University of Florida, Gainesville, FL, USA
| | - Robert Heinsohn
- Fenner School of Environment and Society, Australian National University, Canberra, Australia
| | - M. Thomas P. Gilbert
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
- University Museum, Norwegian University of Science and Technology, Trondheim, Trøndelag, Norway
| | - Ross Crates
- Fenner School of Environment and Society, Australian National University, Canberra, Australia
| | | | - Hernán E. Morales
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
8
|
Vlček J, Espinoza‐Ulloa S, Cowles SA, Ortiz‐Catedral L, Coutu C, Chaves JA, Andrés J, Štefka J. Genomes of Galápagos Mockingbirds Reveal the Impact of Island Size and Past Demography on Inbreeding and Genetic Load in Contemporary Populations. Mol Ecol 2025; 34:e17665. [PMID: 39912126 PMCID: PMC11842953 DOI: 10.1111/mec.17665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/10/2025] [Accepted: 01/17/2025] [Indexed: 02/07/2025]
Abstract
Restricted range size brings about noteworthy genetic consequences that may affect the viability of a population and eventually its extinction. Particularly, the question if an increase in inbreeding can avert the accumulation of genetic load via purging is hotly debated in the conservation genetic field. Insular populations with limited range sizes represent an ideal setup for relating range size to these genetic factors. Leveraging a set of eight differently sized populations of Galápagos mockingbirds (Mimus), we investigated how island size shaped effective population size (Ne), inbreeding and genetic load. We assembled a genome of M. melanotis and genotyped three individuals per population by whole-genome resequencing. Demographic inference showed that the Ne of most populations remained high after the colonisation of the archipelago 1-2 Mya. Ne decline in M. parvulus happened only 10-20 Kya, whereas the critically endangered M. trifasciatus showed a longer history of reduced Ne. Despite these historical fluctuations, the current island size determines Ne in a linear fashion. In contrast, significant inbreeding coefficients, derived from runs of homozygosity, were identified only in the four smallest populations. The index of additive genetic load suggested purging in M. parvulus, where the smallest populations showed the lowest load. By contrast, M. trifasciatus carried the highest genetic load, possibly due to a recent rapid bottleneck. Overall, our study demonstrates a complex effect of demography on inbreeding and genetic load, providing implications in conservation genetics in general and in a conservation project of M. trifasciatus in particular.
Collapse
Affiliation(s)
- Jakub Vlček
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
- Institute of Parasitology, Biology Centre CASČeské BudějoviceCzech Republic
- Department of Botany, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Sebastian Espinoza‐Ulloa
- Department of BiologyUniversity of SaskatchewanSaskatoonCanada
- Facultad de MedicinaPontificia Universidad Católica del EcuadorQuitoEcuador
| | - Sarah A. Cowles
- Department of BiologyUniversity of MiamiCoral GablesFloridaUSA
| | - Luis Ortiz‐Catedral
- School of Natural Sciences, Ecology & Conservation LabMassey UniversityAucklandNew Zealand
| | - Cathy Coutu
- Agriculture & Agri‐Food CanadaSaskatoonCanada
| | - Jaime A. Chaves
- Laboratorio de Biología Evolutiva, Instituto Biósfera, Colegio de Ciencias Biologicas y AmbientalesUniversidad San Francisco de QuitoQuitoEcuador
- Department of BiologySan Francisco State UniversitySan FranciscoCaliforniaUSA
- Galapagos Science CenterUniversidad San Francisco de QuitoQuitoEcuador
| | - Jose Andrés
- Department of BiologyUniversity of SaskatchewanSaskatoonCanada
| | - Jan Štefka
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
- Institute of Parasitology, Biology Centre CASČeské BudějoviceCzech Republic
| |
Collapse
|
9
|
Dussex N. Comparative Population Genomics Reveal the Determinants of Genome Erosion in Two Sympatric Neotropical Falcons. Mol Ecol 2025; 34:e17686. [PMID: 39898418 PMCID: PMC11842942 DOI: 10.1111/mec.17686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/12/2024] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
Studying genetic diversity in endangered species has become an important component of conservation science over the past decades. Thanks to recent developments in sequencing technologies and bioinformatics, genetic parameters of conservation relevance such as neutral and functional genome-wide variation are now routinely estimated. Since inbreeding and deleterious mutations represent significant threats to small and declining populations, assessing the dynamics of these parameters has received particular attention in many recent conservation genomics studies. In this issue of Molecular Ecology, Martin et al. analyse the genomes of two Neotropical falcon species to assess the impact of their contrasting population histories on genome-wide diversity. They show that the Orange-breasted falcon which has had a low long-term population size and has experienced recent population bottlenecks is more inbred but has relatively fewer deleterious variations compared to its sister taxon, the Bat falcon, which is characterised by a larger long-term population size. This study not only provides insights into the role of past demography on the dynamics of deleterious variation in two species with contrasting population histories but also highlights the increasing importance of comparative approaches in population and conservation genomics.
Collapse
Affiliation(s)
- Nicolas Dussex
- Department of Population Analysis and MonitoringSwedish Museum of Natural HistoryStockholmSweden
| |
Collapse
|
10
|
Gargiulo R, Budde KB, Heuertz M. Mind the lag: understanding genetic extinction debt for conservation. Trends Ecol Evol 2025; 40:228-237. [PMID: 39572352 DOI: 10.1016/j.tree.2024.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 03/08/2025]
Abstract
The delay between disturbance events and genetic responses within populations is a common but surprisingly overlooked phenomenon in ecology and evolutionary and conservation genetics. If not accounted for when interpreting genetic data, this time lag problem can lead to erroneous conservation assessments. We (i) identify life-history traits related to longevity and reproductive strategies as the main determinants of time lags, (ii) evaluate potential confounding factors affecting genetic parameters during time lags, and (iii) propose approaches that allow controlling for time lags. Considering the current unprecedented rate of loss of genetic diversity and adaptive potential, we expect our novel interpretive and methodological framework for time lags to stimulate further research and discussion on the most appropriate approaches to analyse genetic diversity for conservation.
Collapse
Affiliation(s)
| | - Katharina B Budde
- Northwest German Forest Research Institute, Professor-Olekers-Strasse 6, 34346 Hann. Münden, Germany
| | - Myriam Heuertz
- Univ. Bordeaux, INRAE, Biogeco, 69 route d'Arcachon, 33610 Cestas, France
| |
Collapse
|
11
|
Bemmels JB, Starko S, Weigel BL, Hirabayashi K, Pinch A, Elphinstone C, Dethier MN, Rieseberg LH, Page JE, Neufeld CJ, Owens GL. Population genomics reveals strong impacts of genetic drift without purging and guides conservation of bull and giant kelp. Curr Biol 2025; 35:688-698.e8. [PMID: 39826555 DOI: 10.1016/j.cub.2024.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025]
Abstract
Kelp forests are declining in many parts of the northeast Pacific.1,2,3,4 In small populations, genetic drift can reduce adaptive variation and increase fixation of recessive deleterious alleles,5,6,7 but natural selection may purge harmful variants.8,9,10 To understand evolutionary dynamics and inform restoration strategies, we investigated genetic structure and the outcomes of genetic drift and purging by sequencing the genomes of 429 bull kelp (Nereocystis luetkeana) and 211 giant kelp (Macrocystis sp.) from the coastlines of British Columbia and Washington. We identified 6 to 7 geographically and genetically distinct clusters in each species. Low effective population size was associated with low genetic diversity and high inbreeding coefficients (including increased selfing rates), with extreme variation in these genetic health indices among bull kelp populations but more moderate variation in giant kelp. We found no evidence that natural selection is purging putative recessive deleterious alleles in either species. Instead, genetic drift has fixed many such alleles in small populations of bull kelp, leading us to predict (1) reduced within-population inbreeding depression in small populations, which may be associated with an observed shift toward increased selfing rate, and (2) hybrid vigor in crosses between small populations. Our genomic findings imply several strategies for optimal sourcing and crossing of populations for restoration and aquaculture, but these require experimental validation. Overall, our work reveals strong genetic structure and suggests that conservation strategies should consider the multiple health risks faced by small populations whose evolutionary dynamics are dominated by genetic drift.
Collapse
Affiliation(s)
- Jordan B Bemmels
- University of Victoria, Department of Biology, Finnerty Road, Victoria, BC V8P 5C2, Canada; The Kelp Rescue Initiative, Bamfield Marine Sciences Centre, Pachena Road, Bamfield, BC V0R 1B0, Canada.
| | - Samuel Starko
- University of Victoria, Department of Biology, Finnerty Road, Victoria, BC V8P 5C2, Canada; The Kelp Rescue Initiative, Bamfield Marine Sciences Centre, Pachena Road, Bamfield, BC V0R 1B0, Canada; University of Western Australia, School of Biological Sciences, Stirling Highway, Crawley, WA 6009, Australia
| | - Brooke L Weigel
- University of Washington, Friday Harbor Laboratories, University Road, Friday Harbor, WA 98250, USA; Western Washington University, College of the Environment, High Street, Bellingham, WA 98225, USA
| | - Kaede Hirabayashi
- University of Victoria, Department of Biology, Finnerty Road, Victoria, BC V8P 5C2, Canada; University of British Columbia, Michael Smith Laboratories, East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Alex Pinch
- University of Victoria, Department of Biology, Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Cassandra Elphinstone
- University of British Columbia, Department of Botany, University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - Megan N Dethier
- University of Washington, Friday Harbor Laboratories, University Road, Friday Harbor, WA 98250, USA
| | - Loren H Rieseberg
- The Kelp Rescue Initiative, Bamfield Marine Sciences Centre, Pachena Road, Bamfield, BC V0R 1B0, Canada; University of British Columbia, Department of Botany, University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - Jonathan E Page
- University of British Columbia, Department of Botany, University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - Christopher J Neufeld
- The Kelp Rescue Initiative, Bamfield Marine Sciences Centre, Pachena Road, Bamfield, BC V0R 1B0, Canada; University of British Columbia Okanagan, Department of Biology, University Way, Kelowna, BC V1V 1V7, Canada
| | - Gregory L Owens
- University of Victoria, Department of Biology, Finnerty Road, Victoria, BC V8P 5C2, Canada; The Kelp Rescue Initiative, Bamfield Marine Sciences Centre, Pachena Road, Bamfield, BC V0R 1B0, Canada.
| |
Collapse
|
12
|
MacDonald ZG, Dupuis JR, Glasier JRN, Sissons R, Moehrenschlager A, Shaffer HB, Sperling FAH. Whole-Genome Evaluation of Genetic Rescue: The Case of a Curiously Isolated and Endangered Butterfly. Mol Ecol 2025; 34:e17657. [PMID: 39898688 PMCID: PMC11789553 DOI: 10.1111/mec.17657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/08/2024] [Accepted: 01/02/2025] [Indexed: 02/04/2025]
Abstract
Genetic rescue, or the translocation of individuals among populations to augment gene flow, can help ameliorate inbreeding depression and loss of adaptive potential in small and isolated populations. Genetic rescue is currently under consideration for an endangered butterfly in Canada, the Half-moon Hairstreak (Satyrium semiluna). A small, unique population persists in Waterton Lakes National Park, Alberta, isolated from other populations by more than 400 km. However, whether genetic rescue would actually be helpful has not been evaluated. Here, we generate the first chromosome-level genome assembly and whole-genome resequence data for the species. We find that the Alberta population maintains extremely low genetic diversity and is genetically very divergent from the nearest populations in British Columbia and Montana. Runs of homozygosity suggest this is due to a long history of inbreeding, and coalescent analyses show that the population has been small and isolated, yet stable, for up to 40k years. When a population like this maintains its viability despite inbreeding and low genetic diversity, it has likely undergone purging of deleterious recessive alleles and could be threatened by the reintroduction of such alleles via genetic rescue. Ecological niche modelling indicates that the Alberta population also exhibits environmental associations that are atypical of the species. Together, these evolutionary and ecological divergences suggest that population crosses may result in outbreeding depression. We therefore infer that genetic rescue has a relatively unique potential to be harmful rather than helpful for this population at present. However, because of its reduced adaptive potential, the Alberta population may still benefit from future genetic rescue as climate and habitat conditions change. Proactive experimental population crosses should therefore be completed to assess reproductive compatibility and progeny fitness.
