1
|
Zhang C, Song W, Guo X, Li Z, Kong Y, Du J, Hou L, Feng Y, Wang Y, Zhang M, Liang L, Huang Y, Li J, Zhu D, Liu Q, Tan Y, Zhao Z, Zhao Y, Fu X, Huang S. Piezoelectric nanocomposite electrospun dressings: Tailoring mechanics for scar-free wound recovery. BIOMATERIALS ADVANCES 2025; 167:214119. [PMID: 39556886 DOI: 10.1016/j.bioadv.2024.214119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/31/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024]
Abstract
Rational wound management and enhancing healing quality are critical in clinical practice. Electrical stimulation therapy (EST) has emerged as a valuable adjunctive treatment due to its safety and cost-effectiveness. Integrating piezoelectric materials into dressings offers a way to miniaturize and personalize electrotherapy, enhancing convenience. To address the impact of physical factors of dressings on wound healing, a nanocomposite piezoelectric electrospun dressing using poly(L-lactic acid) (PLLA) and barium titanate (BaTiO3) was developed. We intentionally exaggerated design flaws to mimic the characteristics of scar extracellular matrix (ECM), including the oriented thick fibers and high Young's modulus. Initially, these dressings promoted fibrosis and hindered functional regeneration. However, when the piezoelectric effect was triggered by ultrasound, the fibrotic phenotype was reversed, leading to scar-free healing with well-regenerated functional structures. This study highlights the significant therapeutic potential of piezoelectric dressings in skin wound treatment and underscores the importance of carefully designing the static physical properties of dressings for optimal efficacy.
Collapse
Affiliation(s)
- Chao Zhang
- School of Medicine, Nankai University, Tianjin 300071, China; Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Wei Song
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Xu Guo
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China; College of Graduate, Tianjin Medical University, Tianjin 300203, China
| | - Zhao Li
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Yi Kong
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Jinpeng Du
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Linhao Hou
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Yu Feng
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Yuzhen Wang
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Mengde Zhang
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Liting Liang
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Yuyan Huang
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Jianjun Li
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Dongzhen Zhu
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Qinghua Liu
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Yaxin Tan
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Ziteng Zhao
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Yantao Zhao
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Xiaobing Fu
- School of Medicine, Nankai University, Tianjin 300071, China; Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China; College of Graduate, Tianjin Medical University, Tianjin 300203, China.
| | - Sha Huang
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China.
| |
Collapse
|
2
|
Zihni C. Phagocytosis by the retinal pigment epithelium: New insights into polarized cell mechanics. Bioessays 2025; 47:e2300197. [PMID: 39663766 DOI: 10.1002/bies.202300197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/21/2024] [Indexed: 12/13/2024]
Abstract
The retinal pigment epithelium (RPE) is a specialized epithelium at the back of the eye that carries out a variety of functions essential for visual health. Recent studies have advanced our molecular understanding of one of the major functions of the RPE; phagocytosis of spent photoreceptor outer segments (POS). Notably, a mechanical link, formed between apical integrins bound to extracellular POS and the intracellular actomyosin cytoskeleton, is proposed to drive the internalization of POS. The process may involve a "nibbling" action, as an initial step, to sever outer segment tips. These insights have led us to hypothesize an "integrin adhesome-like" network, atypically assembled at apical membrane RPE-POS contacts. I propose that this hypothetical network orchestrates the complex membrane remodeling events required for particle internalization. Therefore, its analysis and characterization will likely lead to a more comprehensive understanding of the molecular mechanisms that control POS phagocytosis.
Collapse
Affiliation(s)
- Ceniz Zihni
- Faculty of Health & Life Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
3
|
Horisaka H, Yokawa S, Suzuki R, Emoto R, Maeda R, Furuno T. Suppression of FcεRI-evoked Degranulation in RBL-2H3 Cells on Gelatin Methacryloyl Hydrogel. Cell Biochem Biophys 2024:10.1007/s12013-024-01657-3. [PMID: 39731647 DOI: 10.1007/s12013-024-01657-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 12/30/2024]
Abstract
Cell-extracellular matrix (ECM) interactions play multiple roles in developmental, physiological, and pathological processes. ECM stiffness substantially affects cellular morphology, migration, and function. In this study, we investigated the effect of ECM comprising gelatin methacryloyl (GelMA) on the activation of rat basophilic leukemia (RBL-2H3) cells, a model mast cell line. Maintenance of intracellular Ca2+ concentration ([Ca2+]i) elevation and subsequent degranulation, evoked by crosslinking the high-affinity IgE receptors (FcεRI), were significantly suppressed in RBL-2H3 cells on collagen-coated GelMA hydrogel than those on collagen-coated glass dishes and plastic wells. Thapsigargin and phorbol myristate acetate caused sustained [Ca2+]i increase and degranulation to a similar extent in cells on both GelMA hydrogel and plastic wells/glass dishes. F-actin was clearly accumulated along the periphery of RBL-2H3 cells in plane attached to glass, but not GelMA hydrogel, suggesting that the loose actin cytoskeleton of RBL-2H3 cells on GelMA hydrogel caused suppressive degranulation through unstable FcεRI aggregation.
Collapse
Affiliation(s)
- Haruna Horisaka
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| | - Satoru Yokawa
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| | - Ruriko Suzuki
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| | - Rin Emoto
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| | - Rino Maeda
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| | - Tadahide Furuno
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan.
| |
Collapse
|
4
|
Wu M, Yang H, Liu S, Jiang L, Liang T, Wang Y, Zhu M, Song X, Liu H, Shen J, Wang S, Zhu X, Qu CK, Cheng L, Jiang H, Ni F. Enhanced engraftment of human haematopoietic stem cells via mechanical remodelling mediated by the corticotropin-releasing hormone. Nat Biomed Eng 2024:10.1038/s41551-024-01316-1. [PMID: 39715892 DOI: 10.1038/s41551-024-01316-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/01/2024] [Indexed: 12/25/2024]
Abstract
The engraftment of haematopoietic stem and progenitor cells (HSPCs), particularly in cord-blood transplants, remains challenging. Here we report the role of the corticotropin-releasing hormone (CRH) in enhancing the homing and engraftment of human-cord-blood HSPCs in bone marrow through mechanical remodelling. By using microfluidics, intravital two-photon imaging and long-term-engraftment assays, we show that treatment with CRH substantially enhances HSPC adhesion, motility and mechanical remodelling, ultimately leading to improved bone-marrow homing and engraftment in immunodeficient mice. CRH induces Ras homologue gene family member A (RhoA)-dependent nuclear translocation of the yes-associated protein (YAP), which upregulates the expression of genes encoding extracellular-matrix proteins (notably, thrombospondin-2 (THBS2)). This process guides the mechanical remodelling of HSPCs via modulation of the actin cytoskeleton and the extracellular matrix, with THBS2 interacting with the integrin αvβ3 and coordinating the nuclear translocation of YAP upon CRH/CRH-receptor-1 (CRH/CRHR1) signalling. Overall, the CRH/CRHR1/RhoA/YAP/THBS2/αvβ3 axis has a central role in modulating HSPC behaviour via a mechanical feedback loop involving THBS2, αvβ3, the actin cytoskeleton and YAP signalling. Our findings may suggest avenues for optimizing the transplantation of HSPCs.
Collapse
Affiliation(s)
- Mingming Wu
- Department of Hematology, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Haoxiang Yang
- The CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, China
| | - Senquan Liu
- Department of Hematology, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lai Jiang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tingting Liang
- Department of Hematology, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yan Wang
- Department of Hematology, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mingming Zhu
- Department of Hematology, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xian Song
- Department of Hematology, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hao Liu
- The CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, China
| | - Jinghao Shen
- The CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, China
| | - Shuangzi Wang
- The CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, China
| | - Xiaoyu Zhu
- Department of Hematology, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Cheng-Kui Qu
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Linzhao Cheng
- Department of Hematology, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Hongyuan Jiang
- The CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, China.
| | - Fang Ni
- Department of Hematology, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Institute of Immunology, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
5
|
Jorge-Cruz CY, Roa-Espitia AL, Hernández-González EO. Guinea pig spermatozoa adhesion to an immobilized fibronectin matrix alters their physiology and increases their survival†. Biol Reprod 2024; 111:1202-1219. [PMID: 39427254 DOI: 10.1093/biolre/ioae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/16/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024] Open
Abstract
Isthmus is the region of the oviduct considered a reservoir for spermatozoa, where they are retained and released synchronously with ovulation. Integrins mediate this interaction, and it is suggested that they regulate the viability and capacitation of spermatozoa. Spermatozoa retained in the oviductal epithelial cells show specific characteristics: normal morphology, intact acrosome and plasma membrane, no DNA fragmentation, and low levels of intracellular Ca2+, and protein phosphorylation at Tyr. This work aimed to define spermatozoa's ability to adhere to an immobilized fibronectin matrix and its effects on their viability and capacitation. We found that guinea pig spermatozoa showed a high affinity for adhering to an immobilized fibronectin matrix but not to those made up of type 1 collagen or laminin. This interaction was mediated by integrins that recognize the RGD domain. Spermatozoa adhered to an immobilized fibronectin matrix were maintained in a state of low capacitation: low levels of intracellular concentration of Ca2+, protein phosphorylation in Tyr, and F-actin. Also, spermatozoa kept their plasma membrane and acrosome intact, flagellum beating and showed low activation of caspases 3/7. The spermatozoa adhered to the immobilized fibronectin matrix, gradually detached, forming rosettes and did not undergo a spontaneous acrosomal reaction but were capable of experiencing a progesterone-induced acrosomal reaction. In conclusion, the adhesion of spermatozoa to an immobilized fibronectin matrix alters the physiology of the spermatozoa, keeping them in a steady state of capacitation, increasing their viability in a similar way to what was reported for spermatozoa adhered to oviductal epithelial cells.
Collapse
Affiliation(s)
- Coral Y Jorge-Cruz
- Dept. of Cell Biology Center of Research and Advanced Studies of the National Polytechnic Institute, Mexico city, Mexico Av. Instituto Politecnico Nacional 2508, CP 07360
| | - Ana L Roa-Espitia
- Dept. of Cell Biology Center of Research and Advanced Studies of the National Polytechnic Institute, Mexico city, Mexico Av. Instituto Politecnico Nacional 2508, CP 07360
| | - Enrique O Hernández-González
- Dept. of Cell Biology Center of Research and Advanced Studies of the National Polytechnic Institute, Mexico city, Mexico Av. Instituto Politecnico Nacional 2508, CP 07360
| |
Collapse
|
6
|
Valeo M, Marie S, Rémy M, Menguy T, Le Coz C, Molinari M, Feuillie C, Granier F, Durrieu MC. Bioactive hydrogels based on lysine dendrigrafts as crosslinkers: tailoring elastic properties to influence hMSC osteogenic differentiation. J Mater Chem B 2024; 12:12508-12522. [PMID: 39576239 DOI: 10.1039/d4tb01578a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Dendrigrafts are multivalent macromolecules with less ordered topology and higher branching than dendrimers. Exhibiting a high density of terminal amines, poly-L-lysine dendrigrafts of the fifth generation (DGL G5) allow hydrogel formation with tailorable crosslinking density and surface modification. This work presents DGL G5 as multifunctional crosslinkers in biomimetic PEG hydrogels to favour the osteogenic differentiation of human mesenchymal stem cells (hMSCs). DGL G5 reaction with dicarboxylic-acid PEG chains yielded amide networks of variable stiffness, measured at the macro and surface nanoscale. Oscillatory rheometry and compression afforded consistent values of Young's modulus, increasing from 8 to more than 30 kPa and correlating with DGL G5 concentration. At the surface level, AFM measurements showed the same tendency but higher E values, from approximately 15 to more than 100 kPa, respectively. To promote cell adhesion and differentiation, the hydrogels were functionalised with a GRGDSPC peptide and a biomimetic of the bone morphogenetic protein 2 (BMP-2), ensuring the same grafting concentrations (between 2.15 ± 0.54 and 2.28 ± 0.23 pmols mm-2) but different hydrogel stiffness. 6 h after seeding on functionalised hydrogels in serum-less media, hMSC showed nascent adhesions on the stiffer gels and greater spreading than on glass controls with serum. After two weeks in osteogenic media, hMSC seeded on the stiffer gels showed greater spreading, more polygonal morphologies and increased levels of osteopontin, an osteoblast marker, compared to controls, which peaked on 22 kPa-gels. Together, these results demonstrate that DGL G5-PEG hydrogel bioactivity can influence the adhesion, spreading and early commitment of hMSCs.
