1
|
Xie D, Lu G, Mai G, Guo Q, Xu G. Tissue-resident memory T cells in diseases and therapeutic strategies. MedComm (Beijing) 2025; 6:e70053. [PMID: 39802636 PMCID: PMC11725047 DOI: 10.1002/mco2.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Tissue-resident memory T (TRM) cells are crucial components of the immune system that provide rapid, localized responses to recurrent pathogens at mucosal and epithelial barriers. Unlike circulating memory T cells, TRM cells are located within peripheral tissues, and they play vital roles in antiviral, antibacterial, and antitumor immunity. Their unique retention and activation mechanisms, including interactions with local epithelial cells and the expression of adhesion molecules, enable their persistence and immediate functionality in diverse tissues. Recent advances have revealed their important roles in chronic inflammation, autoimmunity, and cancer, illuminating both their protective and their pathogenic potential. This review synthesizes current knowledge on TRM cells' molecular signatures, maintenance pathways, and functional dynamics across different tissues. We also explore the interactions of TRM cells with other immune cells, such as B cells, macrophages, and dendritic cells, highlighting the complex network that underpins the efficacy of TRM cells in immune surveillance and response. Understanding the nuanced regulation of TRM cells is essential for developing targeted therapeutic strategies, including vaccines and immunotherapies, to enhance their protective roles while mitigating adverse effects. Insights into TRM cells' biology hold promise for innovative treatments for infectious diseases, cancer, and autoimmune conditions.
Collapse
Affiliation(s)
- Daoyuan Xie
- Laboratory of Translational Medicine ResearchDeyang People's Hospital of Chengdu University of Traditional Chinese MedicineDeyangChina
| | - Guanting Lu
- Laboratory of Translational Medicine ResearchDeyang People's Hospital of Chengdu University of Traditional Chinese MedicineDeyangChina
| | - Gang Mai
- Laboratory of Translational Medicine ResearchDeyang People's Hospital of Chengdu University of Traditional Chinese MedicineDeyangChina
| | - Qiuyan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, Institute of Chinese Materia MedicaAcademy of Chinese Medical SciencesBeijingChina
| | - Guofeng Xu
- Inflammation & Allergic Diseases Research UnitThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| |
Collapse
|
2
|
Zhao L, Jin S, Wang S, Zhang Z, Wang X, Chen Z, Wang X, Huang S, Zhang D, Wu H. Tertiary lymphoid structures in diseases: immune mechanisms and therapeutic advances. Signal Transduct Target Ther 2024; 9:225. [PMID: 39198425 PMCID: PMC11358547 DOI: 10.1038/s41392-024-01947-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Tertiary lymphoid structures (TLSs) are defined as lymphoid aggregates formed in non-hematopoietic organs under pathological conditions. Similar to secondary lymphoid organs (SLOs), the formation of TLSs relies on the interaction between lymphoid tissue inducer (LTi) cells and lymphoid tissue organizer (LTo) cells, involving multiple cytokines. Heterogeneity is a distinguishing feature of TLSs, which may lead to differences in their functions. Growing evidence suggests that TLSs are associated with various diseases, such as cancers, autoimmune diseases, transplant rejection, chronic inflammation, infection, and even ageing. However, the detailed mechanisms behind these clinical associations are not yet fully understood. The mechanisms by which TLS maturation and localization affect immune function are also unclear. Therefore, it is necessary to enhance the understanding of TLS development and function at the cellular and molecular level, which may allow us to utilize them to improve the immune microenvironment. In this review, we delve into the composition, formation mechanism, associations with diseases, and potential therapeutic applications of TLSs. Furthermore, we discuss the therapeutic implications of TLSs, such as their role as markers of therapeutic response and prognosis. Finally, we summarize various methods for detecting and targeting TLSs. Overall, we provide a comprehensive understanding of TLSs and aim to develop more effective therapeutic strategies.