Collapse
Affiliation(s)
- Zachary G. MacDonald
- UCLA La Kretz Center for California Conservation Science, Institute of the Environment and SustainabilityUniversity of California Los AngelesLos AngelesCaliforniaUSA
- Department of Ecology and Evolutionary BiologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | - Julian R. Dupuis
- Department of EntomologyUniversity of KentuckyLexingtonKentuckyUSA
| | | | - Robert Sissons
- Resource Conservation, Waterton Lakes National ParkWaterton ParkAlbertaCanada
| | - Axel Moehrenschlager
- Wilder Institute/Calgary ZooCalgaryAlbertaCanada
- IUCN SSC Conservation Translocation Specialist GroupCalgaryAlbertaCanada
- PantheraNew YorkNew YorkUSA
| | - H. Bradley Shaffer
- UCLA La Kretz Center for California Conservation Science, Institute of the Environment and SustainabilityUniversity of California Los AngelesLos AngelesCaliforniaUSA
- Department of Ecology and Evolutionary BiologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | | |
Collapse
|
13
|
Thoen RD, Southgate A, Kiefer G, Shaw RG, Wagenius S. The conservation value of small population remnants: Variability in inbreeding depression and heterosis of a perennial herb, the narrow-leaved purple coneflower (Echinacea angustifolia). J Hered 2025; 116:24-33. [PMID: 39373715 DOI: 10.1093/jhered/esae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/05/2024] [Indexed: 10/08/2024] Open
Abstract
Anthropogenically fragmented populations may have reduced fitness due to loss of genetic diversity and inbreeding. The extent of such fitness losses due to fragmentation and potential gains from conservation actions are infrequently assessed together empirically. Controlled crosses within and among populations can identify whether populations are at risk of inbreeding depression and whether inter-population crossing alleviates fitness loss. Because fitness depends on the environment and life stage, studies quantifying cumulative fitness over a large portion of the lifecycle in conditions that mimic natural environments are most informative. To assess the fitness consequences of habitat fragmentation, we leveraged controlled within-family, within-population, and between-population crosses to quantify inbreeding depression and heterosis in seven populations of Echinacea angustifolia within a 6,400-ha area. We then assessed cumulative offspring fitness after 14 yr of growth in a natural experimental plot (N = 1,136). The mean fitness of progeny from within-population crosses varied considerably, indicating genetic differentiation among source populations, even though these sites are all less than 9 km apart. The fitness consequences of within-family and between-population crosses varied in magnitude and direction. Only one of the seven populations showed inbreeding depression of high effect, while four populations showed substantial heterosis. Outbreeding depression was rare and slight. Our findings indicate that local crossings between isolated populations yield unpredictable fitness consequences ranging from slight decreases to substantial increases. Interestingly, inbreeding depression and heterosis did not relate closely to population size, suggesting that all fragmented populations could contribute to conservation goals as either pollen recipients or donors.
Collapse
Affiliation(s)
- Riley D Thoen
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | - Andrea Southgate
- Department of Science, Technology, Engineering, and Mathematics, Madison Area Technical College, Madison, WI, United States
| | - Gretel Kiefer
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, IL, United States
| | - Ruth G Shaw
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, United States
| | - Stuart Wagenius
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, IL, United States
| |
Collapse
|
14
|
Battilani D, Gargiulo R, Caniglia R, Fabbri E, Madrigal JR, Fontsere C, Ciucani MM, Gopalakrishnan S, Girardi M, Fracasso I, Mastroiaco M, Ciucci P, Vernesi C. Beyond population size: Whole-genome data reveal bottleneck legacies in the peninsular Italian wolf. J Hered 2025; 116:10-23. [PMID: 39189963 DOI: 10.1093/jhered/esae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024] Open
Abstract
Preserving genetic diversity and adaptive potential while avoiding inbreeding depression is crucial for the long-term conservation of natural populations. Despite demographic increases, traces of past bottleneck events at the genomic level should be carefully considered for population management. From this perspective, the peninsular Italian wolf is a paradigmatic case. After being on the brink of extinction in the late 1960s, peninsular Italian wolves rebounded and recolonized most of the peninsula aided by conservation measures, including habitat and legal protection. Notwithstanding their demographic recovery, a comprehensive understanding of the genomic consequences of the historical bottleneck in Italian wolves is still lacking. To fill this gap, we sequenced whole genomes of 13 individuals sampled in the core historical range of the species in Central Italy to conduct population genomic analyses, including a comparison with wolves from two highly-inbred wolf populations (i.e. Scandinavia and Isle Royale). We found that peninsular Italian wolves, despite their recent recovery, still exhibit relatively low genetic diversity, a small effective population size, signatures of inbreeding, and a non-negligible genetic load. Our findings indicate that the peninsular Italian wolf population is still susceptible to bottleneck legacies, which could lead to local inbreeding depression in case of population reduction or fragmentations. This study emphasizes the importance of considering key genetic parameters to design appropriate long-term conservation management plans.
Collapse
Affiliation(s)
- Daniele Battilani
- Department of Biology and Biotechnologies "Charles Darwin", Università di Roma La Sapienza, Roma, Italy
- Area per la Genetica della Conservazione, ISPRA, Ozzano dell'Emilia Bologna, Italy
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Roberta Gargiulo
- Ecosystem Stewardship, Royal Botanical Gardens, Kew, United Kingdom
| | - Romolo Caniglia
- Area per la Genetica della Conservazione, ISPRA, Ozzano dell'Emilia Bologna, Italy
| | - Elena Fabbri
- Area per la Genetica della Conservazione, ISPRA, Ozzano dell'Emilia Bologna, Italy
| | - Jazmín Ramos- Madrigal
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Claudia Fontsere
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Marta Maria Ciucani
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Shyam Gopalakrishnan
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Matteo Girardi
- Research and Innovation Centre-Fondazione Edmund Mach, S. Michele all'Adige, Italy
| | - Ilaria Fracasso
- Research and Innovation Centre-Fondazione Edmund Mach, S. Michele all'Adige, Italy
| | - Matteo Mastroiaco
- Department of Biology and Biotechnologies "Charles Darwin", Università di Roma La Sapienza, Roma, Italy
| | - Paolo Ciucci
- Department of Biology and Biotechnologies "Charles Darwin", Università di Roma La Sapienza, Roma, Italy
| | - Cristiano Vernesi
- Research and Innovation Centre-Fondazione Edmund Mach, S. Michele all'Adige, Italy
| |
Collapse
|
15
|
Kardos M, Keller LF, Funk WC. What Can Genome Sequence Data Reveal About Population Viability? Mol Ecol 2024:e17608. [PMID: 39681836 DOI: 10.1111/mec.17608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/08/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
Biologists have long sought to understand the impacts of deleterious genetic variation on fitness and population viability. However, our understanding of these effects in the wild is incomplete, in part due to the rarity of sufficient genetic and demographic data needed to measure their impact. The genomics revolution is promising a potential solution by predicting the effects of deleterious genetic variants (genetic load) bioinformatically from genome sequences alone bypassing the need for costly demographic data. After a historical perspective on the theoretical and empirical basis of our understanding of the dynamics and fitness effects of deleterious genetic variation, we evaluate the potential for these new genomic measures of genetic load to predict population viability. We argue that current genomic analyses alone cannot reliably predict the effects of deleterious genetic variation on population growth, because these depend on demographic, ecological and genetic parameters that need more than just genome sequence data to be measured. Thus, while purely genomic analyses of genetic load promise to improve our understanding of the composition of the genetic load, they are currently of little use for evaluating population viability. Demographic data and ecological context remain crucial to our understanding of the consequences of deleterious genetic variation for population fitness. However, when combined with such demographic and ecological data, genomic information can offer important insights into genetic variation and inbreeding that are crucial for conservation decision making.
Collapse
Affiliation(s)
- Marty Kardos
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
| | - Lukas F Keller
- Department of Evolutionary Biology and Environmental Studies & Natural History Museum, University of Zurich, Zurich, Switzerland
| | - W Chris Funk
- Department of Biology, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
16
|
Hoffman JI, Vendrami DLJ, Hench K, Chen RS, Stoffel MA, Kardos M, Amos W, Kalinowski J, Rickert D, Köhrer K, Wachtmeister T, Goebel ME, Bonin CA, Gulland FMD, Dasmahapatra KK. Genomic and fitness consequences of a near-extinction event in the northern elephant seal. Nat Ecol Evol 2024; 8:2309-2324. [PMID: 39333394 PMCID: PMC11618080 DOI: 10.1038/s41559-024-02533-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/07/2024] [Indexed: 09/29/2024]
Abstract
Understanding the genetic and fitness consequences of anthropogenic bottlenecks is crucial for biodiversity conservation. However, studies of bottlenecked populations combining genomic approaches with fitness data are rare. Theory predicts that severe bottlenecks deplete genetic diversity, exacerbate inbreeding depression and decrease population viability. However, actual outcomes are complex and depend on how a species' unique demography affects its genetic load. We used population genetic and veterinary pathology data, demographic modelling, whole-genome resequencing and forward genetic simulations to investigate the genomic and fitness consequences of a near-extinction event in the northern elephant seal. We found no evidence of inbreeding depression within the contemporary population for key fitness components, including body mass, blubber thickness and susceptibility to parasites and disease. However, we detected a genomic signature of a recent extreme bottleneck (effective population size = 6; 95% confidence interval = 5.0-7.5) that will have purged much of the genetic load, potentially leading to the lack of observed inbreeding depression in our study. Our results further suggest that deleterious genetic variation strongly impacted the post-bottleneck population dynamics of the northern elephant seal. Our study provides comprehensive empirical insights into the intricate dynamics underlying species-specific responses to anthropogenic bottlenecks.
Collapse
Affiliation(s)
- Joseph I Hoffman
- Department of Evolutionary Population Genetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
- Center for Biotechnology (CeBiTec), Faculty of Biology, Bielefeld University, Bielefeld, Germany.
- Department of Animal Behaviour, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
- British Antarctic Survey, Cambridge, UK.
- Joint Institute for Individualisation in a Changing Environment (JICE), Bielefeld University and University of Münster, Bielefeld, Germany.
| | - David L J Vendrami
- Department of Evolutionary Population Genetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Department of Animal Behaviour, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), Bielefeld University and University of Münster, Bielefeld, Germany
| | - Kosmas Hench
- Department of Evolutionary Population Genetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Department of Animal Behaviour, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Rebecca S Chen
- Department of Evolutionary Population Genetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Department of Animal Behaviour, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Martin A Stoffel
- Department of Evolutionary Population Genetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Alan Turing Institute, British Library, London, UK
| | - Marty Kardos
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - William Amos
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Jörn Kalinowski
- Department of Microbial Genomics and Biotechnology, CeBiTec, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Daniel Rickert
- Genomics and Transcriptomics Laboratory, Biologisch-Medizinisches Forschungszentrum, and West German Genome Center, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Karl Köhrer
- Genomics and Transcriptomics Laboratory, Biologisch-Medizinisches Forschungszentrum, and West German Genome Center, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Thorsten Wachtmeister
- Genomics and Transcriptomics Laboratory, Biologisch-Medizinisches Forschungszentrum, and West German Genome Center, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Mike E Goebel
- Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Carolina A Bonin
- Department of Marine and Environmental Sciences, Hampton University, Hampton, VA, USA
| | - Frances M D Gulland
- Karen C. Drayer Wildlife Health Center, University of California, Davis, Davis, CA, USA
| | | |
Collapse
|
17
|
Orton RW, Hamilton PK, Frasier TR. Genomic Evidence for the Purging of Deleterious Genetic Variation in the Endangered North Atlantic Right Whale. Evol Appl 2024; 17:e70055. [PMID: 39717435 PMCID: PMC11665784 DOI: 10.1111/eva.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/24/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
The reduced genetic diversity and frequent inbreeding associated with small population size may underpin the accumulation and expression of deleterious mutations (mutation load) in some declining populations. However, demographic perturbations and inbreeding coupled with purifying selection can also purge declining populations of deleterious mutations, leading to intriguing recoveries. To better understand the links between deleterious genetic variation and population status, we assess patterns of genetic diversity, inbreeding, and mutation load across the genomes of three species of Balaenidae whale with different demographic histories and recoveries following the end of commercial whaling in the 1980s. Unlike bowhead (BH) and Southern right whales (SRW), which show signs of recent recovery, reproductive rates of the endangered North Atlantic right whale (NARW) remain lower than expected. We show that the NARW is currently marked by low genetic diversity, historical inbreeding, and a high mutation load. Still, we reveal evidence that genetic purging has reduced the frequency of highly deleterious alleles in NARW, which could increase chances of future population recovery. We also identify a suite of mutations putatively linked to congenital defects that occur at high frequencies in nulliparous NARW females but are rare in NARW with high reproductive success. These same mutations are nearly absent in BH and SRW in this study, suggesting that the purging of key variants may shape the probability of population recovery. As anthropogenic disturbances continue to reduce the sizes of many populations in nature, resolving the links between population dynamics and mutation load could become increasingly important.
Collapse
Affiliation(s)
- Richard W. Orton
- Department of BiologySaint Mary's UniversityHalifaxNova ScotiaCanada
| | - Philip K. Hamilton
- Anderson Cabot Center for Ocean LifeNew England AquariumBostonMassachusettsUSA
| | | |
Collapse
|
18
|
Fang B, Edwards SV. Fitness consequences of structural variation inferred from a House Finch pangenome. Proc Natl Acad Sci U S A 2024; 121:e2409943121. [PMID: 39531493 PMCID: PMC11588099 DOI: 10.1073/pnas.2409943121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Genomic structural variants (SVs) play a crucial role in adaptive evolution, yet their average fitness effects and characterization with pangenome tools are understudied in wild animal populations. We constructed a pangenome for House Finches (Haemorhous mexicanus), a model for studies of host-pathogen coevolution, using long-read sequence data on 16 individuals (32 de novo-assembled haplotypes) and one outgroup. We identified 887,118 SVs larger than 50 base pairs, mostly (60%) involving repetitive elements, with reduced SV diversity in the eastern US as a result of its introduction by humans. The distribution of fitness effects of genome-wide SVs was estimated using maximum likelihood approaches and revealed that SVs in both coding and noncoding regions were on average more deleterious than smaller indels or single nucleotide polymorphisms. The reference-free pangenome facilitated identification of a > 10-My-old, 11-megabase-long pericentric inversion on chromosome 1. We found that the genotype frequencies of the inversion, estimated from 135 birds widely sampled temporally and geographically, increased steadily over the 25 y since House Finches were first exposed to the bacterial pathogen Mycoplasma gallisepticum and showed signatures of balancing selection, capturing genes related to immunity and telomerase activity. We also observed shorter telomeres in populations with a greater number of years exposure to Mycoplasma. Our study illustrates the utility of long-read sequencing and pangenome methods for understanding wild animal populations, estimating fitness effects of genome-wide SVs, and advancing our understanding of adaptive evolution through structural variation.