Collapse
Affiliation(s)
- Michele Valeo
- Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.
| | | | - Murielle Rémy
- Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.
| | | | - Cédric Le Coz
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, ENSMAC, F-33600 Pessac, France
| | - Michael Molinari
- Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.
| | - Cécile Feuillie
- Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.
| | | | | |
Collapse
|
7
|
Fang K, Liu T, Tian G, Sun W, You X, Wang X. Assessing the stereoselective bioactivity and biotoxicity of penthiopyrad in soil environment for efficacy improvement and hazard reduction. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136476. [PMID: 39536355 DOI: 10.1016/j.jhazmat.2024.136476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/30/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Penthiopyrad, a chiral pesticide, has been widely used in agricultural production. However, systematic evaluation of stereoselective bioactivity and biotoxicity of penthiopyrad in soil environment is insufficient. In this study, the stereoselective bioactivity of penthiopyrad against three soil-borne disease pathogens and its stereoselective biotoxicity to soil non-target organisms were investigated. The present results showed that the bioactivities of S-penthiopyrad were 546, 76 and 1.1-fold higher than those of R-penthiopyrad due to their different interaction modes with SDH in different target pathogens. S-penthiopyrad was more persistent in the soil environment and had stronger bioaccumulation than R-penthiopyrad. The accumulation of penthiopyrad in earthworms induced the response of detoxification system, resulting in the significant increases in the activity of detoxifying enzymes, such as GST, CarE, and CYP450. Additionally, both S-penthiopyrad and R-penthiopyrad induced cell apoptosis, intestinal damage and differentially expressed genes in earthworms, especially S-penthiopyrad. Furthermore, S-penthiopyrad has stronger binding capacity with COL6A and ACE proteins, while R-penthiopyrad has stronger binding capacity with CYP450 family proteins, which may be the main reason for the differences in biotoxicity between PEN enantiomers. Considering the differences in bioactivity and biotoxicity of penthiopyrad enantiomers, as well as the modes of action of pesticides on target and non-target organisms, S-penthiopyrad has greater potential for future development.
Collapse
Affiliation(s)
- Kuan Fang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Tong Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China.
| | - Guo Tian
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Wei Sun
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Xiangwei You
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Xiuguo Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China.
| |
Collapse
|
8
|
Paradiso A, Volpi M, Martinez DC, Jaroszewicz J, Costantini M, Swieszkowski W. Engineering Biomimetic Microvascular Capillary Networks in Hydrogel Fibrous Scaffolds via Microfluidics-Assisted Co-Axial Wet-Spinning. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65927-65941. [PMID: 39566902 PMCID: PMC11622188 DOI: 10.1021/acsami.4c15221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/22/2024]
Abstract
The microvascular bed plays a crucial role in establishing nutrient exchange and waste removal, as well as maintaining tissue metabolic activity in the human body. However, achieving microvascularization of engineered 3D tissue constructs is still an unsolved challenge. In this work, we developed biomimetic cell-laden hydrogel microfibers recapitulating oriented microvascular capillary-like networks by using a 3D bioprinting technique combined with microfluidics-assisted coaxial wet-spinning. Highly packed and aligned bundles embedding a coculture of human bone marrow-derived mesenchymal stem cells (MSCs) and human umbilical vein endothelial cells (HUVECs) were produced by simultaneously extruding two different bioinks. To this aim, core-shell fibers were wet-spun in a coagulation bath to collect the scaffolds later on a rotary drum. Initially, the versatility of the proposed system was assessed for the extrusion of multimaterial core-shell hydrogel fibers. Subsequently, the platform was validated for the in vitro biofabrication of samples promoting optimal cell alignment along the fiber axis. After 3 weeks of culture, such fiber configuration resulted in the development of an oriented capillary-like network within the fibrin-based core and in the endothelial-specific CD31 marker expression upon MSC/HUVEC maturation. Synergistically, the vertical arrangement of the coaxial nozzle coupled with the rotation of the fiber collector facilitated the rapid creation of tightly packed bundles characterized by a dense, oriented, and extensively branched capillary network. Notably, such findings suggest that the proposed biofabrication strategy can be used for the microvascularization of tissue-specific 3D constructs.
Collapse
Affiliation(s)
- Alessia Paradiso
- Faculty of Materials Sciences and Engineering, Warsaw University of Technology, Warsaw 02-507, Poland
| | - Marina Volpi
- Faculty of Materials Sciences and Engineering, Warsaw University of Technology, Warsaw 02-507, Poland
| | - Diana C Martinez
- Faculty of Materials Sciences and Engineering, Warsaw University of Technology, Warsaw 02-507, Poland
| | - Jakub Jaroszewicz
- Faculty of Materials Sciences and Engineering, Warsaw University of Technology, Warsaw 02-507, Poland
| | - Marco Costantini
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw 01-224, Poland
| | - Wojciech Swieszkowski
- Faculty of Materials Sciences and Engineering, Warsaw University of Technology, Warsaw 02-507, Poland
| |
Collapse
|
9
|
Fujiwara H. Dynamic duo: Cell-extracellular matrix interactions in hair follicle development and regeneration. Dev Biol 2024; 516:20-34. [PMID: 39059679 DOI: 10.1016/j.ydbio.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/20/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Ectodermal organs, such as hair follicles, originate from simple epithelial and mesenchymal sheets through a complex developmental process driven by interactions between these cell types. This process involves dermal condensation, placode formation, bud morphogenesis, and organogenesis, and all of these processes require intricate interactions among various tissues. Recent research has emphasized the crucial role of reciprocal and dynamic interactions between cells and the extracellular matrix (ECM), referred to as the "dynamic duo", in the development of ectodermal organs. These interactions provide spatially and temporally changing biophysical and biochemical cues within tissues. Using the hair follicle as an example, this review highlights two types of cell-ECM adhesion units-focal adhesion-type and hemidesmosome-type adhesion units-that facilitate communication between epithelial and mesenchymal cells. This review further explores how these adhesion units, along with other cell-ECM interactions, evolve during hair follicle development and regeneration, underscoring their importance in guiding both developmental and regenerative processes.
Collapse
|
10
|
DePalma SJ, Jilberto J, Stis AE, Huang DD, Lo J, Davidson CD, Chowdhury A, Kent RN, Jewett ME, Kobeissi H, Chen CS, Lejeune E, Helms AS, Nordsletten DA, Baker BM. Matrix Architecture and Mechanics Regulate Myofibril Organization, Costamere Assembly, and Contractility in Engineered Myocardial Microtissues. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309740. [PMID: 39558513 DOI: 10.1002/advs.202309740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/09/2024] [Indexed: 11/20/2024]
Abstract
The mechanical function of the myocardium is defined by cardiomyocyte contractility and the biomechanics of the extracellular matrix (ECM). Understanding this relationship remains an important unmet challenge due to limitations in existing approaches for engineering myocardial tissue. Here, they established arrays of cardiac microtissues with tunable mechanics and architecture by integrating ECM-mimetic synthetic, fiber matrices, and induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs), enabling real-time contractility readouts, in-depth structural assessment, and tissue-specific computational modeling. They found that the stiffness and alignment of matrix fibers distinctly affect the structural development and contractile function of pure iPSC-CM tissues. Further examination into the impact of fibrous matrix stiffness enabled by computational models and quantitative immunofluorescence implicates cell-ECM interactions in myofibril assembly, myofibril maturation, and notably costamere assembly, which correlates with improved contractile function of tissues. These results highlight how iPSC-CM tissue models with controllable architecture and mechanics can elucidate mechanisms of tissue maturation and disease.
Collapse
Affiliation(s)
- Samuel J DePalma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Javiera Jilberto
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Austin E Stis
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Darcy D Huang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jason Lo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Aamilah Chowdhury
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Robert N Kent
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Maggie E Jewett
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hiba Kobeissi
- Department of Mechanical Engineering, Boston University, Boston, MA, 02215, USA
| | - Christopher S Chen
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Emma Lejeune
- Department of Mechanical Engineering, Boston University, Boston, MA, 02215, USA
| | - Adam S Helms
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - David A Nordsletten
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, School of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, London, SE1 7EH, UK
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
11
|
Shen YQ, Sun L, Wang SM, Zheng XY, Xu R. Exosomal integrins in tumor progression, treatment and clinical prediction (Review). Int J Oncol 2024; 65:118. [PMID: 39540373 PMCID: PMC11575930 DOI: 10.3892/ijo.2024.5706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Integrins are a large family of cell adhesion molecules involved in tumor cell differentiation, migration, proliferation and neovascularization. Tumor cell‑derived exosomes carry a large number of integrins, which are closely associated with tumor progression. As crucial mediators of intercellular communication, exosomal integrins have gained attention in the field of cancer biology. The present review examined the regulatory mechanisms of exosomal integrins in tumor cell proliferation, migration and invasion, and emphasized their notable roles in tumor initiation and progression. The potential of exosomal integrins as drug delivery systems in cancer treatment was explored. Additionally, the potential of exosomal integrins in clinical tumor prediction was considered, while summarizing their applications in diagnosis, prognosis assessment and treatment response prediction. Thus, the present review aimed to provide guidance and insights for future basic research and the clinical translation of exosomal integrins. The study of exosomal integrins is poised to offer new perspectives and methods for precise cancer treatment and clinical prediction.
Collapse
Affiliation(s)
- Yu-Qing Shen
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui 230032, P.R. China
| | - Lei Sun
- Department of Blood Transfusion, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Shi-Ming Wang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui 230032, P.R. China
| | - Xian-Yu Zheng
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui 230032, P.R. China
| | - Rui Xu
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
12
|
Fu Z, Geng X, Liu C, Shen W, Dong Z, Sun G, Cai G, Chen X, Hong Q. Identification of common and specific fibrosis-related genes in three common chronic kidney diseases. Ren Fail 2024; 46:2295431. [PMID: 38174742 PMCID: PMC10769532 DOI: 10.1080/0886022x.2023.2295431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Kidney fibrosis is the common final pathway of virtually all advanced forms of chronic kidney disease (CKD) including diabetic nephropathy (DN), IgA nephropathy (IgAN) and membranous nephropathy (MN), with complex mechanism. Comparative gene expression analysis among these types of CKD may shed light on its pathogenesis. Therefore, we conducted this study aiming at exploring the common and specific fibrosis-related genes involved in different types of CKD. METHODS Kidney biopsy specimens from patients with different types of CKD and normal control subjects were analyzed using the NanoString nCounter® Human Fibrosis V2 Panel. Genes differentially expressed in all fibrotic DN, IgAN and MN tissues compared to the normal controls were regarded as the common fibrosis-related genes in CKD, whereas genes exclusively differentially expressed in fibrotic DN, IgAN or MN samples were considered to be the specific genes related to fibrosis in DN, IgAN and MN respectively. Quantitative real-time PCR (qRT-PCR) was performed to validate the expression of the selected genes. RESULTS Protein tyrosine phosphatase receptor type C (PTPRC), intercellular cell adhesion molecule-1 (ICAM1), vascular cell adhesion molecule-1 (VCAM1), interleukin 10 receptor alpha (IL10RA) and CC chemokine receptor 2 (CCR2) were identified as the potential common genes for kidney fibrosis in different types of CKD, while peroxisome proliferator-activated receptor alpha (PPARA), lactate oxidase (LOX), secreted phosphoprotein 1 (SPP1) were identified as the specific fibrosis-associated genes for DN, IgAN and MN respectively. qRT-PCR demonstrated that the expression levels of these selected genes were consistent with the NanoString analysis. CONCLUSIONS There were both commonalities and differences in the mechanisms of fibrosis in different types of CKD, the commonalities might be used as the common therapeutic targets for kidney fibrosis in CKD, while the differences might be used as the diagnostic markers for DN, IgAN and MN respectively. Inflammation was highly relevant to the pathogenesis of fibrosis. This study provides further insight into the pathophysiology and treatment of fibrotic kidney disease.
Collapse
Affiliation(s)
- Zhangning Fu
- Medical School of Chinese PLA, Beijing, China
- Department of Nephrology, First Medical Center of Chinese, PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiaodong Geng
- Department of Nephrology, First Medical Center of Chinese, PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Chao Liu
- Department of Critical Care Medicine, First Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Wanjun Shen
- Department of Nephrology, First Medical Center of Chinese, PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Zheyi Dong
- Department of Nephrology, First Medical Center of Chinese, PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Guannan Sun
- Medical School of Chinese PLA, Beijing, China
- Department of Nephrology, First Medical Center of Chinese, PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese, PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese, PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Quan Hong
- Department of Nephrology, First Medical Center of Chinese, PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| |
Collapse
|
13
|
Saha B, Chakravarty S, Ray S, Saha H, Das K, Ghosh I, Mallick B, Biswas NK, Goswami S. Correlating tissue and plasma‑specific piRNA changes to predict their possible role in pancreatic malignancy and chronic inflammation. Biomed Rep 2024; 21:186. [PMID: 39420923 PMCID: PMC11484194 DOI: 10.3892/br.2024.1874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
The aggressiveness of pancreatic ductal adenocarcinoma is primarily due to lack of effective early detection biomarkers. Circulating non-coding RNAs serve as diagnostic or prognostic biomarkers in multiple types of cancer. Comparison of their expression between diseased tissue and relevant body fluids such as saliva, urine, bile, pancreatic juice, blood etc. may reveal mechanistic involvement of common non-coding RNAs. piwi-interacting RNAs (piRNAs) are a class of non-coding RNAs. The aim of the present study was to investigate plasma and tumour tissue piRNA changes in patients with pancreatic cancer (PC) and explore the possible role in tumorigenesis and pancreatic inflammation. Sequencing of circulating plasma small RNAs from patients with PC and chronic pancreatitis (CP) was performed and differentially expressed piRNAs were compared with those in tissues. Subsequent search for target genes for those piRNAs was performed followed by pathway and cluster analysis. A total of 36 piRNAs were shown to be deregulated in pancreatic tumour tissue and alteration of 11 piRNAs was detected in plasma of patients with PC. piRNAs hsa-piR-23246, hsa-piR-32858 and hsa-piR-9137 may serve a key role in PC development as their expression was correlated in both plasma and tumour tissue. Key piRNA-target interactions interfering with key biological pathways were also characterized. A total of 19 deregulated piRNAs in plasma samples of patients with CP was identified; these targeted genes responsible for chronic inflammation. Therefore, the present study provides a comprehensive description of piRNA alteration in pancreatic malignancy and inflammation; these may be explored for biomarker potential in future.