Collapse
Affiliation(s)
- Bohao Fang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA02138
- Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
| | - Scott V. Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA02138
- Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
| |
Collapse
|
19
|
Yi H, Wang J, Dong S, Kang M. Genomic signatures of inbreeding and mutation load in tree ferns. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1522-1535. [PMID: 39387366 DOI: 10.1111/tpj.17064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
Ferns (Pteridophyta), as the second largest group of vascular plants, play important roles in ecosystem functioning. Homosporous ferns exhibit a remarkable range of mating systems, from extreme inbreeding to obligate outcrossing, which may have significant evolutionary and ecological implications. Despite their significance, the impact of genome-wide inbreeding on genetic diversity and mutation load within the fern lineage remain largely unexplored. In this study, we utilized whole-genome sequencing to investigate the genomic signatures of inbreeding and genetic load in three Alsophila tree fern species. Our analysis revealed extremely high inbreeding in A. spinulosa, in contrast to the predominantly outcrossing observed in A. costularis and A. latebrosa. This difference likely reflects divergent mating systems and demographic histories. Consistent with its extreme inbreeding propensity, A. spinulosa exhibits reduced genetic diversity and a pronounced decline in effective population size. Comparison of genetic load revealed an overall reduction in deleterious mutations in the highly inbred A. spinulosa, highlighting that long-term inbreeding may have contributed to the purging of strongly deleterious mutations, thereby prolonging the survival of A. spinulosa. Despite this, however, A. spinulosa carries a substantive realized genetic load that may potentially instigate future fitness decline. Our findings illuminate the complex evolutionary interplay between inbreeding and mutation load in homosporous ferns, yielding insights with important implications for the conservation and management of these species.
Collapse
Affiliation(s)
- Huiqin Yi
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Jing Wang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Shiyong Dong
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Ming Kang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| |
Collapse
|
20
|
Garcia-Erill G, Wang X, Rasmussen MS, Quinn L, Khan A, Bertola LD, Santander CG, Balboa RF, Ogutu JO, Pečnerová P, Hanghøj K, Kuja J, Nursyifa C, Masembe C, Muwanika V, Bibi F, Moltke I, Siegismund HR, Albrechtsen A, Heller R. Extensive Population Structure Highlights an Apparent Paradox of Stasis in the Impala (Aepyceros melampus). Mol Ecol 2024; 33:e17539. [PMID: 39373069 DOI: 10.1111/mec.17539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/30/2024] [Accepted: 09/18/2024] [Indexed: 10/08/2024]
Abstract
Impalas are unusual among bovids because they have remained morphologically similar over millions of years-a phenomenon referred to as evolutionary stasis. Here, we sequenced 119 whole genomes from the two extant subspecies of impala, the common (Aepyceros melampus melampus) and black-faced (A. m. petersi) impala. We investigated the evolutionary forces working within the species to explore how they might be associated with its evolutionary stasis as a taxon. Despite being one of the most abundant bovid species, we found low genetic diversity overall, and a phylogeographic signal of spatial expansion from southern to eastern Africa. Contrary to expectations under a scenario of evolutionary stasis, we found pronounced genetic structure between and within the two subspecies with indications of ancient, but not recent, gene flow. Black-faced impala and eastern African common impala populations had more runs of homozygosity than common impala in southern Africa, and, using a proxy for genetic load, we found that natural selection is working less efficiently in these populations compared to the southern African populations. Together with the fossil record, our results are consistent with a fixed-optimum model of evolutionary stasis, in which impalas in the southern African core of the range are able to stay near their evolutionary fitness optimum as a generalist ecotone species, whereas eastern African impalas may struggle to do so due to the effects of genetic drift and reduced adaptation to the local habitat, leading to recurrent local extinction in eastern Africa and re-colonisation from the South.
Collapse
Affiliation(s)
- Genís Garcia-Erill
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Department of Molecular Biology and Genetics, Bioinformatics Research Center, Aarhus University, Aarhus, Denmark
| | - Xi Wang
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Liam Quinn
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Anubhab Khan
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Laura D Bertola
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Cindy G Santander
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Renzo F Balboa
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Joseph O Ogutu
- Biostatistics Unit, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | | | - Kristian Hanghøj
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Josiah Kuja
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Casia Nursyifa
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Charles Masembe
- College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Vincent Muwanika
- College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| | - Faysal Bibi
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Ida Moltke
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Hans R Siegismund
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Rasmus Heller
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Martin EJ, Speak SA, Urban L, Morales HE, van Oosterhout C. Sonification of Genomic Data to Represent Genetic Load in Zoo Populations. Zoo Biol 2024; 43:513-519. [PMID: 39228291 PMCID: PMC11624621 DOI: 10.1002/zoo.21859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/13/2024] [Accepted: 08/14/2024] [Indexed: 09/05/2024]
Abstract
Maintaining a diverse gene pool is important in the captive management of zoo populations, especially in endangered species such as the pink pigeon (Nesoenas mayeri). However, due to the limited number of breeding individuals and relaxed natural selection, the loss of variation and accumulation of harmful variants is inevitable. Inbreeding results in a loss of fitness (i.e., inbreeding depression), principally because related parents are more likely to transmit a copy of the same recessive deleterious genetic variant to their offspring. Genomics-informed captive breeding can manage harmful variants by artificial selection, reducing the genetic load by avoiding the inheritance of two copies of the same harmful variant. To explain this concept in an interactive way to zoo visitors, we developed a sonification game to represent the fitness impacts of harmful variants by detuning notes in a familiar musical melody (i.e., Beethoven's Für Elise). Conceptually, zoo visitors play a game aiming to create the most optimal pink pigeon offspring in terms of inbreeding depression. They select virtual crosses between pink pigeon individuals and listen for the detuning of the melody, which represents the realised load of the resultant offspring. Here we present the sonification algorithm and the results of an online survey to see whether participants could identify the most and least optimal offspring from three potential pink pigeon offspring. Of our 98 respondents, 85 (86.7%) correctly identified the least optimal offspring, 73 (74.5%) correctly identified the most optimal, and 62 (63.3%) identified both the most and least optimal offspring using only the sonification.
Collapse
Affiliation(s)
- Edward J. Martin
- Institute of Ecology and Evolution, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Samuel A. Speak
- School of Environmental SciencesUniversity of East Anglia, Norwich Research ParkNorwichUK
- Natural History MuseumLondonUK
- North of England Zoological SocietyChester ZooChesterUK
| | - Lara Urban
- Helmholtz AIHelmholtz Zentrum MuenchenNeuherbergGermany
- Helmholtz Pioneer CampusHelmholtz Zentrum MuenchenMunichGermany
- School of Life SciencesTechnical University of MunichFreisingGermany
| | - Hernán E. Morales
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Cock van Oosterhout
- School of Environmental SciencesUniversity of East Anglia, Norwich Research ParkNorwichUK
| |
Collapse
|
22
|
Zhu X, Wang J, Chen H, Kang M. Lineage Differentiation and Genomic Vulnerability in a Relict Tree From Subtropical Forests. Evol Appl 2024; 17:e70033. [PMID: 39494192 PMCID: PMC11530410 DOI: 10.1111/eva.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024] Open
Abstract
The subtropical forests of East Asia are renowned for their high plant diversity, particularly the abundance of ancient relict species. However, both the evolutionary history of these relict species and their capacity for resilience in the face of impending climatic changes remain unclear. Using whole-genome resequencing data, we investigated the lineage differentiation and demographic history of the relict and endangered tree, Bretschneidera sinensis (Akaniaceae). We employed a combination of population genomic and landscape genomic approaches to evaluate variation in mutation load and genomic offset, aiming to predict how different populations may respond to climate change. Our analysis revealed a profound genomic divergence between the East and West lineages, likely as the result of recurrent bottlenecks due to climatic fluctuations during the glacial period. Furthermore, we identified several genes potentially linked to growth characteristics and hypoxia response that had been subjected to positive selection during the lineage differentiation. Our assessment of genomic vulnerability uncovered a significantly higher mutation load and genomic offset in the edge populations of B. sinensis compared to their core counterparts. This implies that the edge populations are likely to experience the most significant impact from the predicted climate conditions. Overall, our research sheds light on the historical lineage differentiation and contemporary genomic vulnerability of B. sinensis. Broadening our understanding of the speciation history and future resilience of relict and endangered species such as B. sinensis, is crucial in developing effective conservation strategies in anticipation of future climatic changes.
Collapse
Affiliation(s)
- Xian‐Liang Zhu
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern ChinaGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jing Wang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern ChinaGuangzhouChina
- South China National Botanical GardenGuangzhouChina
| | - Hong‐Feng Chen
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern ChinaGuangzhouChina
- South China National Botanical GardenGuangzhouChina
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical GardenChinese Academy of SciencesGuangzhouChina
| | - Ming Kang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern ChinaGuangzhouChina
- South China National Botanical GardenGuangzhouChina
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical GardenChinese Academy of SciencesGuangzhouChina
| |
Collapse
|
23
|
Feng J, Dan X, Cui Y, Gong Y, Peng M, Sang Y, Ingvarsson PK, Wang J. Integrating evolutionary genomics of forest trees to inform future tree breeding amid rapid climate change. PLANT COMMUNICATIONS 2024; 5:101044. [PMID: 39095989 PMCID: PMC11573912 DOI: 10.1016/j.xplc.2024.101044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/03/2024] [Accepted: 07/31/2024] [Indexed: 08/04/2024]
Abstract
Global climate change is leading to rapid and drastic shifts in environmental conditions, posing threats to biodiversity and nearly all life forms worldwide. Forest trees serve as foundational components of terrestrial ecosystems and play a crucial and leading role in combating and mitigating the adverse effects of extreme climate events, despite their own vulnerability to these threats. Therefore, understanding and monitoring how natural forests respond to rapid climate change is a key priority for biodiversity conservation. Recent progress in evolutionary genomics, driven primarily by cutting-edge multi-omics technologies, offers powerful new tools to address several key issues. These include precise delineation of species and evolutionary units, inference of past evolutionary histories and demographic fluctuations, identification of environmentally adaptive variants, and measurement of genetic load levels. As the urgency to deal with more extreme environmental stresses grows, understanding the genomics of evolutionary history, local adaptation, future responses to climate change, and conservation and restoration of natural forest trees will be critical for research at the nexus of global change, population genomics, and conservation biology. In this review, we explore the application of evolutionary genomics to assess the effects of global climate change using multi-omics approaches and discuss the outlook for breeding of climate-adapted trees.
Collapse
Affiliation(s)
- Jiajun Feng
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xuming Dan
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yangkai Cui
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yi Gong
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Minyue Peng
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yupeng Sang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Pär K Ingvarsson
- Department of Plant Biology, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jing Wang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
24
|
Ho TAT, Downing PA, Schou MF, Bechsgaard J, Thomsen PF, Jorgensen TH, Bilde T. The relationship between neutral genetic diversity and performance in wild arthropod populations. J Evol Biol 2024; 37:1170-1180. [PMID: 39119920 DOI: 10.1093/jeb/voae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/14/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Larger effective populations (Ne) are characterized by higher genetic diversity, which is expected to predict population performance (average individual performance that influences fitness). Empirical studies of the relationship between neutral diversity and performance mostly represent species with small Ne, while there is limited data from the species-rich and ecologically important arthropods that are assumed to have large Ne but are threatened by massive declines. We performed a systematic literature search and used meta-analytical models to test the prediction of a positive association between neutral genetic diversity and performance in wild arthropods. From 14 relevant studies of 286 populations, we detected a weak (r = 0.15) but nonsignificant positive association both in the full data set (121 effect sizes) and a reduced data set accounting for dependency (14 effect sizes). Theory predicts that traits closely associated with fitness show a relatively stronger correlation with neutral diversity; this relationship was upheld for longevity and marginally for reproduction. Our analyses point to major knowledge gaps in our understanding of relationships between neutral diversity and performance. Future studies using genome-wide data sets across populations could guide more powerful designs to evaluate relationships between adaptive, deleterious and neutral diversity and performance.
Collapse
Affiliation(s)
- Tammy Ai Tian Ho
- Centre for Ecological Genetics, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Philip A Downing
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Mads F Schou
- Centre for Ecological Genetics, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Jesper Bechsgaard
- Centre for Ecological Genetics, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Philip Francis Thomsen
- Centre for Ecological Genetics, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Tove H Jorgensen
- Centre for Ecological Genetics, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Trine Bilde
- Centre for Ecological Genetics, Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
25
|
Zhang L, Leonard N, Passaro R, Luan MS, Van Tuyen P, Han LTN, Cam NH, Vogelnest L, Lynch M, Fine AE, Nga NTT, Van Long N, Rawson BM, Behie A, Van Nguyen T, Le MD, Nadler T, Walter L, Marques-Bonet T, Hofreiter M, Li M, Liu Z, Roos C. Genomic adaptation to small population size and saltwater consumption in the critically endangered Cat Ba langur. Nat Commun 2024; 15:8531. [PMID: 39358348 PMCID: PMC11447269 DOI: 10.1038/s41467-024-52811-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
Many mammal species have declining populations, but the consequences of small population size on the genomic makeup of species remain largely unknown. We investigated the evolutionary history, genetic load and adaptive potential of the Cat Ba langur (Trachypithecus poliocephalus), a primate species endemic to Vietnam's famous Ha Long Bay and with less than 100 living individuals one of the most threatened primates in the world. Using high-coverage whole genome data of four wild individuals, we revealed the Cat Ba langur as sister species to its conspecifics of the northern limestone langur clade and found no evidence for extensive secondary gene flow after their initial separation. Compared to other primates and mammals, the Cat Ba langur showed low levels of genetic diversity, long runs of homozygosity, high levels of inbreeding and an excess of deleterious mutations in homozygous state. On the other hand, genetic diversity has been maintained in protein-coding genes and on the gene-rich human chromosome 19 ortholog, suggesting that the Cat Ba langur retained most of its adaptive potential. The Cat Ba langur also exhibits several unique non-synonymous variants that are related to calcium and sodium metabolism, which may have improved adaptation to high calcium intake and saltwater consumption.
Collapse
Affiliation(s)
- Liye Zhang
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany.
- International Max Planck Research School for Genome Science (IMPRS-GS), University of Göttingen, Göttingen, Germany.
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Neahga Leonard
- Cat Ba Langur Conservation Project (CBLCP), Cat Ba National Park, Cat Ba Island, Cat Hai District, Hai Phong Province, Vietnam
| | - Rick Passaro
- Cat Ba Langur Conservation Project (CBLCP), Cat Ba National Park, Cat Ba Island, Cat Hai District, Hai Phong Province, Vietnam
| | - Mai Sy Luan
- Cat Ba Langur Conservation Project (CBLCP), Cat Ba National Park, Cat Ba Island, Cat Hai District, Hai Phong Province, Vietnam
| | - Pham Van Tuyen
- Cat Ba Langur Conservation Project (CBLCP), Cat Ba National Park, Cat Ba Island, Cat Hai District, Hai Phong Province, Vietnam
| | - Le Thi Ngoc Han
- Cat Ba Langur Conservation Project (CBLCP), Cat Ba National Park, Cat Ba Island, Cat Hai District, Hai Phong Province, Vietnam
| | - Nguyen Huy Cam
- Cat Ba Langur Conservation Project (CBLCP), Cat Ba National Park, Cat Ba Island, Cat Hai District, Hai Phong Province, Vietnam
| | - Larry Vogelnest
- Taronga Conservation Society Australia, Mosman, NSW, Australia
| | - Michael Lynch
- Melbourne Zoo, Zoos Victoria, Parkville, VIC, Australia
| | - Amanda E Fine
- Wildlife Conservation Society (WCS), Health Program, New York, NY, USA
| | | | - Nguyen Van Long
- Wildlife Conservation Society (WCS), Vietnam Country Program, Hanoi, Vietnam
| | - Benjamin M Rawson
- World Wildlife Fund for Nature (WWF) International, Gland, Switzerland
| | - Alison Behie
- School of Archaeology and Anthropology, The Australian National University, Canberra, ACT, Australia
| | - Truong Van Nguyen
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Evolutionary Adaptive Genomics, Institute of Biochemistry and Biology, Department of Science, University of Potsdam, Potsdam, Germany
- Central Institute for Natural Resources and Environmental Studies, Vietnam National University, Hanoi, Vietnam
| | - Minh D Le
- Central Institute for Natural Resources and Environmental Studies, Vietnam National University, Hanoi, Vietnam
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, Vietnam
| | - Tilo Nadler
- Three Monkeys Wildlife Conservancy, Nho Quan District, Ninh Binh Province, Ninh Binh, Vietnam
| | - Lutz Walter
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Cerdanyola del Vallès, Spain
| | - Michael Hofreiter
- Evolutionary Adaptive Genomics, Institute of Biochemistry and Biology, Department of Science, University of Potsdam, Potsdam, Germany.
| | - Ming Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Zhijin Liu
- College of Life Sciences, Capital Normal University, Beijing, China.
| | - Christian Roos
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany.
- Gene Bank of Primates, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany.
| |
Collapse
|
26
|
Jensen EL, Gray R, Miller JM. Leveraging genomic load estimates to optimize captive breeding programmes. Mol Ecol Resour 2024; 24:e14007. [PMID: 39139031 DOI: 10.1111/1755-0998.14007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/05/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
Rapid biodiversity loss threatens many species with extinction. Captive populations of species of conservation concern (such as those housed in zoos and dedicated breeding centres) act as an insurance should wild populations go extinct or need supplemental individuals to boost populations. Limited resources mean that captive populations are almost always small and started from few founding individuals. As a result, captive populations require careful management to minimize negative genetic impacts, with decisions about which individuals to breed together often guided by the principle of minimizing relatedness. Typically this strategy aims to retain 90% of genetic diversity over 200 years (Soulé et al., Zoo Biology, 1986, 5, 101), but it has a weakness in that it does not directly manage for genetic load. In this issue of Molecular Ecology Resources, Speak et al. (Molecular Ecology Resources, 2024, e13967) present a novel proof-of-concept study for taking this next step and incorporating estimates of individual genetic load into the planning of captive breeding, using an approach that is likely to be widely applicable to many captive populations.
Collapse
Affiliation(s)
- Evelyn L Jensen
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Rachel Gray
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Joshua M Miller
- Department of Biological Sciences, MacEwan University, Edmonton, Alberta, Canada
| |
Collapse
|
27
|
Telizhenko V, Kosiol C, McGowen MR, Gol'din P. Relaxed selection in evolution of genes regulating limb development gives clue to variation in forelimb morphology of cetaceans and other mammals. Proc Biol Sci 2024; 291:20241106. [PMID: 39378996 PMCID: PMC11606503 DOI: 10.1098/rspb.2024.1106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/29/2024] [Accepted: 09/02/2024] [Indexed: 10/10/2024] Open
Abstract
Cetaceans have evolved unique limb structures, such as flippers, due to genetic changes during their transition to aquatic life. However, the full understanding of the genetic and evolutionary mechanisms behind these changes is still developing. By examining 25 limb-related protein-coding genes across various mammalian species, we compared genetic changes between aquatic mammals, like whales, and other mammals with unique limb structures such as bats, rodents and elephants. Our findings revealed significant modifications in limb-related genes, including variations in the Hox, GDF5 and Evx genes. Notably, a relaxed selection in several key genes was observed, suggesting a lifting of developmental constraints, which might have facilitated the emergence of morphological innovations in cetacean limb morphology. We also uncovered non-synonymous changes, insertions and deletions in these genes, particularly in the polyalanine tract of HOXD13, which are distinctive to cetaceans or convergent with other aquatic mammals. These genetic variations correlated with the diverse and specialized limb structures observed in cetaceans, indicating a complex interplay of relaxed selection and specific mutations in mammalian limb evolution.
Collapse
Affiliation(s)
| | | | - Michael R. McGowen
- Department of Vertebrate Zoology, Smithsonian National Museum of Natural History, Washington, DC20560, USA
| | | |
Collapse
|
28
|
Armstrong EE, Mooney JA, Solari KA, Kim BY, Barsh GS, Grant VB, Greenbaum G, Kaelin CB, Panchenko K, Pickrell JK, Rosenberg N, Ryder OA, Yokoyama T, Ramakrishnan U, Petrov DA, Hadly EA. Unraveling the genomic diversity and admixture history of captive tigers in the United States. Proc Natl Acad Sci U S A 2024; 121:e2402924121. [PMID: 39298482 PMCID: PMC11441546 DOI: 10.1073/pnas.2402924121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/09/2024] [Indexed: 09/21/2024] Open
Abstract
Genomic studies of endangered species have primarily focused on describing diversity patterns and resolving phylogenetic relationships, with the overarching goal of informing conservation efforts. However, few studies have investigated genomic diversity housed in captive populations. For tigers (Panthera tigris), captive individuals vastly outnumber those in the wild, but their diversity remains largely unexplored. Privately owned captive tiger populations have remained an enigma in the conservation community, with some believing that these individuals are severely inbred, while others believe they may be a source of now-extinct diversity. Here, we present a large-scale genetic study of the private (non-zoo) captive tiger population in the United States, also known as "Generic" tigers. We find that the Generic tiger population has an admixture fingerprint comprising all six extant wild tiger subspecies. Of the 138 Generic individuals sequenced for the purpose of this study, no individual had ancestry from only one subspecies. We show that the Generic tiger population has a comparable amount of genetic diversity relative to most wild subspecies, few private variants, and fewer deleterious mutations. We observe inbreeding coefficients similar to wild populations, although there are some individuals within both the Generic and wild populations that are substantially inbred. Additionally, we develop a reference panel for tigers that can be used with imputation to accurately distinguish individuals and assign ancestry with ultralow coverage (0.25×) data. By providing a cost-effective alternative to whole-genome sequencing (WGS), the reference panel provides a resource to assist in tiger conservation efforts for both ex- and in situ populations.
Collapse
Affiliation(s)
| | - Jazlyn A. Mooney
- Department of Biology, Stanford University, Stanford, CA94305
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA90089
| | | | - Bernard Y. Kim
- Department of Biology, Stanford University, Stanford, CA94305
| | - Gregory S. Barsh
- HudsonAlpha Institute for Biotechnology, Huntsville, AL35806
- Department of Genetics, School of Medine, Stanford University, Stanford, CA94305
| | | | - Gili Greenbaum
- Department of Ecology, Evolution & Behavior, The Hebrew University of Jerusalem, Jerusalem9190500, Israel
| | | | - Katya Panchenko
- Department of Biology, Stanford University, Stanford, CA94305
| | | | - Noah Rosenberg
- Department of Biology, Stanford University, Stanford, CA94305
| | | | - Tsuya Yokoyama
- Department of Biology, Stanford University, Stanford, CA94305
| | - Uma Ramakrishnan
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore560065, India
| | - Dmitri A. Petrov
- Department of Biology, Stanford University, Stanford, CA94305
- Chan Zuckerberg BioHub, San Francisco, CA94158
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA94305
| | - Elizabeth A. Hadly
- Department of Biology, Stanford University, Stanford, CA94305
- Department of Earth System Science, Stanford University, Stanford, CA94305
- Woods Institute for the Environment, Stanford University, Stanford, CA94305
- Center for Innovation in Global Health, Stanford University, Stanford, CA94305
| |
Collapse
|
29
|
Quinn CB, Preckler-Quisquater S, Buchalski MR, Sacks BN. Whole Genomes Inform Genetic Rescue Strategy for Montane Red Foxes in North America. Mol Biol Evol 2024; 41:msae193. [PMID: 39288165 PMCID: PMC11424165 DOI: 10.1093/molbev/msae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/07/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
A few iconic examples have proven the value of facilitated gene flow for counteracting inbreeding depression and staving off extinction; yet, the practice is often not implemented for fear of causing outbreeding depression. Using genomic sequencing, climatic niche modeling, and demographic reconstruction, we sought to assess the risks and benefits of using translocations as a tool for recovery of endangered montane red fox (Vulpes vulpes) populations in the western United States. We demonstrated elevated inbreeding and homozygosity of deleterious alleles across all populations, but especially those isolated in the Cascade and Sierra Nevada ranges. Consequently, translocations would be expected to increase population growth by masking deleterious recessive alleles. Demographic reconstructions further indicated shallow divergences of less than a few thousand years among montane populations, suggesting low risk of outbreeding depression. These genomic-guided findings set the stage for future management, the documentation of which will provide a roadmap for recovery of other data-deficient taxa.
Collapse
Affiliation(s)
- Cate B Quinn
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
- California Department of Fish and Wildlife, Wildlife Genetics Research Unit, Wildlife Health Laboratory, Sacramento, CA, USA
- National Genomics Center for Wildlife and Fish Conservation, USDA Forest Service, Rocky Mountain Research Station, Missoula, MT, USA
| | - Sophie Preckler-Quisquater
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Michael R Buchalski
- California Department of Fish and Wildlife, Wildlife Genetics Research Unit, Wildlife Health Laboratory, Sacramento, CA, USA
| | - Benjamin N Sacks
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| |
Collapse
|
30
|
Lan T, Yang S, Li H, Zhang Y, Li R, Sahu SK, Deng W, Liu B, Shi M, Wang S, Du H, Huang X, Lu H, Liu S, Deng T, Chen J, Wang Q, Han L, Zhou Y, Li Q, Li D, Kristiansen K, Wan QH, Liu H, Fang SG. Large-scale genome sequencing of giant pandas improves the understanding of population structure and future conservation initiatives. Proc Natl Acad Sci U S A 2024; 121:e2406343121. [PMID: 39186654 PMCID: PMC11388402 DOI: 10.1073/pnas.2406343121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/23/2024] [Indexed: 08/28/2024] Open
Abstract
The extinction risk of the giant panda has been demoted from "endangered" to "vulnerable" on the International Union for Conservation of Nature Red List, but its habitat is more fragmented than ever before, resulting in 33 isolated giant panda populations according to the fourth national survey released by the Chinese government. Further comprehensive investigations of the genetic background and in-depth assessments of the conservation status of wild populations are still necessary and urgently needed. Here, we sequenced the genomes of 612 giant pandas with an average depth of ~26× and generated a high-resolution map of genomic variation with more than 20 million variants covering wild individuals from six mountain ranges and captive representatives in China. We identified distinct genetic clusters within the Minshan population by performing a fine-grained genetic structure. The estimation of inbreeding and genetic load associated with historical population dynamics suggested that future conservation efforts should pay special attention to the Qinling and Liangshan populations. Releasing captive individuals with a genetic background similar to the recipient population appears to be an advantageous genetic rescue strategy for recovering the wild giant panda populations, as this approach introduces fewer deleterious mutations into the wild population than mating with differentiated lineages. These findings emphasize the superiority of large-scale population genomics to provide precise guidelines for future conservation of the giant panda.