Collapse
Affiliation(s)
- Barsha Saha
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, Kalyani, Nadia, West Bengal 741251, India
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad 121001, India
| | - Shouvik Chakravarty
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, Kalyani, Nadia, West Bengal 741251, India
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad 121001, India
| | - Sukanta Ray
- Institute of Postgraduate Medical Education & Research, Kolkata 700020, India
| | - Hemabha Saha
- Institute of Postgraduate Medical Education & Research, Kolkata 700020, India
| | - Kshaunish Das
- Institute of Postgraduate Medical Education & Research, Kolkata 700020, India
| | - Indranil Ghosh
- Chittaranjan National Cancer Institute, Kolkata 700026, India
| | | | - Nidhan K. Biswas
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, Kalyani, Nadia, West Bengal 741251, India
| | - Srikanta Goswami
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, Kalyani, Nadia, West Bengal 741251, India
| |
Collapse
|
14
|
Yang H, Yang J, Zheng X, Chen T, Zhang R, Chen R, Cao T, Zeng F, Liu Q. The Hippo Pathway in Breast Cancer: The Extracellular Matrix and Hypoxia. Int J Mol Sci 2024; 25:12868. [PMID: 39684583 DOI: 10.3390/ijms252312868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
As one of the most prevalent malignant neoplasms among women globally, the optimization of therapeutic strategies for breast cancer has perpetually been a research hotspot. The tumor microenvironment (TME) is of paramount importance in the progression of breast cancer, among which the extracellular matrix (ECM) and hypoxia are two crucial factors. The alterations of these two factors are predominantly regulated by the Hippo signaling pathway, which promotes tumor invasiveness, metastasis, therapeutic resistance, and susceptibility. Hence, this review focuses on the Hippo pathway in breast cancer, specifically, how the ECM and hypoxia impact the biological traits and therapeutic responses of breast cancer. Moreover, the role of miRNAs in modulating ECM constituents was investigated, and hsa-miR-33b-3p was identified as a potential therapeutic target for breast cancer. The review provides theoretical foundations and potential therapeutic direction for clinical treatment strategies in breast cancer, with the aspiration of attaining more precise and effective treatment alternatives in the future.
Collapse
Affiliation(s)
- Hanyu Yang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Jiaxin Yang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xiang Zheng
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Tianshun Chen
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Ranqi Zhang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Rui Chen
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Tingting Cao
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Fancai Zeng
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Qiuyu Liu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
- Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| |
Collapse
|
15
|
Pally D, Kapoor N, Naba A. The novel ECM protein SNED1 mediates cell adhesion via the RGD-binding integrins α5β1 and αvβ3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.07.606706. [PMID: 39149327 PMCID: PMC11326288 DOI: 10.1101/2024.08.07.606706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The extracellular matrix (ECM) is a complex meshwork comprising over 100 proteins. It serves as an adhesive substrate for cells and, hence, plays critical roles in health and disease. We have recently identified a novel ECM protein, SNED1, and have found that it is required for neural crest cell migration and craniofacial morphogenesis during development and in breast cancer, where it is necessary for the metastatic dissemination of tumor cells. Interestingly, both processes involve the dynamic remodeling of cell-ECM adhesions via cell surface receptors. Sequence analysis revealed that SNED1 contains two amino acid motifs, RGD and LDV, known to bind integrins, the largest class of ECM receptors. We thus sought to investigate the role of SNED1 in cell adhesion. Here, we report that SNED1 mediates breast cancer and neural crest cell adhesion via its RGD motif. We further demonstrate that cell adhesion to SNED1 is mediated by the RGD integrins α5β1 and αvβ3. These findings are a first step toward identifying the signaling pathways activated downstream of the SNED1-integrin interactions guiding craniofacial morphogenesis and breast cancer metastasis.
Collapse
|
16
|
Wang J, An Z, Wu Z, Zhou W, Sun P, Wu P, Dang S, Xue R, Bai X, Du Y, Chen R, Wang W, Huang P, Lam SM, Ai Y, Liu S, Shui G, Zhang Z, Liu Z, Huang J, Fang X, He K. Spatial organization of PI3K-PI(3,4,5)P 3-AKT signaling by focal adhesions. Mol Cell 2024; 84:4401-4418.e9. [PMID: 39488211 DOI: 10.1016/j.molcel.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/17/2024] [Accepted: 10/08/2024] [Indexed: 11/04/2024]
Abstract
The class I phosphatidylinositol 3-kinase (PI3K)-AKT signaling pathway is a key regulator of cell survival, growth, and proliferation and is among the most frequently mutated pathways in cancer. However, where and how PI3K-AKT signaling is spatially activated and organized in mammalian cells remains poorly understood. Here, we identify focal adhesions (FAs) as subcellular signaling hubs organizing the activation of PI3K-PI(3,4,5)P3-AKT signaling in human cancer cells containing p110α mutations under basal conditions. We find that class IA PI3Ks are preferentially recruited to FAs for activation, resulting in localized production of PI(3,4,5)P3 around FAs. As the effector protein of PI(3,4,5)P3, AKT1 molecules are dynamically recruited around FAs for activation. The spatial recruitment/activation of the PI3K-PI(3,4,5)P3-AKT cascade is regulated by activated FA kinase (FAK). Furthermore, combined inhibition of p110α and FAK results in a more potent inhibitory effect on cancer cells. Thus, our results unveil a growth-factor independent, compartmentalized organization mechanism for PI3K-PI(3,4,5)P3-AKT signaling.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengyang An
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongsheng Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhou
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Pengyu Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Piyu Wu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Song Dang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rui Xue
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Xue Bai
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yongtao Du
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongmei Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenxu Wang
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Pei Huang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Lipidall Technologies Company Limited, Changzhou, Jiangsu 213000, China
| | - Youwei Ai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Zheng Liu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Xiaohong Fang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Kangmin He
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
17
|
Kozlova I, Sytnyk V. Cell Adhesion Molecules as Modulators of the Epidermal Growth Factor Receptor. Cells 2024; 13:1919. [PMID: 39594667 PMCID: PMC11592701 DOI: 10.3390/cells13221919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Cell adhesion molecules (CAMs) are cell surface glycoproteins mediating interactions of cells with other cells and the extracellular matrix. By mediating the adhesion and modulating activity of other plasma membrane proteins, CAMs are involved in regulating a multitude of cellular processes, including growth, proliferation, migration, and survival of cells. In this review, we present evidence showing that various CAMs interact with the epidermal growth factor receptor (EGFR), a receptor tyrosine kinase inducing pro-proliferative and anti-apoptotic intracellular signaling in response to binding to several soluble ligands, including the epidermal growth factor. We discuss that CAMs are involved in regulating EGFR signaling by either potentiating or inhibiting the soluble ligand-dependent activation of EGFR. In addition, CAMs induce soluble ligand-independent forms of EGFR activity and regulate the levels of EGFR and its ligand-induced degradation. The CAM-dependent modulation of EGFR activity plays a key role in regulating the growth, proliferation, and survival of cells. Future research is needed to determine whether these processes can be targeted in both normal and cancerous cells by regulating interactions of EGFR with various CAMs.
Collapse
Affiliation(s)
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia;
| |
Collapse
|
18
|
Gonçalves M, Lopes C, Alégot H, Osswald M, Bosveld F, Ramos C, Richard G, Bellaiche Y, Mirouse V, Morais-de-Sá E. The Dystrophin-Dystroglycan complex ensures cytokinesis efficiency in Drosophila epithelia. EMBO Rep 2024:10.1038/s44319-024-00319-y. [PMID: 39548266 DOI: 10.1038/s44319-024-00319-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/17/2024] Open
Abstract
Cytokinesis physically separates daughter cells at the end of cell division. This step is particularly challenging for epithelial cells, which are connected to their neighbors and to the extracellular matrix by transmembrane protein complexes. To systematically evaluate the impact of the cell adhesion machinery on epithelial cytokinesis efficiency, we performed an RNAi-based modifier screen in the Drosophila follicular epithelium. Strikingly, this unveiled adhesion molecules and transmembrane receptors that facilitate cytokinesis completion. Among these is Dystroglycan, which connects the extracellular matrix to the cytoskeleton via Dystrophin. Live imaging revealed that Dystrophin and Dystroglycan become enriched in the ingressing membrane, below the cytokinetic ring, during and after ring constriction. Using multiple alleles, including Dystrophin isoform-specific mutants, we show that Dystrophin/Dystroglycan localization is linked with unanticipated roles in regulating cytokinetic ring contraction and in preventing membrane regression during the abscission period. Altogether, we provide evidence that, rather than opposing cytokinesis completion, the machinery involved in cell-cell and cell-matrix interactions has also evolved functions to ensure cytokinesis efficiency in epithelial tissues.
Collapse
Affiliation(s)
- Margarida Gonçalves
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135, Porto, Portugal
- Programa Doutoral em Biologia Molecular e Celular (MCBiology), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Catarina Lopes
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135, Porto, Portugal
| | - Hervé Alégot
- Université Clermont Auvergne - iGReD (Institute of Genetics, Reproduction and Development), UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Mariana Osswald
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135, Porto, Portugal
| | - Floris Bosveld
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005, Paris, France
| | - Carolina Ramos
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135, Porto, Portugal
| | - Graziella Richard
- Université Clermont Auvergne - iGReD (Institute of Genetics, Reproduction and Development), UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Yohanns Bellaiche
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005, Paris, France
| | - Vincent Mirouse
- Université Clermont Auvergne - iGReD (Institute of Genetics, Reproduction and Development), UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Eurico Morais-de-Sá
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal.
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135, Porto, Portugal.
| |
Collapse
|
19
|
Huang Y, Zhou Z, Liu T, Tang S, Xin X. Exploring heterogeneous cell population dynamics in different microenvironments by novel analytical strategy based on images. NPJ Syst Biol Appl 2024; 10:129. [PMID: 39505883 PMCID: PMC11542073 DOI: 10.1038/s41540-024-00459-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
Understanding the dynamic states and transitions of heterogeneous cell populations is crucial for addressing fundamental biological questions. High-content imaging provides rich datasets, but it remains increasingly difficult to integrate and annotate high-dimensional and time-resolved datasets to profile heterogeneous cell population dynamics in different microenvironments. Using hepatic stellate cells (HSCs) LX-2 as model, we proposed a novel analytical strategy for image-based integration and annotation to profile dynamics of heterogeneous cell populations in 2D/3D microenvironments. High-dimensional features were extracted from extensive image datasets, and cellular states were identified based on feature profiles. Time-series clustering revealed distinct temporal patterns of cell shape and actin cytoskeleton reorganization. We found LX-2 showed more complex membrane dynamics and contractile systems with an M-shaped actin compactness trend in 3D culture, while they displayed rapid spreading in early 2D culture. This image-based integration and annotation strategy enhances our understanding of HSCs heterogeneity and dynamics in complex extracellular microenvironments.
Collapse
Affiliation(s)
- Yihong Huang
- Laboratory of Biophysics, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Zidong Zhou
- Laboratory of Biophysics, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Tianqi Liu
- Laboratory of Biophysics, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Shengnan Tang
- Laboratory of Biophysics, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Xuegang Xin
- Laboratory of Biophysics, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
| |
Collapse
|
20
|
Yin Y, Liao L, Xu Q, Xie S, Yuan L, Zhou R. Insight into the post-translational modifications in pregnancy and related complications. Biol Reprod 2024:ioae149. [PMID: 39499652 DOI: 10.1093/biolre/ioae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/19/2024] [Indexed: 11/07/2024] Open
Abstract
Successful pregnancy is dependent on a number of essential events, including embryo implantation, decidualization and placentation. Failure of the above process may lead to pregnancy-related complications, including preeclampsia (PE), gestational diabetes mellitus (GDM), preterm birth, fetal growth restriction (FGR), etc., may affect 15% of pregnancies, and lead to increased mortality and morbidity of pregnant women and perinatal infants, as well as the occurrence of short-term and long-term diseases. These complications have distinct etiology and pathogenesis, and the present comprehension is still lacking. Post-translational modifications (PTMs) are important events in epigenetics, altering the properties of proteins through protein hydrolysis or the addition of modification groups to one or more amino acids, with different modification states regulating subcellular localization, protein degradation, protein-protein interaction, signal transduction and gene transcription. In this review, we focus on the impact of various PTMs on the progress of embryo and placenta development and pregnancy-related complications, which will provide important experimental bases for exploring new insights into the physiology of pregnancy and pathogenesis associated with pregnancy complications.