Collapse
Affiliation(s)
- Tianming Lan
- Key Laboratory of Biosystems Homeostasis & Protection (Ministry of Education), State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou310058, China
- Wildlife Evolution and Conservation Omics Laboratory, College of Wildlife and Protected Area, Northeast Forestry University, Harbin150040, China
- State Key Laboratory of Agricultural Genomics, BGI Research, Beijing Genomics Institute, Shenzhen518083, China
| | - Shangchen Yang
- Key Laboratory of Biosystems Homeostasis & Protection (Ministry of Education), State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou310058, China
| | - Haimeng Li
- Wildlife Evolution and Conservation Omics Laboratory, College of Wildlife and Protected Area, Northeast Forestry University, Harbin150040, China
- Heilongjiang Key Laboratory of Complex Traits and Protein Machines in Organisms, Harbin150040, China
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin150040, China
| | - Yi Zhang
- Key Laboratory of Biosystems Homeostasis & Protection (Ministry of Education), State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou310058, China
| | - Rengui Li
- Key Laboratory of State Forestry and Grassland Administration (State Park Administration) on Conservation Biology of Rare Animals in the Giant Panda National Park, China Conservation and Research Center of Giant Panda, Dujiangyan611830, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI Research, Beijing Genomics Institute, Shenzhen518083, China
- BGI Research, Beijing Genomics Institute, Wuhan430074, China
| | - Wenwen Deng
- Key Laboratory of State Forestry and Grassland Administration (State Park Administration) on Conservation Biology of Rare Animals in the Giant Panda National Park, China Conservation and Research Center of Giant Panda, Dujiangyan611830, China
| | - Boyang Liu
- Wildlife Evolution and Conservation Omics Laboratory, College of Wildlife and Protected Area, Northeast Forestry University, Harbin150040, China
| | - Minhui Shi
- State Key Laboratory of Agricultural Genomics, BGI Research, Beijing Genomics Institute, Shenzhen518083, China
| | - Shiqing Wang
- State Key Laboratory of Agricultural Genomics, BGI Research, Beijing Genomics Institute, Shenzhen518083, China
| | - Hanyu Du
- Key Laboratory of Biosystems Homeostasis & Protection (Ministry of Education), State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou310058, China
| | - Xiaoyu Huang
- Key Laboratory of State Forestry and Grassland Administration (State Park Administration) on Conservation Biology of Rare Animals in the Giant Panda National Park, China Conservation and Research Center of Giant Panda, Dujiangyan611830, China
| | - Haorong Lu
- China National GeneBank, BGI Research, Beijing Genomics Institute, Shenzhen518120, China
| | - Shanlin Liu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
| | - Tao Deng
- Key Laboratory of State Forestry and Grassland Administration (State Park Administration) on Conservation Biology of Rare Animals in the Giant Panda National Park, China Conservation and Research Center of Giant Panda, Dujiangyan611830, China
| | - Jin Chen
- China National GeneBank, BGI Research, Beijing Genomics Institute, Shenzhen518120, China
| | - Qing Wang
- State Key Laboratory of Agricultural Genomics, BGI Research, Beijing Genomics Institute, Shenzhen518083, China
| | - Lei Han
- Wildlife Evolution and Conservation Omics Laboratory, College of Wildlife and Protected Area, Northeast Forestry University, Harbin150040, China
| | - Yajie Zhou
- State Key Laboratory of Agricultural Genomics, BGI Research, Beijing Genomics Institute, Shenzhen518083, China
| | - Qiye Li
- State Key Laboratory of Agricultural Genomics, BGI Research, Beijing Genomics Institute, Shenzhen518083, China
- BGI Research, Beijing Genomics Institute, Wuhan430074, China
| | - Desheng Li
- Key Laboratory of State Forestry and Grassland Administration (State Park Administration) on Conservation Biology of Rare Animals in the Giant Panda National Park, China Conservation and Research Center of Giant Panda, Dujiangyan611830, China
| | - Karsten Kristiansen
- Department of Biology, University of Copenhagen, CopenhagenDK-2100, Denmark
- Qingdao-Europe Advanced Institute for Life Sciences, Qingdao266555, China
| | - Qiu-Hong Wan
- Key Laboratory of Biosystems Homeostasis & Protection (Ministry of Education), State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou310058, China
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI Research, Beijing Genomics Institute, Shenzhen518083, China
- Heilongjiang Key Laboratory of Complex Traits and Protein Machines in Organisms, Harbin150040, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Beijing Genomics Institute, Shenzhen518083, China
| | - Sheng-Guo Fang
- Key Laboratory of Biosystems Homeostasis & Protection (Ministry of Education), State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou310058, China
| |
Collapse
|
31
|
Kou YX, Liu ML, López-Pujol J, Zhang QJ, Zhang ZY, Li ZH. Contrasting demographic history and mutational load in three threatened whitebark pines (Pinus subsect. Gerardianae): implications for conservation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2967-2981. [PMID: 39115017 DOI: 10.1111/tpj.16965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 11/15/2024]
Abstract
Demographic history and mutational load are of paramount importance for the adaptation of the endangered species. However, the effects of population evolutionary history and genetic load on the adaptive potential in endangered conifers remain unclear. Here, using population transcriptome sequencing, whole chloroplast genomes and mitochondrial DNA markers, combined with niche analysis, we determined the demographic history and mutational load for three threatened whitebark pines having different endangered statuses, Pinus bungeana, P. gerardiana and P. squamata. Demographic inference indicated that severe bottlenecks occurred in all three pines at different times, coinciding with periods of major climate and geological changes; in contrast, while P. bungeana experienced a recent population expansion, P. gerardiana and P. squamata maintained small population sizes after bottlenecking. Abundant homozygous-derived variants accumulated in the three pines, particularly in P. squamata, while the species with most heterozygous variants was P. gerardiana. Abundant moderately and few highly deleterious variants accumulated in the pine species that have experienced the most severe demographic bottlenecks (P. gerardiana and P. squamata), most likely because of purging effects. Finally, niche modeling showed that the distribution of P. bungeana might experience a significant expansion in the future, and the species' identified genetic clusters are also supported by differences in the ecological niche. The integration of genomic, demographic and niche data has allowed us to prove that the three threatened pines have contrasting patterns of demographic history and mutational load, which may have important implications in their adaptive potential and thus are also key for informing conservation planning.
Collapse
Affiliation(s)
- Yi-Xuan Kou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, Guangxi, 541006, China
| | - Mi-Li Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Jordi López-Pujol
- Botanic Institute of Barcelona (IBB), CSIC-CMCNB, Barcelona, Catalonia, 08038, Spain
- Escuela de Ciencias Ambientales, Universidad Espíritu Santo (UEES), Samborondón, 091650, Ecuador
| | - Qi-Jing Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Zhi-Yong Zhang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, Guangxi, 541006, China
| | - Zhong-Hu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| |
Collapse
|
32
|
Lovinskaya A, Shalakhmetova T, Kolumbayeva S. Study of the cyto- and genotoxic activity of water from the Kapshagai reservoir (Kazakhstan) on laboratory mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104522. [PMID: 39074520 DOI: 10.1016/j.etap.2024.104522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
Chemical compounds in the environment, which exhibit toxic and genotoxic activity, increase the mutational pressure on biota. This study aimed to investigate the genotoxic, mutagenic, and toxic effects of water from the Ile River and the Kapshagai Reservoir, both sites of active economic activities. Cytogenetic analysis of bone marrow from mice exposed to water samples from the Ile River and the Kapshagai Reservoir revealed a statistically significant increase in aberrant (p<0.05) and polyploid cells (p<0.01), as well as a decrease in the mitotic index (p<0.001), compared to the negative control. The water samples caused statistically significant increases in single- and double-strand DNA breaks in cells across various organs in the experimental mice compared to unexposed animals (p<0.001). These observations suggest the existence of chemical compounds within the water samples from the Kapshagai Reservoir and the Ile River, which exhibit genotoxic, mutagenic, and toxic properties.
Collapse
Affiliation(s)
- Anna Lovinskaya
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; Scientific Research Institute of Biology & Biotechnology Problems, Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty 050040, Kazakhstan.
| | - Tamara Shalakhmetova
- Scientific Research Institute of Biology & Biotechnology Problems, Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; Department of Biodiversity and Bioresources, Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Saule Kolumbayeva
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; Scientific Research Institute of Biology & Biotechnology Problems, Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| |
Collapse
|
33
|
Kyriazis CC, Lohmueller KE. Constraining models of dominance for nonsynonymous mutations in the human genome. PLoS Genet 2024; 20:e1011198. [PMID: 39302992 PMCID: PMC11446423 DOI: 10.1371/journal.pgen.1011198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 10/02/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
Dominance is a fundamental parameter in genetics, determining the dynamics of natural selection on deleterious and beneficial mutations, the patterns of genetic variation in natural populations, and the severity of inbreeding depression in a population. Despite this importance, dominance parameters remain poorly known, particularly in humans or other non-model organisms. A key reason for this lack of information about dominance is that it is extremely challenging to disentangle the selection coefficient (s) of a mutation from its dominance coefficient (h). Here, we explore dominance and selection parameters in humans by fitting models to the site frequency spectrum (SFS) for nonsynonymous mutations. When assuming a single dominance coefficient for all nonsynonymous mutations, we find that numerous h values can fit the data, so long as h is greater than ~0.15. Moreover, we also observe that theoretically-predicted models with a negative relationship between h and s can also fit the data well, including models with h = 0.05 for strongly deleterious mutations. Finally, we use our estimated dominance and selection parameters to inform simulations revisiting the question of whether the out-of-Africa bottleneck has led to differences in genetic load between African and non-African human populations. These simulations suggest that the relative burden of genetic load in non-African populations depends on the dominance model assumed, with slight increases for more weakly recessive models and slight decreases shown for more strongly recessive models. Moreover, these results also demonstrate that models of partially recessive nonsynonymous mutations can explain the observed severity of inbreeding depression in humans, bridging the gap between molecular population genetics and direct measures of fitness in humans. Our work represents a comprehensive assessment of dominance and deleterious variation in humans, with implications for parameterizing models of deleterious variation in humans and other mammalian species.
Collapse
Affiliation(s)
- Christopher C. Kyriazis
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, United States of America
| | - Kirk E. Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, United States of America
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, California, United States of America
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| |
Collapse
|
34
|
Chen Y, Dong L, Yi H, Kidner C, Kang M. Genomic divergence and mutation load in the Begonia masoniana complex from limestone karsts. PLANT DIVERSITY 2024; 46:575-584. [PMID: 39290887 PMCID: PMC11403149 DOI: 10.1016/j.pld.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 09/19/2024]
Abstract
Understanding genome-wide diversity, inbreeding, and the burden of accumulated deleterious mutations in small and isolated populations is essential for predicting and enhancing population persistence and resilience. However, these effects are rarely studied in limestone karst plants. Here, we re-sequenced the nuclear genomes of 62 individuals of the Begonia masoniana complex (B. liuyanii, B. longgangensis, B. masoniana and B. variegata) and investigated genomic divergence and genetic load for these four species. Our analyses revealed four distinct clusters corresponding to each species within the complex. Notably, there was only limited admixture between B. liuyanii and B. longgangensis occurring in overlapping geographic regions. All species experienced historical bottlenecks during the Pleistocene, which were likely caused by glacial climate fluctuations. We detected an asymmetric historical gene flow between group pairs within this timeframe, highlighting a distinctive pattern of interspecific divergence attributable to karst geographic isolation. We found that isolated populations of B. masoniana have limited gene flow, the smallest recent population size, the highest inbreeding coefficients, and the greatest accumulation of recessive deleterious mutations. These findings underscore the urgency to prioritize conservation efforts for these isolated population. This study is among the first to disentangle the genetic differentiation and specific demographic history of karst Begonia plants at the whole-genome level, shedding light on the potential risks associated with the accumulation of deleterious mutations over generations of inbreeding. Moreover, our findings may facilitate conservation planning by providing critical baseline genetic data and a better understanding of the historical events that have shaped current population structure of rare and endangered karst plants.
Collapse
Affiliation(s)
- Yiqing Chen
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lina Dong
- Guangxi Key Laboratory of Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhang Autonomous Region and the Chinese Academy of Sciences, Guilin 541006, China
| | - Huiqin Yi
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou 510650, China
| | - Catherine Kidner
- Institute of Molecular Plant Sciences, University of Edinburgh, Daniel Rutherford Building Max Born Crescent, The King's Buildings, Edinburgh EH9 3BF, UK
- Royal Botanic Garden Edinburgh, 20a Inverleith Row, Edinburgh EH3 5LR, UK
| | - Ming Kang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou 510650, China
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
35
|
Dehasque M, Morales HE, Díez-Del-Molino D, Pečnerová P, Chacón-Duque JC, Kanellidou F, Muller H, Plotnikov V, Protopopov A, Tikhonov A, Nikolskiy P, Danilov GK, Giannì M, van der Sluis L, Higham T, Heintzman PD, Oskolkov N, Gilbert MTP, Götherström A, van der Valk T, Vartanyan S, Dalén L. Temporal dynamics of woolly mammoth genome erosion prior to extinction. Cell 2024; 187:3531-3540.e13. [PMID: 38942016 DOI: 10.1016/j.cell.2024.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/08/2024] [Accepted: 05/17/2024] [Indexed: 06/30/2024]
Abstract
A number of species have recently recovered from near-extinction. Although these species have avoided the immediate extinction threat, their long-term viability remains precarious due to the potential genetic consequences of population declines, which are poorly understood on a timescale beyond a few generations. Woolly mammoths (Mammuthus primigenius) became isolated on Wrangel Island around 10,000 years ago and persisted for over 200 generations before becoming extinct around 4,000 years ago. To study the evolutionary processes leading up to the mammoths' extinction, we analyzed 21 Siberian woolly mammoth genomes. Our results show that the population recovered quickly from a severe bottleneck and remained demographically stable during the ensuing six millennia. We find that mildly deleterious mutations gradually accumulated, whereas highly deleterious mutations were purged, suggesting ongoing inbreeding depression that lasted for hundreds of generations. The time-lag between demographic and genetic recovery has wide-ranging implications for conservation management of recently bottlenecked populations.
Collapse
Affiliation(s)
- Marianne Dehasque
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden; Department of Zoology, Stockholm University, 10691 Stockholm, Sweden.
| | - Hernán E Morales
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - David Díez-Del-Molino
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden; Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
| | - Patrícia Pečnerová
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden; Department of Zoology, Stockholm University, 10691 Stockholm, Sweden; Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - J Camilo Chacón-Duque
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden; Department of Zoology, Stockholm University, 10691 Stockholm, Sweden; Department of Archaeology and Classical Studies, Stockholm University, Lilla Frescativägen 7, 11418 Stockholm, Sweden
| | - Foteini Kanellidou
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden; Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
| | - Héloïse Muller
- Master de Biologie, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon I, Universite de Lyon, 69007 Lyon, France
| | - Valerii Plotnikov
- Academy of Sciences of Sakha Republic, Lenin Avenue 33, Yakutsk, Republic of Sakha (Yakutia), Russia
| | - Albert Protopopov
- Academy of Sciences of Sakha Republic, Lenin Avenue 33, Yakutsk, Republic of Sakha (Yakutia), Russia
| | - Alexei Tikhonov
- Zoological Institute of Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Pavel Nikolskiy
- Geological Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Gleb K Danilov
- Peter the Great Museum of Anthropology and Ethnography, Kunstkamera, Russian Academy of Sciences, 3 University Embankment, Box 199034, Saint-Petersburg, Russia
| | - Maddalena Giannì
- Department of Evolutionary Anthropology, Faculty of Life Sciences, University of Vienna, Vienna, Austria; Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Laura van der Sluis
- Department of Evolutionary Anthropology, Faculty of Life Sciences, University of Vienna, Vienna, Austria; Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Tom Higham
- Department of Evolutionary Anthropology, Faculty of Life Sciences, University of Vienna, Vienna, Austria; Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Peter D Heintzman
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden; Department of Geological Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Nikolay Oskolkov
- Department of Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund University, Lund, Sweden
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark; University Museum, NTNU, Trondheim, Norway
| | - Anders Götherström
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden; Department of Archaeology and Classical Studies, Stockholm University, Lilla Frescativägen 7, 11418 Stockholm, Sweden
| | - Tom van der Valk
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden; SciLifeLab, Stockholm, Sweden
| | - Sergey Vartanyan
- North-East Interdisciplinary Scientific Research Institute N.A.N.A. Shilo, Far East Branch, Russian Academy of Sciences, Magadan, Russia
| | - Love Dalén
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden; Department of Zoology, Stockholm University, 10691 Stockholm, Sweden.
| |
Collapse
|
36
|
Fava S, Sollitto M, Racaku M, Iannucci A, Benazzo A, Ancona L, Gratton P, Florian F, Pallavicini A, Ciofi C, Cesaroni D, Gerdol M, Sbordoni V, Bertorelle G, Trucchi E. Chromosome-Level Reference Genome of the Ponza Grayling (Hipparchia sbordonii), an Italian Endemic and Endangered Butterfly. Genome Biol Evol 2024; 16:evae136. [PMID: 39023104 PMCID: PMC11255612 DOI: 10.1093/gbe/evae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
Islands are crucial evolutionary hotspots, providing unique opportunities for differentiation of novel biodiversity and long-term segregation of endemic species. Islands are also fragile ecosystems, where biodiversity is more exposed to environmental and anthropogenic pressures than on continents. The Ponza grayling, Hipparchia sbordonii, is an endemic butterfly species that is currently found only in two tiny islands of the Pontine archipelago, off the coast of Italy, occupying an area smaller than 10 km2. It has been classified as Endangered (IUCN) because of the extremely limited area of occurrence, population fragmentation, and the recent demographic decline. Thanks to a combination of different assemblers of long and short genomic reads, bulk transcriptome RNAseq, and synteny analysis with phylogenetically close butterflies, we produced a highly contiguous, chromosome-scale annotated reference genome for the Ponza grayling, including 28 autosomes and the Z sexual chromosomes. The final assembly spanned 388.61 Gb with a contig N50 of 14.5 Mb and a BUSCO completeness score of 98.5%. Synteny analysis using four other butterfly species revealed high collinearity with Hipparchia semele and highlighted 10 intrachromosomal inversions longer than 10 kb, of which two appeared on the lineage leading to H. sbordonii. Our results show that a chromosome-scale reference genome is attainable also when chromatin conformation data may be impractical or present specific technical challenges. The high-quality genomic resource for H. sbordonii opens up new opportunities for the accurate assessment of genetic diversity and genetic load and for the investigations of the genomic novelties characterizing the evolutionary path of this endemic island species.
Collapse
Affiliation(s)
- Sebastiano Fava
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Marco Sollitto
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Mbarsid Racaku
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | - Andrea Benazzo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Lorena Ancona
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Paolo Gratton
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Fiorella Florian
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | - Claudio Ciofi
- Department of Biology, University of Florence, Florence, Italy
| | | | - Marco Gerdol
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Valerio Sbordoni
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Giorgio Bertorelle
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Emiliano Trucchi
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
37
|
Steux C, Szpiech ZA. The Maintenance of Deleterious Variation in Wild Chinese Rhesus Macaques. Genome Biol Evol 2024; 16:evae115. [PMID: 38795368 PMCID: PMC11157460 DOI: 10.1093/gbe/evae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 04/25/2024] [Accepted: 05/22/2024] [Indexed: 05/27/2024] Open
Abstract
Understanding how deleterious variation is shaped and maintained in natural populations is important in conservation and evolutionary biology, as decreased fitness caused by these deleterious mutations can potentially lead to an increase in extinction risk. It is known that demographic processes can influence these patterns. For example, population bottlenecks and inbreeding increase the probability of inheriting identical-by-descent haplotypes from a recent common ancestor, creating long tracts of homozygous genotypes called runs of homozygosity (ROH), which have been associated with an accumulation of mildly deleterious homozygotes. Counterintuitively, positive selection can also maintain deleterious variants in a population through genetic hitchhiking. Here, we analyze the whole genomes of 79 wild Chinese rhesus macaques across five subspecies and characterize patterns of deleterious variation with respect to ROH and signals of recent positive selection. We show that the fraction of homozygotes occurring in long ROH is significantly higher for deleterious homozygotes than tolerated ones, whereas this trend is not observed for short and medium ROH. This confirms that inbreeding, by generating these long tracts of homozygosity, is the main driver of the high burden of homozygous deleterious alleles in wild macaque populations. Furthermore, we show evidence that homozygous LOF variants are being purged. Next, we identify seven deleterious variants at high frequency in regions putatively under selection near genes involved with olfaction and other processes. Our results shed light on how evolutionary processes can shape the distribution of deleterious variation in wild nonhuman primates.
Collapse
Affiliation(s)
- Camille Steux
- Department of Biology, Pennsylvania State University, University Park, USA
- Centre de Recherche sur la Biodiversité et l’Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3—Paul Sabatier (UT3), Toulouse, France
| | - Zachary A Szpiech
- Department of Biology, Pennsylvania State University, University Park, USA
- Institute for Computational and Data Sciences, Pennsylvania State University, University Park, USA
| |
Collapse
|
38
|
Wang Y, Yang Y, Han Z, Li J, Luo J, Yang H, Kuang J, Wu D, Wang S, Tso S, Ju T, Liu J, Renner SS, Kangshan M. Efficient purging of deleterious mutations contributes to the survival of a rare conifer. HORTICULTURE RESEARCH 2024; 11:uhae108. [PMID: 38883334 PMCID: PMC11179848 DOI: 10.1093/hr/uhae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/01/2024] [Indexed: 06/18/2024]
Abstract
Cupressaceae is a conifer family rich in plants of horticultural importance, including Cupressus, Chamaecyparis, Juniperus, and Thuja, yet genomic surveys are lacking for this family. Cupressus gigantea, one of the many rare conifers that are threatened by climate change and anthropogenic habitat fragmentation, plays an ever-increasing role in ecotourism in Tibet. To infer how past climate change has shaped the population evolution of this species, we generated a de novo chromosome-scale genome (10.92 Gb) and compared the species' population history and genetic load with that of a widespread close relative, C. duclouxiana. Our demographic analyses, based on 83 re-sequenced individuals from multiple populations of the two species, revealed a sharp decline of population sizes during the first part of the Quaternary. However, populations of C. duclouxiana then started to recover, while C. gigantea populations continued to decrease until recently. The total genomic diversity of C. gigantea is smaller than that of C. duclouxiana, but contrary to expectations, C. gigantea has fewer highly and mildly deleterious mutations than C. duclouxiana, and simulations and statistical tests support purifying selection during prolonged inbreeding as the explanation. Our results highlight the evolutionary consequences of decreased population size on the genetic burden of a long-lived endangered conifer with large genome size and suggest that genetic purging deserves more attention in conservation management.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Yongzhi Yang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Zhitong Han
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Jialiang Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Jian Luo
- Xizang Key Laboratory of Forest Ecology in Plateau Area of Ministry of Education, National Key Station of Field Scientific Observation & Experiment of Alpine Forest Ecology System in Nyingchi, Research Institute of Xizang Plateau Ecology, Xizang Agriculture & Animal Husbandry University, Nyingchi 860000, China
| | - Heng Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Jingge Kuang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Dayu Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Shiyang Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Sonam Tso
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Tsam Ju
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Susanne S Renner
- Department of Biology, Washington University, Saint Louis, MO 63130, USA
| | - Mao Kangshan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| |
Collapse
|
39
|
Goli RC, Chishi KG, Ganguly I, Singh S, Dixit S, Rathi P, Diwakar V, Sree C C, Limbalkar OM, Sukhija N, Kanaka K. Global and Local Ancestry and its Importance: A Review. Curr Genomics 2024; 25:237-260. [PMID: 39156729 PMCID: PMC11327809 DOI: 10.2174/0113892029298909240426094055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/02/2024] [Accepted: 03/11/2024] [Indexed: 08/20/2024] Open
Abstract
The fastest way to significantly change the composition of a population is through admixture, an evolutionary mechanism. In animal breeding history, genetic admixture has provided both short-term and long-term advantages by utilizing the phenomenon of complementarity and heterosis in several traits and genetic diversity, respectively. The traditional method of admixture analysis by pedigree records has now been replaced greatly by genome-wide marker data that enables more precise estimations. Among these markers, SNPs have been the popular choice since they are cost-effective, not so laborious, and automation of genotyping is easy. Certain markers can suggest the possibility of a population's origin from a sample of DNA where the source individual is unknown or unwilling to disclose their lineage, which are called Ancestry-Informative Markers (AIMs). Revealing admixture level at the locus-specific level is termed as local ancestry and can be exploited to identify signs of recent selective response and can account for genetic drift. Considering the importance of genetic admixture and local ancestry, in this mini-review, both concepts are illustrated, encompassing basics, their estimation/identification methods, tools/software used and their applications.