Collapse
Affiliation(s)
- Yangxue Yin
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, P.R. China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, P.R. China
| | - Lingyun Liao
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, P.R. China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, P.R. China
| | - Qin Xu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, P.R. China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, P.R. China
| | - Shuangshuang Xie
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, P.R. China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, P.R. China
| | - Liming Yuan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, P.R. China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, P.R. China
| | - Rong Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, P.R. China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
21
|
Jin J, Zandieh-Doulabi B. Low, but Not High, Pulsating Fluid Shear Stress Affects Matrix Extracellular Phosphoglycoprotein Expression, Mainly via Integrin β Subunits in Pre-Osteoblasts. Curr Issues Mol Biol 2024; 46:12428-12441. [PMID: 39590332 PMCID: PMC11593251 DOI: 10.3390/cimb46110738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/30/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
Matrix extracellular phosphoglycoprotein (Mepe), present in bone and dentin, plays important multifunctional roles in cell signaling, bone mineralization, and phosphate homeostasis. Mepe expression in bone cells changes in response to pulsating fluid shear stress (PFSS), which is transmitted into cells through integrin-based adhesion sites, i.e., α and β subunits. Whether and to what extent PFSS influences Mepe expression through the modulation of integrin α and/or β subunit expression in pre-osteoblasts is uncertain. Therefore, we aimed to test whether low and/or high PFSS affects Mepe expression via modulation of integrin α and/or β subunit expression. MC3T3-E1 pre-osteoblasts were treated with ± 1 h PFSS (magnitude: 0.3 Pa (low PFSS) or 0.7 Pa (high PFSS); frequency: 1 Hz). Single integrin fluorescence intensity in pre-osteoblasts was increased, but single integrin area was decreased by low and high PFSS. Expression of two integrin α subunit-related genes (Itga1 and Itga5 2) was increased by low PFSS, and one (Itga5 2) by high PFSS. Expression of five integrin β subunit genes (Itgb1, Itgb3, Itgb5, Itgb5 13, and Itgb5 123) was increased by low PFSS, and three (Itgb5, Itgb5 13, and Itgb5 123) by high PFSS. Interestingly, Mepe expression in pre-osteoblasts was only modulated by low, but not high, PFSS. In conclusion, both low and high PFSS affected integrin α and β subunit expression in pre-osteoblasts, while integrin β subunit expression was more altered by low PFSS. Importantly, Mepe gene expression was only affected by low PFSS. These results might explain the different ways that Mepe-induced changes in pre-osteoblast mechanosensitivity may drive signaling pathways of bone cell function at low or high impact loading. These findings might have physiological and biomedical implications and require future research specifically addressing the precise role of integrin α or β subunits and Mepe during dynamic loading in bone health and disease.
Collapse
Affiliation(s)
- Jianfeng Jin
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 LA Amsterdam, The Netherlands;
| | | |
Collapse
|
22
|
Naba A. Mechanisms of assembly and remodelling of the extracellular matrix. Nat Rev Mol Cell Biol 2024; 25:865-885. [PMID: 39223427 DOI: 10.1038/s41580-024-00767-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
The extracellular matrix (ECM) is the complex meshwork of proteins and glycans that forms the scaffold that surrounds and supports cells. It exerts key roles in all aspects of metazoan physiology, from conferring physical and mechanical properties on tissues and organs to modulating cellular processes such as proliferation, differentiation and migration. Understanding the mechanisms that orchestrate the assembly of the ECM scaffold is thus crucial to understand ECM functions in health and disease. This Review discusses novel insights into the compositional diversity of matrisome components and the mechanisms that lead to tissue-specific assemblies and architectures tailored to support specific functions. The Review then highlights recently discovered mechanisms, including post-translational modifications and metabolic pathways such as amino acid availability and the circadian clock, that modulate ECM secretion, assembly and remodelling in homeostasis and human diseases. Last, the Review explores the potential of 'matritherapies', that is, strategies to normalize ECM composition and architecture to achieve a therapeutic benefit.
Collapse
Affiliation(s)
- Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, USA.
- University of Illinois Cancer Center, Chicago, IL, USA.
| |
Collapse
|
23
|
Tian X, Zhang Y, Gong H, Bai M, Sun C, Jia Y, Duan C, Wang X. Knockdown of ANO1 decreases TGF-β- and IL-6-induced adhesion and migration of cardiac fibroblasts by inhibiting the expression of integrin and focal adhesion kinase. Exp Cell Res 2024; 443:114321. [PMID: 39505094 DOI: 10.1016/j.yexcr.2024.114321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/02/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
Ischemic cardiac injury triggers a significant inflammatory response, activating and mobilizing cardiac fibroblasts (CFs), which ultimately contributes to myocardial fibrosis. In this study, we investigated the role of ANO1, a calcium-activated chloride channel (CaCC) protein, in regulating CFs migration and adhesion under inflammatory conditions. Our results demonstrated that ANO1 knockdown significantly attenuated TGF-β- and IL-6-induced adhesion and migration of CFs. This inhibitory effect was mediated through the downregulation of integrin expression and reduced activation of focal adhesion kinase (FAK), key components in cellular adhesion and motility pathways. This study provides new insights into the mechanisms underlying CFs migration and adhesion, highlighting the potential of ANO1 as a therapeutic target for mitigating adverse fibrotic remodeling following myocardial infarction.
Collapse
Affiliation(s)
- Xiangqin Tian
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Yajing Zhang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Hezhe Gong
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Mengru Bai
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Changye Sun
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Yangyang Jia
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Changen Duan
- Cardiovascular Surgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xianwei Wang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
24
|
Abdalla AM, Miao Y, Ming N, Ouyang C. ADAM10 modulates the efficacy of T-cell-mediated therapy in solid tumors. Immunol Cell Biol 2024; 102:907-923. [PMID: 39417304 DOI: 10.1111/imcb.12826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/15/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
T-cell-mediated therapeutic strategies are the most potent effectors of cancer immunotherapy. However, an essential barrier to this therapy in solid tumors is disrupting the anti-cancer immune response, cancer-immunity cycle, T-cell priming, trafficking and T-cell cytotoxic capacity. Thus, reinforcing the anti-cancer immune response is needed to improve the effectiveness of T-cell-mediated therapy. Tumor-associated protease ADAM10, endothelial cells (ECs) and cytotoxic CD8+ T cells engage in complex communication via adhesion, transmigration and chemotactic mechanisms to facilitate an anti-cancer immune response. The precise impact of ADAM10 on the intricate mechanisms underlying these interactions remains unclear. This paper broadly explores how ADAM10, through different routes, influences the efficacy of T-cell-mediated therapy. ADAM10 cleaves CD8+ T-cell-targeting genes and impacts their expression and specificity. In addition, ADAM10 mediates the interactions of adhesion molecules with T cells and influences CD8+ T-cell activity and trafficking. Thus, understanding the role of ADAM10 in these events may lead to innovative strategies for advancing T-cell-mediated therapies.
Collapse
Affiliation(s)
- Ahmed Me Abdalla
- School of Biological Sciences and Technology, University of Jinan, Jinan, China
- Department of Biochemistry, College of Applied Science, University of Bahri, Khartoum, Sudan
| | - Yu Miao
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, Gansu, China
- Department of Phase 1 Clinical and Research Ward, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Ning Ming
- School of Biological Sciences and Technology, University of Jinan, Jinan, China
| | - Chenxi Ouyang
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
25
|
Hsieh YS, Yu CH, Chu SC, Lin CY, Chen PN. Gossypol Inhibits Metastasis of Lung Cell Carcinoma by Reversing Epithelial to Mesenchymal Transition and Suppressing Proteases Activity. ENVIRONMENTAL TOXICOLOGY 2024; 39:5209-5221. [PMID: 39263880 DOI: 10.1002/tox.24363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/02/2024] [Accepted: 05/23/2024] [Indexed: 09/13/2024]
Abstract
Gossypol, a natural polyphenolic compound, possesses antivirus activity and induces cell death of different types of tumors. However, the efficacy of gossypol on lung carcinoma metastases and epithelial to mesenchymal transition remains unknown. The aim of the present work was to determine the cellular and molecular mechanism of the anti-cancer and anti-metastatic efficacies of gossypol on human lung carcinoma cells. Gossypol showed a marked suppression of the viability, motility, and invasion in H1299 and A549 cells. Zymography assay showed that gossypol was sufficient to suppress the activities of urokinase-type plasminogen activator and matrix metalloproteinase-2. Gossypol reversed TGF-β-induced epithelial to mesenchymal transition. Gossypol reduced vimentin, p-FAK, p-Src and p-paxillin. In vivo studies of gossypol were performed using subcutaneous inoculation and tail vein injection of A549 into immunodeficient BALB/c nude mice and severe combined immunodeficient mice.
Collapse
Affiliation(s)
- Yih-Shou Hsieh
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ching-Han Yu
- Department of Physiology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shu-Chen Chu
- Institute and Department of Food Science, Central Taiwan University of Sciences and Technology, Taichung, Taiwan
| | - Chin-Yin Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Pei-Ni Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
26
|
Yu C, Chen Y, Luo H, Lin W, Lin X, Jiang Q, Liu H, Liu W, Yang J, Huang Y, Fang J, He D, Han Y, Zheng S, Ren H, Xia X, Yu J, Chen L, Zeng C. NAT10 promotes vascular remodelling via mRNA ac4C acetylation. Eur Heart J 2024:ehae707. [PMID: 39453784 DOI: 10.1093/eurheartj/ehae707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 07/19/2024] [Accepted: 10/01/2024] [Indexed: 10/27/2024] Open
Abstract
BACKGROUND AND AIMS Vascular smooth muscle cell (VSMC) phenotype switching is a pathological hallmark in various cardiovascular diseases. N4-acetylcytidine (ac4C) catalyzed by N-acetyltransferase 10 (NAT10) is well conserved in the enzymatic modification of ribonucleic acid (RNA). NAT10-mediated ac4C acetylation is involved in various physiological and pathological processes, including cardiac remodelling. However, the biological functions and underlying regulatory mechanisms of mRNA ac4C modifications in vascular diseases remain elusive. METHODS By combining in-vitro and in-vivo vascular injury models, NAT10 was identified as a crucial protein involved in the promotion of post-injury neointima formation, as well as VSMC phenotype switching. The potential mechanisms of NAT10 in the vascular neointima formation were clarified by RNA sequence (RNA-seq), acetylated mRNA immunoprecipitation sequence (acRIP-seq), and RNA binding protein immunoprecipitation sequence (RIP-seq). RESULTS NAT10 and ac4C modifications were upregulated in injured human and rodent arteries. Deletion of NAT10 in VSMCs effectively reduced post-injury neointima formation and VSMC phenotype switching. Further RNA-seq, RIP-seq, and acRIP-seq revealed that NAT10, by its ac4C modification, directly interacts with genes, including integrin-β1 (ITGB1) and collagen type I alpha 2 chain (Col1a2) mRNAs. Taking ITGB1 as one example, it showed that NAT10-mediated ac4C consequently increased ITGB1 mRNA stability and its downstream focal adhesion kinase (FAK) signaling, directly influencing the proliferation of VSMCs and vascular remodelling. The regulation of NAT10 on the VSMC phenotype is of translational significance because the administration of Remodelin, a NAT10 inhibitor, effectively prevents neointima formation by suppressing VSMC proliferation and downregulating ITGB1 expression and deactivating its FAK signaling. CONCLUSIONS This study reveals that NAT10 promotes vascular remodelling via mRNA ac4C acetylation, which may be a promising therapeutic target against vascular remodelling.
Collapse
Affiliation(s)
- Cheng Yu
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fuzhou, P.R. China
- Department of Cardiology, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Chongqing Institute of Cardiology, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
| | - Yue Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Chongqing Institute of Cardiology, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
| | - Hao Luo
- Department of Cardiology, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Chongqing Institute of Cardiology, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
| | - Weihong Lin
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Xin Lin
- Department of Cardiology, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Chongqing Institute of Cardiology, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
| | - Qiong Jiang
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Hongjin Liu
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Key Laboratory of Cardio-Thoracic Surgery, Fujian Province University, Fuzhou, P.R. China
| | - Wenkun Liu
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Jing Yang
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Yu Huang
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Jun Fang
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Duofen He
- Department of Cardiology, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Chongqing Institute of Cardiology, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
| | - Yu Han
- Department of Cardiology, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Chongqing Institute of Cardiology, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
| | - Shuo Zheng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Chongqing Institute of Cardiology, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Chongqing Institute of Cardiology, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
| | - Xuewei Xia
- Department of Cardiology, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Chongqing Institute of Cardiology, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
| | - Junyi Yu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Chongqing Institute of Cardiology, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
| | - Lianglong Chen
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Chunyu Zeng
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fuzhou, P.R. China
- Department of Cardiology, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Chongqing Institute of Cardiology, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, P.R. China
| |
Collapse
|
27
|
Hong G, Hu Z, Zhou Y, Chen M, Wu H, Lu W, Jin W, Yao K, Xie Z, Shi J. An Integrated Dual-Layer Heterogeneous Polycaprolactone Scaffold Promotes Oral Mucosal Wound Healing through Inhibiting Bacterial Adhesion and Mediating HGF-1 Behavior. RESEARCH (WASHINGTON, D.C.) 2024; 7:0499. [PMID: 39691765 PMCID: PMC11651385 DOI: 10.34133/research.0499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 12/19/2024]
Abstract
Recently, the high incidence of oral mucosal defects and the subsequent functional impairments have attracted widespread attention. Controlling scaffold geometry pattern has been proposed as a strategy to promote cell behavior and facilitate soft tissue repair. In this study, we innovatively construct an integrated dual-layer heterogeneous polycaprolactone (PCL) scaffold using melt electrowriting (MEW) technology. The outer layer was disordered, while the inner layer featured oriented fiber patterns: parallel (P-par), rhombic (P-rhomb), and square (P-sq). Our findings revealed that the P-rhomb and P-sq scaffolds exhibited superior surface wettability, roughness, and tensile strength compared to the pure disordered PCL scaffolds (P) and P-par. Compared to the commercial collagen membranes, the outer layer of PCL can effectively inhibit bacterial adhesion and biofilm formation. Furthermore, the P-rhomb and P-sq groups demonstrated higher gene and protein expression levels related to cell adhesion and cell migration rates than did the P and P-par groups. Among them, P-sq plays an important role in inducing the differentiation of gingival fibroblasts into myofibroblasts rich in α-smooth muscle actin (α-SMA). Additionally, P-sq could reduce inflammation, promote epithelial regeneration, and accelerate wound healing when used in full-thickness oral mucosal defects in rabbits. Overall, the integrated dual-layer heterogeneous PCL scaffold fabricated by MEW technology effectively inhibited bacterial adhesion and guided tissue regeneration, offering advantages for clinical translation and large-scale production. This promising material holds important potential for treating full-thickness mucosal defects in a bacteria-rich oral environments.