Collapse
Affiliation(s)
| | - Kiyevi G. Chishi
- ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Indrajit Ganguly
- ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| | - Sanjeev Singh
- ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| | - S.P. Dixit
- ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| | - Pallavi Rathi
- ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Vikas Diwakar
- ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Chandana Sree C
- ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | | | - Nidhi Sukhija
- ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
- Central Tasar Research and Training Institute, Ranchi, 835303, Jharkhand, India
| | - K.K Kanaka
- ICAR- Indian Institute of Agricultural Biotechnology, Ranchi, 834010, Jharkhand, India
| |
Collapse
|
40
|
Atağ G, Kaptan D, Yüncü E, Başak Vural K, Mereu P, Pirastru M, Barbato M, Leoni GG, Güler MN, Er T, Eker E, Yazıcı TD, Kılıç MS, Altınışık NE, Çelik EA, Morell Miranda P, Dehasque M, Floridia V, Götherström A, Bilgin CC, Togan İ, Günther T, Özer F, Hadjisterkotis E, Somel M. Population Genomic History of the Endangered Anatolian and Cyprian Mouflons in Relation to Worldwide Wild, Feral, and Domestic Sheep Lineages. Genome Biol Evol 2024; 16:evae090. [PMID: 38670119 PMCID: PMC11109821 DOI: 10.1093/gbe/evae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024] Open
Abstract
Once widespread in their homelands, the Anatolian mouflon (Ovis gmelini anatolica) and the Cyprian mouflon (Ovis gmelini ophion) were driven to near extinction during the 20th century and are currently listed as endangered populations by the International Union for Conservation of Nature. While the exact origins of these lineages remain unclear, they have been suggested to be close relatives of domestic sheep or remnants of proto-domestic sheep. Here, we study whole genome sequences of n = 5 Anatolian mouflons and n = 10 Cyprian mouflons in terms of population history and diversity, comparing them with eight other extant sheep lineages. We find reciprocal genetic affinity between Anatolian and Cyprian mouflons and domestic sheep, higher than all other studied wild sheep genomes, including the Iranian mouflon (O. gmelini). Studying diversity indices, we detect a considerable load of short runs of homozygosity blocks (<2 Mb) in both Anatolian and Cyprian mouflons, reflecting small effective population size (Ne). Meanwhile, Ne and mutation load estimates are lower in Cyprian compared with Anatolian mouflons, suggesting the purging of recessive deleterious variants in Cyprian sheep under a small long-term Ne, possibly attributable to founder effects, island isolation, introgression from domestic lineages, or differences in their bottleneck dynamics. Expanding our analyses to worldwide wild and feral Ovis genomes, we observe varying viability metrics among different lineages and a limited consistency between viability metrics and International Union for Conservation of Nature conservation status. Factors such as recent inbreeding, introgression, and unique population dynamics may have contributed to the observed disparities.
Collapse
Affiliation(s)
- Gözde Atağ
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Damla Kaptan
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Eren Yüncü
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Kıvılcım Başak Vural
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Paolo Mereu
- Department of Biochemical Sciences, University of Sassari, Sassari, Italy
| | - Monica Pirastru
- Department of Biochemical Sciences, University of Sassari, Sassari, Italy
| | - Mario Barbato
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | | | - Merve Nur Güler
- Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Tuğçe Er
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Elifnaz Eker
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Tunca Deniz Yazıcı
- Graduate School for Evolution, Ecology and Systematics, Ludwig Maximillian University of Munich, Munich, Germany
| | - Muhammed Sıddık Kılıç
- Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | | | - Ecem Ayşe Çelik
- Department of Settlement Archeology, Middle East Technical University, Ankara, Turkey
| | - Pedro Morell Miranda
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Marianne Dehasque
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Viviana Floridia
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Anders Götherström
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
- Centre for Palaeogenetics, Stockholm University, Stockholm, Sweden
| | - Cemal Can Bilgin
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - İnci Togan
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Torsten Günther
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Füsun Özer
- Department of Anthropology, Hacettepe University, Ankara, Turkey
| | - Eleftherios Hadjisterkotis
- Agricultural Research Institute, Ministry of Agriculture, Rural Development and Environment, Nicosia, Cyprus
| | - Mehmet Somel
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
41
|
Al Hikmani H, van Oosterhout C, Birley T, Labisko J, Jackson HA, Spalton A, Tollington S, Groombridge JJ. Can genetic rescue help save Arabia's last big cat? Evol Appl 2024; 17:e13701. [PMID: 38784837 PMCID: PMC11113348 DOI: 10.1111/eva.13701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
Genetic diversity underpins evolutionary potential that is essential for the long-term viability of wildlife populations. Captive populations harbor genetic diversity potentially lost in the wild, which could be valuable for release programs and genetic rescue. The Critically Endangered Arabian leopard (Panthera pardus nimr) has disappeared from most of its former range across the Arabian Peninsula, with fewer than 120 individuals left in the wild, and an additional 64 leopards in captivity. We (i) examine genetic diversity in the wild and captive populations to identify global patterns of genetic diversity and structure; (ii) estimate the size of the remaining leopard population across the Dhofar mountains of Oman using spatially explicit capture-recapture models on DNA and camera trap data, and (iii) explore the impact of genetic rescue using three complementary computer modeling approaches. We estimated a population size of 51 (95% CI 32-79) in the Dhofar mountains and found that 8 out of 25 microsatellite alleles present in eight loci in captive leopards were undetected in the wild. This includes two alleles present only in captive founders known to have been wild-sourced from Yemen, which suggests that this captive population represents an important source for genetic rescue. We then assessed the benefits of reintroducing novel genetic diversity into the wild population as well as the risks of elevating the genetic load through the release of captive-bred individuals. Simulations indicate that genetic rescue can improve the long-term viability of the wild population by reducing its genetic load and realized load. The model also suggests that the genetic load has been partly purged in the captive population, potentially making it a valuable source population for genetic rescue. However, the greater loss of its genetic diversity could exacerbate genomic erosion of the wild population during a rescue program, and these risks and benefits should be carefully evaluated. An important next step in the recovery of the Arabian leopard is to empirically validate these conclusions, implement and monitor a genomics-informed management plan, and optimize a strategy for genetic rescue as a tool to recover Arabia's last big cat.
Collapse
Affiliation(s)
- Hadi Al Hikmani
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, Division of Human and Social SciencesUniversity of KentCanterburyKentUK
- Office for Conservation of the EnvironmentDiwan of Royal CourtMuscatOman
- The Royal Commission for AlUlaAlUlaSaudi Arabia
| | - Cock van Oosterhout
- School of Environmental SciencesUniversity of East Anglia, Norwich Research ParkNorwichUK
| | - Thomas Birley
- School of Environmental SciencesUniversity of East Anglia, Norwich Research ParkNorwichUK
| | - Jim Labisko
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, Division of Human and Social SciencesUniversity of KentCanterburyKentUK
- Centre for Biodiversity and Environment Research, Research Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
- Island Biodiversity and Conservation CentreUniversity of SeychellesVictoriaSeychelles
- Department of Life SciencesThe Natural History MuseumLondonUK
| | - Hazel A. Jackson
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, Division of Human and Social SciencesUniversity of KentCanterburyKentUK
| | | | - Simon Tollington
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, Division of Human and Social SciencesUniversity of KentCanterburyKentUK
- School of Animal Rural and Environmental SciencesNottingham Trent UniversityNottinghamUK
| | - Jim J. Groombridge
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, Division of Human and Social SciencesUniversity of KentCanterburyKentUK
| |
Collapse
|
42
|
Ewart KM, Ho SYW, Chowdhury AA, Jaya FR, Kinjo Y, Bennett J, Bourguignon T, Rose HA, Lo N. Pervasive relaxed selection in termite genomes. Proc Biol Sci 2024; 291:20232439. [PMID: 38772424 DOI: 10.1098/rspb.2023.2439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/02/2024] [Indexed: 05/23/2024] Open
Abstract
Genetic changes that enabled the evolution of eusociality have long captivated biologists. More recently, attention has focussed on the consequences of eusociality on genome evolution. Studies have reported higher molecular evolutionary rates in eusocial hymenopteran insects compared with their solitary relatives. To investigate the genomic consequences of eusociality in termites, we analysed nine genomes, including newly sequenced genomes from three non-eusocial cockroaches. Using a phylogenomic approach, we found that termite genomes have experienced lower rates of synonymous substitutions than those of cockroaches, possibly as a result of longer generation times. We identified higher rates of non-synonymous substitutions in termite genomes than in cockroach genomes, and identified pervasive relaxed selection in the former (24-31% of the genes analysed) compared with the latter (2-4%). We infer that this is due to reductions in effective population size, rather than gene-specific effects (e.g. indirect selection of caste-biased genes). We found no obvious signature of increased genetic load in termites, and postulate efficient purging of deleterious alleles at the colony level. Additionally, we identified genomic adaptations that may underpin caste differentiation, such as genes involved in post-translational modifications. Our results provide insights into the evolution of termites and the genomic consequences of eusociality more broadly.
Collapse
Affiliation(s)
- Kyle M Ewart
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Al-Aabid Chowdhury
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Frederick R Jaya
- Ecology & Evolution, Research School of Biology, Australian National University, Acton, Australian Capital Territory, Australia
| | - Yukihiro Kinjo
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Okinawa International University, Okinawa, Japan
| | - Juno Bennett
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Thomas Bourguignon
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Harley A Rose
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Nathan Lo
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
43
|
Steux C, Szpiech ZA. The Maintenance of Deleterious Variation in Wild Chinese Rhesus Macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.04.560901. [PMID: 38712222 PMCID: PMC11071285 DOI: 10.1101/2023.10.04.560901] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Understanding how deleterious variation is shaped and maintained in natural populations is important in conservation and evolutionary biology, as decreased fitness caused by these deleterious mutations can potentially lead to an increase in extinction risk. It is known that demographic processes can influence these patterns. For example, population bottlenecks and inbreeding increase the probability of inheriting identical-by-descent haplotypes from a recent common ancestor, creating long tracts of homozygous genotypes called runs of homozygosity (ROH), which have been associated with an accumulation of mildly deleterious homozygotes. Counter intuitively, positive selection can also maintain deleterious variants in a population through genetic hitchhiking. Here we analyze the whole genomes of 79 wild Chinese rhesus macaques across five subspecies and characterize patterns of deleterious variation with respect to ROH and signals of recent positive selection. We show that the fraction of homozygotes occurring in long ROH is significantly higher for deleterious homozygotes than tolerated ones, whereas this trend is not observed for short and medium ROH. This confirms that inbreeding, by generating these long tracts of homozygosity, is the main driver of the high burden of homozygous deleterious alleles in wild macaque populations. Furthermore, we show evidence that homozygous LOF variants are being purged. Next, we identify 7 deleterious variants at high frequency in regions putatively under selection near genes involved with olfaction and other processes. Our results shed light on how evolutionary processes can shape the distribution of deleterious variation in wild non-human primates.
Collapse
Affiliation(s)
- Camille Steux
- Department of Biology, Pennsylvania State University, USA
- Centre de Recherche sur la Biodiversité et l’Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 – Paul Sabatier (UT3), Toulouse, France
- Département de Biologie, École Normale Supérieure, PSL Université Paris, Paris, France
| | - Zachary A. Szpiech
- Department of Biology, Pennsylvania State University, USA
- Institute for Computational and Data Sciences, Pennsylvania State University, USA
| |
Collapse
|
44
|
Gomes-Dos-Santos A, Fonseca E, Riccardi N, Hinzmann M, Lopes-Lima M, Froufe E. The transcriptome assembly of the European freshwater mussel Unio elongatulus C. Pfeiffer, 1825. Sci Data 2024; 11:377. [PMID: 38609426 PMCID: PMC11014934 DOI: 10.1038/s41597-024-03226-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Freshwater mussels of the order Unionida are a global conservation concern. Species of this group are strictly freshwater, sessile, slow-growing animals and, extremely sensitive to environmental changes. Human-mediated changes in freshwater habitats are imposing enormous pressure on the survival of freshwater mussels. Although a few flagship species are protected in Europe, other highly imperilled species receive much less attention. Moreover, knowledge about biology, ecology, and evolution and proper conservation assessments of many European species are still sparse. This knowledge gap is further aggravated by the lack of genomic resources available, which are key tools for conservation. Here we present the transcriptome assembly of Unio elongatulus C. Pfeiffer, 1825, one of the least studied European freshwater mussels. Using the individual sequencing outputs from eight physiologically representative mussel tissues, we provide an annotated panel of tissue-specific Relative Gene Expression profiles. These resources are pivotal to studying the species' biological and ecological features, as well as helping to understand its vulnerability to current and future threats.
Collapse
Affiliation(s)
- André Gomes-Dos-Santos
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, P 4450-208, Matosinhos, Portugal.
| | - Elza Fonseca
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, P 4450-208, Matosinhos, Portugal
| | | | - Mariana Hinzmann
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, P 4450-208, Matosinhos, Portugal
| | - Manuel Lopes-Lima
- BIOPOLIS Program in Genomics, Biodiversity and Ecosystems, CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- IUCN SSC Mollusc Specialist Group, c/o IUCN, Cambridge, UK
| | - Elsa Froufe
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, P 4450-208, Matosinhos, Portugal.
| |
Collapse
|
45
|
Wilder AP, Steiner CC, Hendricks S, Haller BC, Kim C, Korody ML, Ryder OA. Genetic load and viability of a future restored northern white rhino population. Evol Appl 2024; 17:e13683. [PMID: 38617823 PMCID: PMC11009427 DOI: 10.1111/eva.13683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 04/16/2024] Open
Abstract
As biodiversity loss outpaces recovery, conservationists are increasingly turning to novel tools for preventing extinction, including cloning and in vitro gametogenesis of biobanked cells. However, restoration of populations can be hindered by low genetic diversity and deleterious genetic load. The persistence of the northern white rhino (Ceratotherium simum cottoni) now depends on the cryopreserved cells of 12 individuals. These banked genomes have higher genetic diversity than southern white rhinos (C. s. simum), a sister subspecies that successfully recovered from a severe bottleneck, but the potential impact of genetic load is unknown. We estimated how demographic history has shaped genome-wide genetic load in nine northern and 13 southern white rhinos. The bottleneck left southern white rhinos with more fixed and homozygous deleterious alleles and longer runs of homozygosity, whereas northern white rhinos retained more deleterious alleles masked in heterozygosity. To gauge the impact of genetic load on the fitness of a northern white rhino population restored from biobanked cells, we simulated recovery using fitness of southern white rhinos as a benchmark for a viable population. Unlike traditional restoration, cell-derived founders can be reintroduced in subsequent generations to boost lost genetic diversity and relieve inbreeding. In simulations with repeated reintroduction of founders into a restored population, the fitness cost of genetic load remained lower than that borne by southern white rhinos. Without reintroductions, rapid growth of the restored population (>20-30% per generation) would be needed to maintain comparable fitness. Our results suggest that inbreeding depression from genetic load is not necessarily a barrier to recovery of the northern white rhino and demonstrate how restoration from biobanked cells relieves some constraints of conventional restoration from a limited founder pool. Established conservation methods that protect healthy populations will remain paramount, but emerging technologies hold promise to bolster these tools to combat the extinction crisis.
Collapse
Affiliation(s)
- Aryn P. Wilder
- Conservation GeneticsSan Diego Zoo Wildlife AllianceEscondidoCaliforniaUSA
| | - Cynthia C. Steiner
- Conservation GeneticsSan Diego Zoo Wildlife AllianceEscondidoCaliforniaUSA
| | - Sarah Hendricks
- Conservation GeneticsSan Diego Zoo Wildlife AllianceEscondidoCaliforniaUSA
- Institute for Interdisciplinary Data SciencesUniversity of IdahoMoscowIdahoUSA
| | | | - Chang Kim
- University of CaliforniaSanta Cruz Genomics InstituteSanta CruzCaliforniaUSA
- Department of Neurological SurgeryUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Marisa L. Korody
- Conservation GeneticsSan Diego Zoo Wildlife AllianceEscondidoCaliforniaUSA
| | - Oliver A. Ryder
- Conservation GeneticsSan Diego Zoo Wildlife AllianceEscondidoCaliforniaUSA
| |
Collapse
|
46
|
Jiang J, Xu YC, Zhang ZQ, Chen JF, Niu XM, Hou XH, Li XT, Wang L, Zhang YE, Ge S, Guo YL. Forces driving transposable element load variation during Arabidopsis range expansion. THE PLANT CELL 2024; 36:840-862. [PMID: 38036296 PMCID: PMC10980350 DOI: 10.1093/plcell/koad296] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023]
Abstract
Genetic load refers to the accumulated and potentially life-threatening deleterious mutations in populations. Understanding the mechanisms underlying genetic load variation of transposable element (TE) insertion, a major large-effect mutation, during range expansion is an intriguing question in biology. Here, we used 1,115 global natural accessions of Arabidopsis (Arabidopsis thaliana) to study the driving forces of TE load variation during its range expansion. TE load increased with range expansion, especially in the recently established Yangtze River basin population. Effective population size, which explains 62.0% of the variance in TE load, high transposition rate, and selective sweeps contributed to TE accumulation in the expanded populations. We genetically mapped and identified multiple candidate causal genes and TEs, and revealed the genetic architecture of TE load variation. Overall, this study reveals the variation in TE genetic load during Arabidopsis expansion and highlights the causes of TE load variation from the perspectives of both population genetics and quantitative genetics.
Collapse
Affiliation(s)
- Juan Jiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Zhi-Qin Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Fu Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Min Niu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xing-Hui Hou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xin-Tong Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Wang
- Agricultural Synthetic Biology Center, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Yong E Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents & Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-Long Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
47
|
Taylor RS, Manseau M, Keobouasone S, Liu P, Mastromonaco G, Solmundson K, Kelly A, Larter NC, Gamberg M, Schwantje H, Thacker C, Polfus J, Andrew L, Hervieux D, Simmons D, Wilson PJ. High genetic load without purging in caribou, a diverse species at risk. Curr Biol 2024; 34:1234-1246.e7. [PMID: 38417444 DOI: 10.1016/j.cub.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/17/2023] [Accepted: 02/01/2024] [Indexed: 03/01/2024]
Abstract
High intra-specific genetic diversity is associated with adaptive potential, which is key for resilience to global change. However, high variation may also support deleterious alleles through genetic load, thereby increasing the risk of inbreeding depression if population sizes decrease. Purging of deleterious variation has been demonstrated in some threatened species. However, less is known about the costs of declines and inbreeding in species with large population sizes and high genetic diversity even though this encompasses many species globally that are expected to undergo population declines. Caribou is a species of ecological and cultural significance in North America with a wide distribution supporting extensive phenotypic variation but with some populations undergoing significant declines resulting in their at-risk status in Canada. We assessed intra-specific genetic variation, adaptive divergence, inbreeding, and genetic load across populations with different demographic histories using an annotated chromosome-scale reference genome and 66 whole-genome sequences. We found high genetic diversity and nine phylogenomic lineages across the continent with adaptive diversification of genes, but also high genetic load among lineages. We found highly divergent levels of inbreeding across individuals, including the loss of alleles by drift but not increased purging in inbred individuals, which had more homozygous deleterious alleles. We also found comparable frequencies of homozygous deleterious alleles between lineages regardless of nucleotide diversity. Thus, further inbreeding may need to be mitigated through conservation efforts. Our results highlight the "double-edged sword" of genetic diversity that may be representative of other species atrisk affected by anthropogenic activities.
Collapse
Affiliation(s)
- Rebecca S Taylor
- Landscape Science and Technology, Environment and Climate Change Canada, Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| | - Micheline Manseau
- Landscape Science and Technology, Environment and Climate Change Canada, Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Sonesinh Keobouasone
- Landscape Science and Technology, Environment and Climate Change Canada, Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Peng Liu
- Landscape Science and Technology, Environment and Climate Change Canada, Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | | | - Kirsten Solmundson
- Environmental & Life Sciences Graduate Program, Trent University, Peterborough, ON K9L 1Z8, Canada
| | - Allicia Kelly
- Department of Environment and Natural Resources, Government of Northwest Territories, PO Box 900, Fort Smith, NT X0E 0P0, Canada
| | - Nicholas C Larter
- Department of Environment and Natural Resources, Government of Northwest Territories, PO Box 900, Fort Smith, NT X0E 0P0, Canada
| | - Mary Gamberg
- Gamberg Consulting, Jarvis Street, Whitehorse, YK Y1A 2J2, Canada
| | - Helen Schwantje
- British Columbia Ministry of Forest, Lands, Natural Resource Operations, and Rural Development, Labieux Road, Nanaimo, BC V9T 6E9, Canada
| | - Caeley Thacker
- British Columbia Ministry of Forest, Lands, Natural Resource Operations, and Rural Development, Labieux Road, Nanaimo, BC V9T 6E9, Canada
| | - Jean Polfus
- Canadian Wildlife Service - Pacific Region, Environment and Climate Change Canada, 1238 Discovery Avenue, Kelowna, BC V1V 1V9, Canada
| | - Leon Andrew
- Ɂehdzo Got'ı̨nę Gots'ę́ Nákedı (Sahtú Renewable Resources Board), P.O. Box 134, Tulít'a, NT X0E 0K0, Canada
| | - Dave Hervieux
- Alberta Ministry of Environment and Protected Areas, Government of Alberta, 10320-99 Street, Grande Prairie, AB T8V 6J4, Canada
| | - Deborah Simmons
- Ɂehdzo Got'ı̨nę Gots'ę́ Nákedı (Sahtú Renewable Resources Board), P.O. Box 134, Tulít'a, NT X0E 0K0, Canada
| | - Paul J Wilson
- Biology Department, Trent University, East Bank Drive, Peterborough, ON K9L 1Z8, Canada
| |
Collapse
|
48
|
Kyriazis CC, Lohmueller KE. Constraining models of dominance for nonsynonymous mutations in the human genome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.25.582010. [PMID: 38463985 PMCID: PMC10925099 DOI: 10.1101/2024.02.25.582010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Dominance is a fundamental parameter in genetics, determining the dynamics of natural selection on deleterious and beneficial mutations, the patterns of genetic variation in natural populations, and the severity of inbreeding depression in a population. Despite this importance, dominance parameters remain poorly known, particularly in humans or other non-model organisms. A key reason for this lack of information about dominance is that it is extremely challenging to disentangle the selection coefficient (s) of a mutation from its dominance coefficient (h). Here, we explore dominance and selection parameters in humans by fitting models to the site frequency spectrum (SFS) for nonsynonymous mutations. When assuming a single dominance coefficient for all nonsynonymous mutations, we find that numerous h values can fit the data, so long as h is greater than ~0.15. Moreover, we also observe that theoretically-predicted models with a negative relationship between h and s can also fit the data well, including models with h=0.05 for strongly deleterious mutations. Finally, we use our estimated dominance and selection parameters to inform simulations revisiting the question of whether the out-of-Africa bottleneck has led to differences in genetic load between African and non-African human populations. These simulations suggest that the relative burden of genetic load in non-African populations depends on the dominance model assumed, with slight increases for more weakly recessive models and slight decreases shown for more strongly recessive models. Moreover, these results also demonstrate that models of partially recessive nonsynonymous mutations can explain the observed severity of inbreeding depression in humans, bridging the gap between molecular population genetics and direct measures of fitness in humans. Our work represents a comprehensive assessment of dominance and deleterious variation in humans, with implications for parameterizing models of deleterious variation in humans and other mammalian species.
Collapse
Affiliation(s)
| | - Kirk E. Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, USA
- Department of Human Genetics, David Geffen School of Medicine, Los Angeles, USA
| |
Collapse
|
49
|
Abstract
Genomic data are becoming increasingly affordable and easy to collect, and new tools for their analysis are appearing rapidly. Conservation biologists are interested in using this information to assist in management and planning but are typically limited financially and by the lack of genomic resources available for non-model taxa. It is therefore important to be aware of the pitfalls as well as the benefits of applying genomic approaches. Here, we highlight recent methods aimed at standardizing population assessments of genetic variation, inbreeding, and forms of genetic load and methods that help identify past and ongoing patterns of genetic interchange between populations, including those subjected to recent disturbance. We emphasize challenges in applying some of these methods and the need for adequate bioinformatic support. We also consider the promises and challenges of applying genomic approaches to understand adaptive changes in natural populations to predict their future adaptive capacity.
Collapse
Affiliation(s)
- Thomas L Schmidt
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia;
| | - Joshua A Thia
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia;
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia;
| |
Collapse
|
50
|
de Jong MJ, van Oosterhout C, Hoelzel AR, Janke A. Moderating the neutralist-selectionist debate: exactly which propositions are we debating, and which arguments are valid? Biol Rev Camb Philos Soc 2024; 99:23-55. [PMID: 37621151 DOI: 10.1111/brv.13010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
Half a century after its foundation, the neutral theory of molecular evolution continues to attract controversy. The debate has been hampered by the coexistence of different interpretations of the core proposition of the neutral theory, the 'neutral mutation-random drift' hypothesis. In this review, we trace the origins of these ambiguities and suggest potential solutions. We highlight the difference between the original, the revised and the nearly neutral hypothesis, and re-emphasise that none of them equates to the null hypothesis of strict neutrality. We distinguish the neutral hypothesis of protein evolution, the main focus of the ongoing debate, from the neutral hypotheses of genomic and functional DNA evolution, which for many species are generally accepted. We advocate a further distinction between a narrow and an extended neutral hypothesis (of which the latter posits that random non-conservative amino acid substitutions can cause non-ecological phenotypic divergence), and we discuss the implications for evolutionary biology beyond the domain of molecular evolution. We furthermore point out that the debate has widened from its initial focus on point mutations, and also concerns the fitness effects of large-scale mutations, which can alter the dosage of genes and regulatory sequences. We evaluate the validity of neutralist and selectionist arguments and find that the tested predictions, apart from being sensitive to violation of underlying assumptions, are often derived from the null hypothesis of strict neutrality, or equally consistent with the opposing selectionist hypothesis, except when assuming molecular panselectionism. Our review aims to facilitate a constructive neutralist-selectionist debate, and thereby to contribute to answering a key question of evolutionary biology: what proportions of amino acid and nucleotide substitutions and polymorphisms are adaptive?
Collapse
Affiliation(s)
- Menno J de Jong
- Senckenberg Biodiversity and Climate Research Institute (SBiK-F), Georg-Voigt-Strasse 14-16, Frankfurt am Main, 60325, Germany
| | - Cock van Oosterhout
- Centre for Ecology, Evolution and Conservation, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - A Rus Hoelzel
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Axel Janke
- Senckenberg Biodiversity and Climate Research Institute (SBiK-F), Georg-Voigt-Strasse 14-16, Frankfurt am Main, 60325, Germany
- Institute for Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Strasse 9, Frankfurt am Main, 60438, Germany
- LOEWE-Centre for Translational Biodiversity Genomics (TBG), Senckenberg Nature Research Society, Georg-Voigt-Straße 14-16, Frankfurt am Main, 60325, Germany
| |
Collapse
|