Collapse
Affiliation(s)
- Gaoying Hong
- Stomatology Hospital,
School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Zihe Hu
- Stomatology Hospital,
School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Yanyan Zhou
- Stomatology Hospital,
School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Mumian Chen
- Stomatology Hospital,
School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Haiyan Wu
- Stomatology Hospital,
School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Weiying Lu
- Stomatology Hospital,
School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Wenjing Jin
- Stomatology Hospital,
School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Ke Yao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering,
Zhejiang University, Hangzhou 310027, China
| | - Zhijian Xie
- Stomatology Hospital,
School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Jue Shi
- Stomatology Hospital,
School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| |
Collapse
|
28
|
Grenier C, Lin IH, Peters D, Pozzi A, Lennon R, Naylor RW. Integrin alpha1 beta1 promotes interstitial fibrosis in a mouse model of polycystic kidney disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.619080. [PMID: 39484448 PMCID: PMC11526950 DOI: 10.1101/2024.10.18.619080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Fibrosis is the cause of end-stage kidney failure in patients with Autosomal Dominant Polycystic Kidney Disease (ADPKD). The molecular and cellular mechanisms involved in fibrosis are complex and anti-fibrotic therapies have so far failed to make an impact on patient welfare. Using unbiased proteomics analysis on the Pkd1 nl/nl mouse, we found that expression of the integrin α1 subunit is increased in this model of ADPKD. In human ADPKD tissue and two single cell RNA kidney disease datasets, ITGA1 was also upregulated. To investigate the functional role of this integrin subunit in ADPKD, we generated a Pkd1 nl/nl Itga1 -/- mouse. We observed a significant reduction in kidney volume and kidney dysfunction in mice lacking the integrin α1 subunit. Kidneys from Pkd1 nl/nl Itga1 -/- mice had smaller cysts and reduced interstitial expansion and tubular atrophy. Picrosirius red staining identified a restriction in collagen staining in the interstitium and the myofibroblast marker α smooth muscle actin was also downregulated. Myofibroblast cell proliferation was reduced in Pkd1 nl/nl Itga1 -/- mice and primary fibroblast cultures demonstrated an abrogated fibrogenic phenotype in integrin α1-depleted fibroblasts. These results highlight a previously unrecognised role for the integrin α1 subunit in kidney fibrosis.
Collapse
Affiliation(s)
- C Grenier
- Manchester Cell-Matrix Centre, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - I-H Lin
- Bioinformatics Core Facility, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Djm Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - A Pozzi
- Department of Medicine, Division of Nephrology and Hypertension
- Department of Veterans Affairs, Nashville, Tennessee, USA
| | - R Lennon
- Manchester Cell-Matrix Centre, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - R W Naylor
- Manchester Cell-Matrix Centre, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
29
|
Cai F, Jiang B, He F. Formation and biological activities of foreign body giant cells in response to biomaterials. Acta Biomater 2024; 188:1-26. [PMID: 39245307 DOI: 10.1016/j.actbio.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024]
Abstract
The integration of biomaterials in medical applications triggers the foreign body response (FBR), a multi-stage immune reaction characterized by the formation of foreign body giant cells (FBGCs). Originating from the fusion of monocyte/macrophage lineage cells, FBGCs are pivotal participants during tissue-material interactions. This review provides an in-depth examination of the molecular processes during FBGC formation, highlighting signaling pathways and fusion mediators in response to both exogenous and endogenous stimuli. Moreover, a wide range of material-specific characteristics, such as surface chemical and physical properties, has been proven to influence the fusion of macrophages into FBGCs. Multifaceted biological activities of FBGCs are also explored, with emphasis on their phagocytic capabilities and extracellular secretory functions, which profoundly affect the vascularization, degradation, and encapsulation of the biomaterials. This review further elucidates the heterogeneity of FBGCs and their diverse roles during FBR, as demonstrated by their distinct behaviors in response to different materials. By presenting a comprehensive understanding of FBGCs, this review intends to provide strategies and insights into optimizing biocompatibility and the therapeutic potential of biomaterials for enhanced stability and efficacy in clinical applications. STATEMENT OF SIGNIFICANCE: As a hallmark of the foreign body response (FBR), foreign body giant cells (FBGCs) significantly impact the success of implantable biomaterials, potentially leading to complications such as chronic inflammation, fibrosis, and device failure. Understanding the role of FBGCs and modulating their responses are vital for successful material applications. This review provides a comprehensive overview of the molecules and signaling pathways guiding macrophage fusion into FBGCs. By elucidating the physical and chemical properties of materials inducing distinct levels of FBGCs, potential strategies of materials in modulating FBGC formation are investigated. Additionally, the biological activities of FBGCs and their heterogeneity in responses to different material categories in vivo are highlighted in this review, offering crucial insights for improving the biocompatibility and efficacy of biomaterials.
Collapse
Affiliation(s)
- Fangyuan Cai
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Bulin Jiang
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Fuming He
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
30
|
Chen T, Fernández-Espartero CH, Illand A, Tsai CT, Yang Y, Klapholz B, Jouchet P, Fabre M, Rossier O, Cui B, Lévêque-Fort S, Brown NH, Giannone G. Actin-driven nanotopography promotes stable integrin adhesion formation in developing tissue. Nat Commun 2024; 15:8691. [PMID: 39375335 PMCID: PMC11458790 DOI: 10.1038/s41467-024-52899-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 09/24/2024] [Indexed: 10/09/2024] Open
Abstract
Morphogenesis requires building stable macromolecular structures from highly dynamic proteins. Muscles are anchored by long-lasting integrin adhesions to resist contractile force. However, the mechanisms governing integrin diffusion, immobilization, and activation within developing tissues remain elusive. Here, we show that actin polymerization-driven membrane protrusions form nanotopographies that enable strong adhesion at Drosophila muscle attachment sites (MASs). Super-resolution microscopy reveals that integrins assemble adhesive belts around Arp2/3-dependent actin protrusions, forming invadosome-like structures with membrane nanotopographies. Single protein tracking shows that, during MAS development, integrins become immobile and confined within diffusion traps formed by the membrane nanotopographies. Actin filaments also display restricted motion and confinement, indicating strong mechanical connection with integrins. Using isolated muscle cells, we show that substrate nanotopography, rather than rigidity, drives adhesion maturation by regulating actin protrusion, integrin diffusion and immobilization. These results thus demonstrate that actin-polymerization-driven membrane protrusions are essential for the formation of strong integrin adhesions sites in the developing embryo, and highlight the important contribution of geometry to morphogenesis.
Collapse
Affiliation(s)
- Tianchi Chen
- Interdisciplinary Institute for Neuroscience, Université Bordeaux, CNRS, UMR 5297, Bordeaux, France.
| | - Cecilia H Fernández-Espartero
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, Sevilla, Spain
| | - Abigail Illand
- Institut des sciences Moléculaires d'Orsay, Université Paris Saclay, CNRS, UMR8214, Orsay, France
| | - Ching-Ting Tsai
- Department of Chemistry and Stanford Wu-Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
| | - Yang Yang
- Department of Chemistry and Stanford Wu-Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
| | - Benjamin Klapholz
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Pierre Jouchet
- Institut des sciences Moléculaires d'Orsay, Université Paris Saclay, CNRS, UMR8214, Orsay, France
| | - Mélanie Fabre
- Interdisciplinary Institute for Neuroscience, Université Bordeaux, CNRS, UMR 5297, Bordeaux, France
| | - Olivier Rossier
- Interdisciplinary Institute for Neuroscience, Université Bordeaux, CNRS, UMR 5297, Bordeaux, France
| | - Bianxiao Cui
- Department of Chemistry and Stanford Wu-Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
| | - Sandrine Lévêque-Fort
- Institut des sciences Moléculaires d'Orsay, Université Paris Saclay, CNRS, UMR8214, Orsay, France
| | - Nicholas H Brown
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| | - Grégory Giannone
- Interdisciplinary Institute for Neuroscience, Université Bordeaux, CNRS, UMR 5297, Bordeaux, France.
| |
Collapse
|
31
|
Deissler HL, Rehak M, Lytvynchuk L. VEGF-A 165a and angiopoietin-2 differently affect the barrier formed by retinal endothelial cells. Exp Eye Res 2024; 247:110062. [PMID: 39187056 DOI: 10.1016/j.exer.2024.110062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/25/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Exposure to VEGF-A165a over several days leads to a persistent dysfunction of the very tight barrier formed by immortalized endothelial cells of the bovine retina (iBREC). Elevated permeability of the barrier is indicated by low cell index values determined by electric cell-substrate impedance measurements, by lower amounts of claudin-1, and by disruption of the homogenous and continuous staining of vascular endothelial cadherin at the plasma membrane. Because of findings that suggest modulation of VEGF-A's detrimental effects on the inner blood-retina barrier by the angiogenic growth factor angiopoietin-2, we investigated in more detail in vitro whether this growth factor indeed changes the stability of the barrier formed by retinal endothelial cells or modulates effects of VEGF-A. In view of the clinical relevance of anti-VEGF therapy, we also studied whether blocking VEGF-A-driven signaling is sufficient to prevent barrier dysfunction induced by a combination of both growth factors. Although angiopoietin-2 stimulated proliferation of iBREC, the formed barrier was not weakened at a concentration of 3 nM: Cell index values remained high and expression or subcellular localization of claudin-1 and vascular endothelial cadherin, respectively, were not affected. Angiopoietin-2 enhanced the changes induced by VEGF-A165a and this was more pronounced at lower concentrations of VEGF-A165a. Specific inhibition of the VEGF receptors with tivozanib as well as interfering with binding of VEGF-A to its receptors with bevacizumab prevented the detrimental effects of the growth factors; dual binding of angiopoietin-2 and VEGF-A by faricimab was marginally more efficient. Uptake of extracellular angiopoietin-2 by iBREC can be efficiently prevented by addition of faricimab which is also internalized by the cells. Exposure of the cells to faricimab over several days stabilized their barrier, confirming that inhibition of VEGF-A signaling is not harmful to this cell type. Taken together, our results confirm the dominant role of VEGF-A165a in processes resulting in increased permeability of retinal endothelial cells in which angiopoietin-2 might play a minor modulating role.
Collapse
Affiliation(s)
- Heidrun L Deissler
- Department of Ophthalmology, Justus Liebig University Giessen, Giessen, Germany.
| | - Matus Rehak
- Department of Ophthalmology, Justus Liebig University Giessen, Giessen, Germany; Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Lyubomyr Lytvynchuk
- Department of Ophthalmology, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
32
|
Hoffmann MH, Kirchner H, Krönke G, Riemekasten G, Bonelli M. Inflammatory tissue priming: novel insights and therapeutic opportunities for inflammatory rheumatic diseases. Ann Rheum Dis 2024; 83:1233-1253. [PMID: 38702177 DOI: 10.1136/ard-2023-224092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Due to optimised treatment strategies and the availability of new therapies during the last decades, formerly devastating chronic inflammatory diseases such as rheumatoid arthritis or systemic sclerosis (SSc) have become less menacing. However, in many patients, even state-of-the-art treatment cannot induce remission. Moreover, the risk for flares strongly increases once anti-inflammatory therapy is tapered or withdrawn, suggesting that underlying pathological processes remain active even in the absence of overt inflammation. It has become evident that tissues have the ability to remember past encounters with pathogens, wounds and other irritants, and to react more strongly and/or persistently to the next occurrence. This priming of the tissue bears a paramount role in defence from microbes, but on the other hand drives inflammatory pathologies (the Dr Jekyll and Mr Hyde aspect of tissue adaptation). Emerging evidence suggests that long-lived tissue-resident cells, such as fibroblasts, macrophages, long-lived plasma cells and tissue-resident memory T cells, determine inflammatory tissue priming in an interplay with infiltrating immune cells of lymphoid and myeloid origin, and with systemically acting factors such as cytokines, extracellular vesicles and antibodies. Here, we review the current state of science on inflammatory tissue priming, focusing on tissue-resident and tissue-occupying cells in arthritis and SSc, and reflect on the most promising treatment options targeting the maladapted tissue response during these diseases.
Collapse
Affiliation(s)
| | - Henriette Kirchner
- Institute for Human Genetics, Epigenetics and Metabolism Lab, University of Lübeck, Lübeck, Germany
| | - Gerhard Krönke
- Department of Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gabriela Riemekasten
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Michael Bonelli
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| |
Collapse
|
33
|
Moghaddam AS, Dunne K, Breyer W, Wu Y, Pashuck ET. Hydrogels with Independently Controlled Adhesion Ligand Mobility and Viscoelasticity Increase Cell Adhesion and Spreading. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614501. [PMID: 39386463 PMCID: PMC11463488 DOI: 10.1101/2024.09.23.614501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
A primary objective in designing hydrogels for cell culture is recreating the cell-matrix interactions found within human tissues. Identifying the most important biomaterial features for these interactions is challenging because it is difficult to independently adjust variables such as matrix stiffness, stress relaxation, the mobility of adhesion ligands and the ability of these ligands to support cellular forces. In this work we designed a hydrogel platform consisting of interpenetrating polymer networks of covalently crosslinked poly(ethylene glycol) (PEG) and self-assembled peptide amphiphiles (PA). We can tailor the storage modulus of the hydrogel by altering the concentration and composition of each network, and we can tune the stress relaxation half-life through the non-covalent bonding in the PA network. Ligand mobility can be adjusted independently of the matrix mechanical properties by attaching the RGD cell adhesion ligand to either the covalent PEG network, the dynamic PA network, or both networks at once. Interestingly, our findings show that endothelial cell adhesion formation and spreading is maximized in soft, viscoelastic gels in which RGD adhesion ligands are present on both the covalent PEG and non-covalent PA networks. The dynamic nature of cell adhesion domains, coupled with their ability to exert substantial forces on the matrix, suggests that having different presentations of RGD ligands which are either mobile or are capable of withstanding significant forces are needed mimic different aspects of complex cell-matrix adhesions. By demonstrating how different presentations of RGD ligands affect cell behavior independently of viscoelastic properties, these results contribute to the rational design of hydrogels that facilitate desired cell-matrix interactions, with the potential of improving in vitro models and regenerative therapies.
Collapse
Affiliation(s)
| | - Katelyn Dunne
- Department of Bioengineering, Lehigh University, Bethlehem PA, USA, 18015
| | - Wendy Breyer
- Department of Chemistry, Lehigh University, Bethlehem PA, USA, 18015
| | - Yingjie Wu
- Department of Bioengineering, Lehigh University, Bethlehem PA, USA, 18015
| | - E Thomas Pashuck
- Department of Bioengineering, Lehigh University, Bethlehem PA, USA, 18015
| |
Collapse
|
34
|
Yaba A, Thalheim T, Schneider MR. The role of cell-cell and cell-matrix junctional complexes in sebaceous gland homeostasis and differentiation. Cell Commun Signal 2024; 22:445. [PMID: 39313816 PMCID: PMC11421122 DOI: 10.1186/s12964-024-01835-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024] Open
Abstract
Sebaceous glands (SG) are essential for maintaining skin integrity, as their lipid-rich secretion (sebum) lubricates and protects the epidermis and hairs. In addition, these glands have an emerging role in immunomodulation and may affect whole-body energy metabolism, besides being an appealing model for research in topics as lipogenesis, stem cell biology and tumorigenesis. In spite of the increasing interest in studying SGs pathophysiology, sebocyte cell-cell and cell-matrix adhesion processes have been only superficially examined, and never in a systematic way. This is regrettable considering the key role of cellular adhesion in general, the specific expression pattern of indivdual junctional complexes, and the reports of structural changes in SGs after altered expression of adhesion-relevant proteins. Here, we review the available information on structural and functional aspects of cell-cell and cell-matrix junctions in sebocytes, and how these processes change under pathological conditions. This information will contribute for better understanding sebocyte differentiation and sebum secretion, and may provide hints for novel therapeutic strategies for skin diseases.
Collapse
Affiliation(s)
- Aylin Yaba
- Department of Histology and Embryology, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Torsten Thalheim
- Present Address: Deutsches Biomasseforschungszentrum gGmbH, Torgauer Str. 116, 04347, Leipzig, Germany
- Interdisciplinary Centre for Bioinformatics, Härtelstr. 16-18, 04107, Leipzig, Germany
| | - Marlon R Schneider
- Institute of Veterinary Physiology, University of Leipzig, An den Tierkliniken 7, 04103, Leipzig, Germany.
| |
Collapse
|
35
|
Berdiaki A, Neagu M, Tzanakakis P, Spyridaki I, Pérez S, Nikitovic D. Extracellular Matrix Components and Mechanosensing Pathways in Health and Disease. Biomolecules 2024; 14:1186. [PMID: 39334952 PMCID: PMC11430160 DOI: 10.3390/biom14091186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Glycosaminoglycans (GAGs) and proteoglycans (PGs) are essential components of the extracellular matrix (ECM) with pivotal roles in cellular mechanosensing pathways. GAGs, such as heparan sulfate (HS) and chondroitin sulfate (CS), interact with various cell surface receptors, including integrins and receptor tyrosine kinases, to modulate cellular responses to mechanical stimuli. PGs, comprising a core protein with covalently attached GAG chains, serve as dynamic regulators of tissue mechanics and cell behavior, thereby playing a crucial role in maintaining tissue homeostasis. Dysregulation of GAG/PG-mediated mechanosensing pathways is implicated in numerous pathological conditions, including cancer and inflammation. Understanding the intricate mechanisms by which GAGs and PGs modulate cellular responses to mechanical forces holds promise for developing novel therapeutic strategies targeting mechanotransduction pathways in disease. This comprehensive overview underscores the importance of GAGs and PGs as key mediators of mechanosensing in maintaining tissue homeostasis and their potential as therapeutic targets for mitigating mechano-driven pathologies, focusing on cancer and inflammation.
Collapse
Affiliation(s)
- Aikaterini Berdiaki
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| | - Monica Neagu
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania;
| | - Petros Tzanakakis
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| | - Ioanna Spyridaki
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| | - Serge Pérez
- Centre de Recherche sur les Macromolécules Végétales (CERMAV), Centre National de la Recherche Scientifique (CNRS), University Grenoble Alpes, 38000 Grenoble, France;
| | - Dragana Nikitovic
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| |
Collapse
|
36
|
Tosi G, Paoli A, Zuccolotto G, Turco E, Simonato M, Tosoni D, Tucci F, Lugato P, Giomo M, Elvassore N, Rosato A, Cogo P, Pece S, Santoro MM. Cancer cell stiffening via CoQ 10 and UBIAD1 regulates ECM signaling and ferroptosis in breast cancer. Nat Commun 2024; 15:8214. [PMID: 39294175 PMCID: PMC11410950 DOI: 10.1038/s41467-024-52523-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/11/2024] [Indexed: 09/20/2024] Open
Abstract
CoQ10 (Coenzyme Q10) is an essential fat-soluble metabolite that plays a key role in cellular metabolism. A less-known function of CoQ10 is whether it may act as a plasma membrane-stabilizing agent and whether this property can affect cancer development and progression. Here, we show that CoQ10 and its biosynthetic enzyme UBIAD1 play a critical role in plasmamembrane mechanical properties that are of interest for breast cancer (BC) progression and treatment. CoQ10 and UBIAD1 increase membrane fluidity leading to increased cell stiffness in BC. Furthermore, CoQ10 and UBIAD1 states impair ECM (extracellular matrix)-mediated oncogenic signaling and reduce ferroptosis resistance in BC settings. Analyses on human patients and mouse models reveal that UBIAD1 loss is associated with BC development and progression and UBIAD1 expression in BC limits CTCs (circulating tumor cells) survival and lung metastasis formation. Overall, this study reveals that CoQ10 and UBIAD1 can be further investigated to develop therapeutic interventions to treat BC patients with poor prognosis.
Collapse
Affiliation(s)
- Giovanni Tosi
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padova, Padova, Italy
| | - Alessandro Paoli
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padova, Padova, Italy
| | - Gaia Zuccolotto
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Emilia Turco
- Molecular Biotechnology Center, University of Turin, Torino, Italy
| | - Manuela Simonato
- Pediatric Research Institute "Città della Speranza", Padova, Italy
| | | | | | - Pietro Lugato
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padova, Padova, Italy
| | - Monica Giomo
- Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Nicola Elvassore
- Department of Industrial Engineering, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Antonio Rosato
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Paola Cogo
- Pediatric Research Institute "Città della Speranza", Padova, Italy
- Division of Pediatrics, Department of Medicine, Udine University, Udine, Italy
| | - Salvatore Pece
- IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology, University of Milan, Milano, Italy
| | - Massimo M Santoro
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padova, Padova, Italy.
- Veneto Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
37
|
Zhang Y, Li X, Yu Q, Lv X, Li C, Wang L, Liu Y, Wang Q, Yang Z, Fu X, Xiao R. Using network pharmacology to discover potential drugs for hypertrophic scars. Br J Dermatol 2024; 191:592-604. [PMID: 38820210 DOI: 10.1093/bjd/ljae234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Hypertrophic scarring is a disease of abnormal skin fibrosis caused by excessive fibroblast proliferation. Existing drugs have not achieved satisfactory therapeutic effects. OBJECTIVES To explore the molecular pathogenesis of hypertrophic scars and screen effective drugs for their treatment. METHODS Existing human hypertrophic scar RNA sequencing data were utilized to search for hypertrophic scar-related gene modules and key genes through weighted gene co-expression network analysis (WGCNA). Candidate compounds were screened in a compound library. Potential drugs were screened by molecular docking and verified in human hypertrophic scar fibroblasts and a mouse mechanical force hypertrophic scar model. RESULTS WGCNA showed that hypertrophic scar-associated gene modules influence focal adhesion, the transforming growth factor (TGF)-β signalling pathway and other biologic pathways. Integrin β1 (ITGB1) is the hub protein. Among the candidate compounds obtained by computer virtual screening and molecular docking, crizotinib, sorafenib and SU11274 can inhibit the proliferation and migration of human hypertrophic scar fibroblasts and profibrotic gene expression. Crizotinib had the best effect on hypertrophic scar attenuation in mouse models. At the same time, mouse ITGB1 small interfering RNA can also inhibit mouse scar hyperplasia. CONCLUSIONS ITGB1 and TGF-β signalling pathways are important for hypertrophic scar formation. Crizotinib could be a potential treatment drug for hypertrophic scars.
Collapse
Affiliation(s)
- Yi Zhang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Xiu Li
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Qian Yu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China
| | - Xiaoyan Lv
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Chen Li
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Lianzhao Wang
- Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China
| | - Yue Liu
- Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China
| | - Qian Wang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Zhigang Yang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Xin Fu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Ran Xiao
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| |
Collapse
|
38
|
Elwakiel A, Gupta D, Rana R, Manoharan J, Al-Dabet MM, Ambreen S, Fatima S, Zimmermann S, Mathew A, Li Z, Singh K, Gupta A, Pal S, Sulaj A, Kopf S, Schwab C, Baber R, Geffers R, Götze T, Alo B, Lamers C, Kluge P, Kuenze G, Kohli S, Renné T, Shahzad K, Isermann B. Factor XII signaling via uPAR-integrin β1 axis promotes tubular senescence in diabetic kidney disease. Nat Commun 2024; 15:7963. [PMID: 39261453 PMCID: PMC11390906 DOI: 10.1038/s41467-024-52214-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
Coagulation factor XII (FXII) conveys various functions as an active protease that promotes thrombosis and inflammation, and as a zymogen via surface receptors like urokinase-type plasminogen activator receptor (uPAR). While plasma levels of FXII are increased in diabetes mellitus and diabetic kidney disease (DKD), a pathogenic role of FXII in DKD remains unknown. Here we show that FXII is locally expressed in kidney tubular cells and that urinary FXII correlates with kidney dysfunction in DKD patients. F12-deficient mice (F12-/-) are protected from hyperglycemia-induced kidney injury. Mechanistically, FXII interacts with uPAR on tubular cells promoting integrin β1-dependent signaling. This signaling axis induces oxidative stress, persistent DNA damage and senescence. Blocking uPAR or integrin β1 ameliorates FXII-induced tubular cell injury. Our findings demonstrate that FXII-uPAR-integrin β1 signaling on tubular cells drives senescence. These findings imply previously undescribed diagnostic and therapeutic approaches to detect or treat DKD and possibly other senescence-associated diseases.
Collapse
Affiliation(s)
- Ahmed Elwakiel
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany.
| | - Dheerendra Gupta
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Rajiv Rana
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Jayakumar Manoharan
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Moh'd Mohanad Al-Dabet
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
- Department of Medical Laboratory Sciences, School of Science, University of Jordan, Amman, Jordan
| | - Saira Ambreen
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Sameen Fatima
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Silke Zimmermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Akash Mathew
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Zhiyang Li
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Kunal Singh
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Anubhuti Gupta
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Surinder Pal
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Alba Sulaj
- Internal Medicine I and Clinical Chemistry, German Diabetes Center (DZD), University of Heidelberg, Heidelberg, Germany
| | - Stefan Kopf
- Internal Medicine I and Clinical Chemistry, German Diabetes Center (DZD), University of Heidelberg, Heidelberg, Germany
| | - Constantin Schwab
- Institute of pathology, University of Heidelberg, Heidelberg, Germany
| | - Ronny Baber
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
- Leipzig Medical Biobank, Leipzig University, Leipzig, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Tom Götze
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Bekas Alo
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Christina Lamers
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Paul Kluge
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Georg Kuenze
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, Leipzig, Germany
- Center for Scalable Data Analytics and Artificial Intelligence, Leipzig University, Leipzig, Germany
| | - Shrey Kohli
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Khurrum Shahzad
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany.
| |
Collapse
|
39
|
Ostadi Y, Khanali J, Tehrani FA, Yazdanpanah G, Bahrami S, Niazi F, Niknejad H. Decellularized Extracellular Matrix Scaffolds for Soft Tissue Augmentation: From Host-Scaffold Interactions to Bottlenecks in Clinical Translation. Biomater Res 2024; 28:0071. [PMID: 39247652 PMCID: PMC11378302 DOI: 10.34133/bmr.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/29/2024] [Indexed: 09/10/2024] Open
Abstract
Along with a paradigm shift in looking at soft tissue fillers from space-filling to bioactive materials, decellularized extracellular matrix (DEM) fillers have gained more attention considering their superior bioactivity. However, the complex mechanisms that govern the interaction between host tissues and DEMs have been partially understood. This review first covers the mechanisms that determine immunogenicity, angiogenesis and vasculogenesis, and recellularization and remodeling after DEM implantation into host tissue, with a particular focus on related findings from filler materials. Accordingly, the review delves into the dual role of macrophages and their M1/M2 polarization paradigm to form both constructive and destructive immune responses to DEM implants. Moreover, the contribution of macrophages in angiogenesis has been elucidated, which includes but is not limited to the secretion of angiogenic growth factors and extracellular matrix (ECM) remodeling. The findings challenge the traditional view of immune cells as solely destructive entities in biomaterials and indicate their multifaceted roles in tissue regeneration. Furthermore, the review discusses how the compositional factors of DEMs, such as the presence of growth factors and matrikines, can influence angiogenesis, cell fate, and differentiation during the recellularization process. It is also shown that the biomechanical properties of DEMs, including tissue stiffness, modulate cell responses through mechanotransduction pathways, and the structural properties of DEMs, such as scaffold porosity, impact cell-cell and cell-ECM interactions. Finally, we pointed out the current clinical applications, the bottlenecks in the clinical translation of DEM biomaterials into soft tissue fillers, as well as the naïve research areas of the field.
Collapse
Affiliation(s)
- Yasamin Ostadi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Khanali
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh A Tehrani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Feizollah Niazi
- Department of Plastic and Reconstructive Surgery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Hu L, Cohen RI, Barroso M, Boustany NN. Comparison of vinculin tension in cellular monolayers and three-dimensional multicellular aggregates. BIOMEDICAL OPTICS EXPRESS 2024; 15:5199-5214. [PMID: 39296399 PMCID: PMC11407257 DOI: 10.1364/boe.529156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/21/2024]
Abstract
Confocal frequency-domain fluorescence lifetime and Förster resonance energy transfer (FRET) microscopy of Chinese hamster ovary (CHO-K1) cells expressing the vinculin tension sensor (VinTS) is used to compare vinculin tension in three-dimensional (3D) multicellular aggregates and 2D cellular monolayers. In both 2D and 3D cultures, the FRET efficiency of VinTS is 5-6% lower than that of VinTL (p < 0.05), a tail-less control which cannot bind actin or paxillin. The difference between VinTS and VinTL FRET efficiency can be mitigated by treatment with the Rho-associated kinase inhibitor Y-27632, demonstrating that VinTS is under tension in both 2D and 3D cultures. However, there is an overall decrease in FRET efficiency of both VinTS and VinTL in the 3D multicellular aggregates compared with the 2D monolayers. Expression of VinTS in 2D and 3D cultures exhibits puncta consistent with cellular adhesions. While paxillin is present at the sites of VinTS expression in the 2D monolayers, it is generally absent from VinTS puncta in the 3D aggregates. The results suggest that VinTS experiences a modified environment in 3D aggregates compared with 2D monolayers and provide a basis for further investigation of molecular tension sensors in 3D tissue models.
Collapse
Affiliation(s)
- Luni Hu
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Rick I Cohen
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Margarida Barroso
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Nada N Boustany
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
41
|
Horrocks MS, Zhurenkov KE, Malmström J. Conducting polymer hydrogels for biomedical application: Current status and outstanding challenges. APL Bioeng 2024; 8:031503. [PMID: 39323539 PMCID: PMC11424142 DOI: 10.1063/5.0218251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024] Open
Abstract
Conducting polymer hydrogels (CPHs) are composite polymeric materials with unique properties that combine the electrical capabilities of conducting polymers (CPs) with the excellent mechanical properties and biocompatibility of traditional hydrogels. This review aims to highlight how the unique properties CPHs have from combining their two constituent materials are utilized within the biomedical field. First, the synthesis approaches and applications of non-CPH conductive hydrogels are discussed briefly, contrasting CPH-based systems. The synthesis routes of hydrogels, CPs, and CPHs are then discussed. This review also provides a comprehensive overview of the recent advancements and applications of CPHs in the biomedical field, encompassing their applications as biosensors, drug delivery scaffolds (DDSs), and tissue engineering platforms. Regarding their applications within tissue engineering, a comprehensive discussion of the usage of CPHs for skeletal muscle prosthetics and regeneration, cardiac regeneration, epithelial regeneration and wound healing, bone and cartilage regeneration, and neural prosthetics and regeneration is provided. Finally, critical challenges and future perspectives are also addressed, emphasizing the need for continued research; however, this fascinating class of materials holds promise within the vastly evolving field of biomedicine.
Collapse
|
42
|
Kaivola J, Punovuori K, Chastney MR, Miroshnikova YA, Abdo H, Bertillot F, Krautgasser F, Franco JD, Conway JR, Follain G, Hagström J, Mäkitie A, Irjala H, Ventelä S, Hamidi H, Scita G, Cerbino R, Wickström SA, Ivaska J. Restoring mechanophenotype reverts malignant properties of ECM-enriched vocal fold cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.22.609159. [PMID: 39372730 PMCID: PMC11451600 DOI: 10.1101/2024.08.22.609159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Increased extracellular matrix (ECM) and matrix stiffness promote solid tumor progression. However, mechanotransduction in cancers arising in mechanically active tissues remains underexplored. Here, we report upregulation of multiple ECM components accompanied by tissue stiffening in vocal fold cancer (VFC). We compare non-cancerous (NC) and patient-derived VFC cells - from early (mobile, T1) to advanced-stage (immobile, T3) cancers - revealing an association between VFC progression and cell-surface receptor heterogeneity, reduced laminin-binding integrin cell-cell junction localization and a flocking mode of collective cell motility. Mimicking physiological movement of healthy vocal fold tissue (stretching/vibration), decreases oncogenic nuclear β-catenin and YAP levels in VFC. Multiplex immunohistochemistry of VFC tumors uncovered a correlation between ECM content, nuclear YAP and patient survival, concordant with VFC sensitivity to YAP-TEAD inhibitors in vitro. Our findings present evidence that VFC is a mechanically sensitive malignancy and restoration of tumor mechanophenotype or YAP/TAZ targeting, represents a tractable anti-oncogenic therapeutic avenue for VFC.
Collapse
Affiliation(s)
- Jasmin Kaivola
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Karolina Punovuori
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki Finland
| | - Megan R. Chastney
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Yekaterina A. Miroshnikova
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki Finland
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hind Abdo
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Fabien Bertillot
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki Finland
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | | | - Jasmin Di Franco
- Faculty of Physics, University of Vienna, Vienna, Austria
- Vienna Doctoral School in Physics, University of Vienna, Vienna, Austria
| | - James R.W. Conway
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Gautier Follain
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Jaana Hagström
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Department of Oral Pathology and Radiology, University of Turku and Turku University Hospital, Turku, Finland
- Research Programs Unit, Translational Cancer Medicine, University of Helsinki, Helsinki, Finland
| | - Antti Mäkitie
- Department of Otorhinolaryngology – Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Heikki Irjala
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Turku and Turku University Hospital, Turku, Finland
| | - Sami Ventelä
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Turku and Turku University Hospital, Turku, Finland
| | - Hellyeh Hamidi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Giorgio Scita
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy
| | | | - Sara A. Wickström
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki Finland
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Department of Life Technologies, University of Turku, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Foundation for the Finnish Cancer Institute, Helsinki, Finland
| |
Collapse
|
43
|
Wang T, Liu X, Li J, Yue Y, Li J, Wang M, Wei N, Hao L. Mechanisms of mechanical force in periodontal homeostasis: a review. Front Immunol 2024; 15:1438726. [PMID: 39221238 PMCID: PMC11361942 DOI: 10.3389/fimmu.2024.1438726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Mechanical forces affect periodontal health through multiple mechanisms. Normally, mechanical forces can boost soft and hard tissue metabolism. However, excessive forces may damage the periodontium or result in irreversible inflammation, whereas absence of occlusion forces also leads to tissue atrophy and bone resorption. We systemically searched the PubMed and Web of Science databases and found certain mechanisms of mechanical forces on immune defence, extracellular matrix (ECM) metabolism, specific proteins, bone metabolism, characteristic periodontal ligament stem cells (PDLSCs) and non-coding RNAs (ncRNAs) as these factors contribute to periodontal homeostasis. The immune defence functions change under forces; genes, signalling pathways and proteinases are altered under forces to regulate ECM metabolism; several specific proteins are separately discussed due to their important functions in mechanotransduction and tissue metabolism. Functions of osteocytes, osteoblasts, and osteoclasts are activated to maintain bone homeostasis. Additionally, ncRNAs have the potential to influence gene expression and thereby, modify tissue metabolism. This review summarizes all these mechanisms of mechanical forces on periodontal homeostasis. Identifying the underlying causes, this review provides a new perspective of the mechanisms of force on periodontal health and guides for some new research directions of periodontal homeostasis.
Collapse
Affiliation(s)
- Tianqi Wang
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xinran Liu
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiaxin Li
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yuan Yue
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jinle Li
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of General Clinic, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Min Wang
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Na Wei
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Liang Hao
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
44
|
Eshaq AM, Flanagan TW, Hassan SY, Al Asheikh SA, Al-Amoudi WA, Santourlidis S, Hassan SL, Alamodi MO, Bendhack ML, Alamodi MO, Haikel Y, Megahed M, Hassan M. Non-Receptor Tyrosine Kinases: Their Structure and Mechanistic Role in Tumor Progression and Resistance. Cancers (Basel) 2024; 16:2754. [PMID: 39123481 PMCID: PMC11311543 DOI: 10.3390/cancers16152754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/30/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Protein tyrosine kinases (PTKs) function as key molecules in the signaling pathways in addition to their impact as a therapeutic target for the treatment of many human diseases, including cancer. PTKs are characterized by their ability to phosphorylate serine, threonine, or tyrosine residues and can thereby rapidly and reversibly alter the function of their protein substrates in the form of significant changes in protein confirmation and affinity for their interaction with protein partners to drive cellular functions under normal and pathological conditions. PTKs are classified into two groups: one of which represents tyrosine kinases, while the other one includes the members of the serine/threonine kinases. The group of tyrosine kinases is subdivided into subgroups: one of them includes the member of receptor tyrosine kinases (RTKs), while the other subgroup includes the member of non-receptor tyrosine kinases (NRTKs). Both these kinase groups function as an "on" or "off" switch in many cellular functions. NRTKs are enzymes which are overexpressed and activated in many cancer types and regulate variable cellular functions in response to extracellular signaling-dependent mechanisms. NRTK-mediated different cellular functions are regulated by kinase-dependent and kinase-independent mechanisms either in the cytoplasm or in the nucleus. Thus, targeting NRTKs is of great interest to improve the treatment strategy of different tumor types. This review deals with the structure and mechanistic role of NRTKs in tumor progression and resistance and their importance as therapeutic targets in tumor therapy.
Collapse
Affiliation(s)
- Abdulaziz M. Eshaq
- Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA;
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | - Sofie-Yasmin Hassan
- Department of Pharmacy, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Sara A. Al Asheikh
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Waleed A. Al-Amoudi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Simeon Santourlidis
- Institute of Cell Therapeutics and Diagnostics, University Medical Center of Duesseldorf, 40225 Duesseldorf, Germany;
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Maryam O. Alamodi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Marcelo L. Bendhack
- Department of Urology, Red Cross University Hospital, Positivo University, Rua Mauá 1111, Curitiba 80030-200, Brazil;
| | - Mohammed O. Alamodi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France;
- Department of Operative Dentistry and Endodontics, Dental Faculty, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mossad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| | - Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France;
- Department of Operative Dentistry and Endodontics, Dental Faculty, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
45
|
Samaržija I, Lukiyanchuk V, Lončarić M, Rac-Justament A, Stojanović N, Gorodetska I, Kahya U, Humphries JD, Fatima M, Humphries MJ, Fröbe A, Dubrovska A, Ambriović-Ristov A. The extracellular matrix component perlecan/HSPG2 regulates radioresistance in prostate cancer cells. Front Cell Dev Biol 2024; 12:1452463. [PMID: 39149513 PMCID: PMC11325029 DOI: 10.3389/fcell.2024.1452463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024] Open
Abstract
Radiotherapy of prostate cancer (PC) can lead to the acquisition of radioresistance through molecular mechanisms that involve, in part, cell adhesion-mediated signaling. To define these mechanisms, we employed a DU145 PC model to conduct a comparative mass spectrometry-based proteomic analysis of the purified integrin nexus, i.e., the cell-matrix junction where integrins bridge assembled extracellular matrix (matrisome components) to adhesion signaling complexes (adhesome components). When parental and radioresistant cells were compared, the expression of integrins was not changed, but cell radioresistance was associated with extensive matrix remodeling and changes in the complement of adhesion signaling proteins. Out of 72 proteins differentially expressed in the parental and radioresistant cells, four proteins were selected for functional validation based on their correlation with biochemical recurrence-free survival. Perlecan/heparan sulfate proteoglycan 2 (HSPG2) and lysyl-like oxidase-like 2 (LOXL2) were upregulated, while sushi repeat-containing protein X-linked (SRPX) and laminin subunit beta 3 (LAMB3) were downregulated in radioresistant DU145 cells. Knockdown of perlecan/HSPG2 sensitized radioresistant DU145 RR cells to irradiation while the sensitivity of DU145 parental cells did not change, indicating a potential role for perlecan/HSPG2 and its associated proteins in suppressing tumor radioresistance. Validation in androgen-sensitive parental and radioresistant LNCaP cells further supported perlecan/HSPG2 as a regulator of cell radiosensitivity. These findings extend our understanding of the interplay between extracellular matrix remodeling and PC radioresistance and signpost perlecan/HSPG2 as a potential therapeutic target and biomarker for PC.
Collapse
Affiliation(s)
- Ivana Samaržija
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Vasyl Lukiyanchuk
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
| | - Marija Lončarić
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Anja Rac-Justament
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Nikolina Stojanović
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ielizaveta Gorodetska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Uğur Kahya
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Jonathan D Humphries
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Mahak Fatima
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
| | - Martin J Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
| | - Ana Fröbe
- Department of Oncology and Nuclear Medicine, Sestre Milosrdnice University Hospital Center, School of Dental Medicine, University of Zagreb, Zagreb, Croatia
| | - Anna Dubrovska
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- German Cancer Consortium, Partner Site Dresden and German Cancer Research Center, Heidelberg, Germany
- National Center for Tumor Diseases, Partner Site Dresden: German Cancer Research Center, Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Andreja Ambriović-Ristov
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
46
|
Chang CY, Pearce G, Betaneli V, Kapustsenka T, Hosseini K, Fischer-Friedrich E, Corbeil D, Karbanová J, Taubenberger A, Dahncke B, Rauner M, Furesi G, Perner S, Rost F, Jessberger R. The F-actin bundler SWAP-70 promotes tumor metastasis. Life Sci Alliance 2024; 7:e202302307. [PMID: 38760173 PMCID: PMC11101836 DOI: 10.26508/lsa.202302307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024] Open
Abstract
Dynamic rearrangements of the F-actin cytoskeleton are a hallmark of tumor metastasis. Thus, proteins that govern F-actin rearrangements are of major interest for understanding metastasis and potential therapies. We hypothesized that the unique F-actin binding and bundling protein SWAP-70 contributes importantly to metastasis. Orthotopic, ectopic, and short-term tail vein injection mouse breast and lung cancer models revealed a strong positive dependence of lung and bone metastasis on SWAP-70. Breast cancer cell growth, migration, adhesion, and invasion assays revealed SWAP-70's key role in these metastasis-related cell features and the requirement for SWAP-70 to bind F-actin. Biophysical experiments showed that tumor cell stiffness and deformability are negatively modulated by SWAP-70. Together, we present a hitherto undescribed, unique F-actin modulator as an important contributor to tumor metastasis.
Collapse
Affiliation(s)
- Chao-Yuan Chang
- Institute for Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Glen Pearce
- Institute for Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Viktoria Betaneli
- Institute for Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Tatsiana Kapustsenka
- Institute for Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Kamran Hosseini
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany
| | | | - Denis Corbeil
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Dresden, Germany
- Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jana Karbanová
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Dresden, Germany
- Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Anna Taubenberger
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Dresden, Germany
- Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Björn Dahncke
- Institute for Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III and Center for Healthy Aging, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Giulia Furesi
- Department of Medicine III and Center for Healthy Aging, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Sven Perner
- Institute of Pathology, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
- Institute of Pathology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Fabian Rost
- DRESDEN-concept Genome Center, Technology Platform at the Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Rolf Jessberger
- Institute for Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
47
|
Duan Y, Yang Y, Zhao S, Bai Y, Yao W, Gao X, Yin J. Crosstalk in extrahepatic and hepatic system in NAFLD/NASH. Liver Int 2024; 44:1856-1871. [PMID: 38717072 DOI: 10.1111/liv.15967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/28/2024] [Accepted: 04/26/2024] [Indexed: 07/17/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as the most prevalent chronic liver disease globally. Non-alcoholic steatohepatitis (NASH) represents an extremely progressive form of NAFLD, which, without timely intervention, may progress to cirrhosis or hepatocellular carcinoma. Presently, a definitive comprehension of the pathogenesis of NAFLD/NASH eludes us, and pharmacological interventions targeting NASH specifically remain constrained. The aetiology of NAFLD encompasses a myriad of external factors including environmental influences, dietary habits and gender disparities. More significantly, inter-organ and cellular interactions within the human body play a role in the development or regression of the disease. In this review, we categorize the influences affecting NAFLD both intra- and extrahepatically, elaborating meticulously on the mechanisms governing the onset and progression of NAFLD/NASH. This exploration delves into progress in aetiology and promising therapeutic targets. As a metabolic disorder, the development of NAFLD involves complexities related to nutrient metabolism, liver-gut axis interactions and insulin resistance, among other regulatory functions of extraneous organs. It further encompasses intra-hepatic interactions among hepatic cells, Kupffer cells (KCs) and hepatic stellate cells (HSCs). A comprehensive understanding of the pathogenesis of NAFLD/NASH from a macroscopic standpoint is instrumental in the formulation of future therapies for NASH.
Collapse
Affiliation(s)
- Yiliang Duan
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yan Yang
- The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Shuqiang Zhao
- Jiangsu Institute for Food and Drug Control, NMPA Key Laboratory for Impurity Profile of Chemical Drugs, Nanjing, Jiangsu, China
| | - Yuesong Bai
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Wenbing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
48
|
Younesi FS, Miller AE, Barker TH, Rossi FMV, Hinz B. Fibroblast and myofibroblast activation in normal tissue repair and fibrosis. Nat Rev Mol Cell Biol 2024; 25:617-638. [PMID: 38589640 DOI: 10.1038/s41580-024-00716-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
The term 'fibroblast' often serves as a catch-all for a diverse array of mesenchymal cells, including perivascular cells, stromal progenitor cells and bona fide fibroblasts. Although phenotypically similar, these subpopulations are functionally distinct, maintaining tissue integrity and serving as local progenitor reservoirs. In response to tissue injury, these cells undergo a dynamic fibroblast-myofibroblast transition, marked by extracellular matrix secretion and contraction of actomyosin-based stress fibres. Importantly, whereas transient activation into myofibroblasts aids in tissue repair, persistent activation triggers pathological fibrosis. In this Review, we discuss the roles of mechanical cues, such as tissue stiffness and strain, alongside cell signalling pathways and extracellular matrix ligands in modulating myofibroblast activation and survival. We also highlight the role of epigenetic modifications and myofibroblast memory in physiological and pathological processes. Finally, we discuss potential strategies for therapeutically interfering with these factors and the associated signal transduction pathways to improve the outcome of dysregulated healing.
Collapse
Affiliation(s)
- Fereshteh Sadat Younesi
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario, Canada
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Andrew E Miller
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA, USA
| | - Thomas H Barker
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA, USA
| | - Fabio M V Rossi
- School of Biomedical Engineering and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Boris Hinz
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario, Canada.
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
49
|
Yi L, Wen Y, Xiao M, Yuan J, Ke X, Zhang X, Khan L, Song Q, Yao Y. The proportion of tumour stroma predicts response to treatment of immune checkpoint inhibitor in combination with chemotherapy in patients with stage IIIB-IV non-small cell lung cancer. Histopathology 2024; 85:295-309. [PMID: 38660975 DOI: 10.1111/his.15202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/24/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
AIMS Immunotherapy has brought a new era to cancer treatment, yet we lack dependable predictors for its effectiveness. This study explores the predictive significance of intratumour stroma proportion (iTSP) for treatment success and prognosis in non-small cell lung cancer (NSCLC) patients undergoing treatment with immune check-point inhibitors (ICIs) together with chemotherapy. METHODS AND RESULTS We retrospectively collected data from patients with unresectable stage IIIB-IV NSCLC who were treated with first-line ICIs and chemotherapy. Each patient received a confirmed pathological diagnosis, and the pathologist evaluated the iTSP on haematoxylin and eosin (H&E)-stained sections of diagnostic tissue slides. Among the 102 H&E-stained biopsy samples, 61 (59.8%) were categorised as stroma-L (less than 50% iTSP), while 41 (40.2%) were classified as stroma-H (more than 50% iTSP). We observed that the stroma-L group exhibited a significantly better objective response rate (ORR) (72.1 versus 51.2%, P = 0.031) and deeper response depth (DpR) (-50.49 ± 28.79% versus -35.83 ± 29.91%, P = 0.015) compared to the stroma-H group. Furthermore, the stroma-L group showed longer median progression-free survival (PFS) (9.6 versus 6.0 months, P = 0.011) and overall survival (OS) (24.0 versus 12.2 months, P = 0.001) compared to the stroma-H group. Multivariate Cox proportional hazards regression analysis indicated that iTSP was a highly significant prognostic factor for both PFS [hazard ratio (HR) = 1.713; P = 0.030] and OS (HR = 2.225; P = 0.003). CONCLUSION Our findings indicate that a lower iTSP corresponds to improved clinical outcomes and greater DpR in individuals with stage IIIB-IV NSCLC treated with first-line ICIs and chemotherapy. The iTSP could potentially serve as a predictive biomarker for ICIs therapy response.
Collapse
Affiliation(s)
- Lina Yi
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingmei Wen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mengxia Xiao
- Department of Oncology, Yichun People's Hospital, Yichun, China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaokang Ke
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiuyun Zhang
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liaqat Khan
- Research Center, Benazir Bhutto Hospital of Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Research Center for Precision Medicine of Cancer, Wuhan, China
| | - Yi Yao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Research Center for Precision Medicine of Cancer, Wuhan, China
| |
Collapse
|
50
|
Ghoytasi I, Bavi O, Kaazempur Mofrad MR, Naghdabadi R. An in-silico study on the mechanical behavior of colorectal cancer cell lines in the micropipette aspiration process. Comput Biol Med 2024; 178:108744. [PMID: 38889631 DOI: 10.1016/j.compbiomed.2024.108744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/17/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
Cancer alters the structural integrity and morphology of cells. Consequently, the cell function is overshadowed. In this study, the micropipette aspiration process is computationally modeled to predict the mechanical behavior of the colorectal cancer cells. The intended cancer cells are modeled as an incompressible Neo-Hookean visco-hyperelastic material. Also, the micropipette is assumed to be rigid with no deformation. The proposed model is validated with an in-vitro study. To capture the equilibrium and time-dependent behaviors of cells, ramp, and creep tests are respectively performed using the finite element method. Through the simulations, the effects of the micropipette geometry and the aspiration pressure on the colorectal cancer cell lines are investigated. Our findings indicate that, as the inner radius of the micropipette increases, despite the increase in deformation rate and aspirated length, the time to reach the equilibrium state increases. Nevertheless, it is obvious that increasing the tip curvature radius has a small effect on the change of the aspirated length. But, due to the decrease in the stress concentration, it drastically reduces the equilibrium time and increases the deformation rate significantly. Interestingly, our results demonstrate that increasing the aspiration pressure somehow causes the cell stiffening, thereby reducing the upward trend of deformation rate, equilibrium time, and aspirated length. Our findings provide valuable insights for researchers in cell therapy and cancer treatment and can aid in developing more precise microfluidic.
Collapse
Affiliation(s)
- Ibrahim Ghoytasi
- Department of Mechanical Engineering, Sharif University of Technology, 89694-14588, Tehran, Iran
| | - Omid Bavi
- Department of Mechanical Engineering, Shiraz University of Technology, Shiraz, Iran.
| | - Mohammad Reza Kaazempur Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Reza Naghdabadi
- Department of Mechanical Engineering, Sharif University of Technology, 89694-14588, Tehran, Iran; Institute for Nanoscience and Nanotechnology, Sharif University of Technology, 89694-14588, Tehran, Iran.
| |
Collapse
|