Collapse
Affiliation(s)
- Lianyu Zhao
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Song Jin
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyao Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Zhe Zhang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Xuan Wang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Zhanwei Chen
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Xiaohui Wang
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyun Huang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Dongsheng Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Haiwei Wu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| |
Collapse
|
3
|
Hullegie-Peelen DM, Tejeda-Mora H, Dieterich M, Heidt S, Bindels EMJ, Hoogduijn MJ, Hesselink DA, Baan CC. Tissue-resident memory T cells in human kidney transplants have alloreactive potential. Am J Transplant 2024; 24:1406-1413. [PMID: 38447886 DOI: 10.1016/j.ajt.2024.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
The extent to which tissue-resident memory T (TRM) cells in transplanted organs possess alloreactivity is uncertain. This study investigates the alloreactive potential of TRM cells in kidney explants from 4 patients who experienced severe acute rejection leading to graft loss. Alloreactive T cell receptor (TCR) clones were identified in pretransplant blood samples through mixed lymphocyte reactions, followed by single-cell RNA and TCR sequencing of the proliferated recipient T cells. Subsequently, these TCR clones were traced in the TRM cells of kidney explants, which were also subjected to single-cell RNA and TCR sequencing. The proportion of recipient-derived TRM cells expressing an alloreactive TCR in the 4 kidney explants varied from 0% to 9%. Notably, these alloreactive TCRs were predominantly found among CD4+ and CD8+ TRM cells with an effector phenotype. Intriguingly, these clones were present not only in recipient-derived TRM cells but also in donor-derived TRM cells, constituting up to 4% of the donor population, suggesting the presence of self-reactive TRM cells. Overall, our study demonstrates that T cells with alloreactive potential present in the peripheral blood prior to transplantation can infiltrate the kidney transplant and adopt a TRM phenotype.
Collapse
Affiliation(s)
- Daphne M Hullegie-Peelen
- Erasmus Medical Center Transplant Institute, Department of Internal Medicine, Nephrology and Transplantation, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Hector Tejeda-Mora
- Erasmus Medical Center Transplant Institute, Department of Internal Medicine, Nephrology and Transplantation, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Marjolein Dieterich
- Erasmus Medical Center Transplant Institute, Department of Internal Medicine, Nephrology and Transplantation, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Eric M J Bindels
- Department of Haematology, University Medical Center, Rotterdam, the Netherlands
| | - Martin J Hoogduijn
- Erasmus Medical Center Transplant Institute, Department of Internal Medicine, Nephrology and Transplantation, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Dennis A Hesselink
- Erasmus Medical Center Transplant Institute, Department of Internal Medicine, Nephrology and Transplantation, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Carla C Baan
- Erasmus Medical Center Transplant Institute, Department of Internal Medicine, Nephrology and Transplantation, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
4
|
Hullegie-Peelen DM, Hesselink DA, Dieterich M, Minnee RC, Peeters A, Hoogduijn MJ, Baan CC. Tissue-resident Lymphocytes Are Released During Hypothermic and Normothermic Machine Perfusion of Human Donor Kidneys. Transplantation 2024; 108:1551-1557. [PMID: 38557650 PMCID: PMC11188625 DOI: 10.1097/tp.0000000000004936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/24/2023] [Accepted: 01/02/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Machine perfusion is the preferred preservation method for deceased donor kidneys. Perfusate fluid, which contains a complex mixture of components, offers potential insight into the organ's viability and function. This study explored immune cell release, particularly tissue-resident lymphocytes (TRLs), during donor kidney machine perfusion and its correlation with injury markers. METHODS Perfusate samples from hypothermic machine perfusion (HMP; n = 26) and normothermic machine perfusion (NMP; n = 16) of human donor kidneys were analyzed for TRLs using flow cytometry. Residency was defined by expressions of CD69, CD103, and CD49as. TRL release was quantified exclusively in NMP. Additionally, levels of cell-free DNA, neutrophil gelatinase-associated lipocalin, and soluble E-cadherin (sE-cadherin) were measured in NMP supernatants with quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. RESULTS Both HMP and NMP samples contained a heterogeneous population of TRLs, including CD4 + tissue-resident memory T cells, CD8 + tissue-resident memory T cells, tissue-resident natural killer cells, tissue-resident natural killer T cells, and helper-like innate lymphoid cells. Median TRL proportions among total CD45 + lymphocytes were 0.89% (NMP) and 0.84% (HMP). TRL quantities in NMP did not correlate with donor characteristics, perfusion parameters, posttransplant outcomes, or cell-free DNA and neutrophil gelatinase-associated lipocalin concentrations. However, CD103 + TRL release positively correlated with the release of sE-cadherin, the ligand for the CD103 integrin. CONCLUSIONS Human donor kidneys release TRLs during both HMP and NMP. The release of CD103 + TRLs was associated with the loss of their ligand sE-cadherin but not with general transplant injury biomarkers.
Collapse
Affiliation(s)
- Daphne M. Hullegie-Peelen
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Dennis A. Hesselink
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Marjolein Dieterich
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Robert C. Minnee
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Division of Hepato-pancreatobiliary and Transplant Surgery, Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Annemiek Peeters
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Martin J. Hoogduijn
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Carla C. Baan
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
5
|
Sato H, Meng S, Hara T, Tsuji Y, Arao Y, Sasaki K, Kobayashi S, di Luccio E, Hirotsu T, Satoh T, Doki Y, Eguchi H, Ishii H. Tissue-Resident Memory T Cells in Gastrointestinal Cancers: Prognostic Significance and Therapeutic Implications. Biomedicines 2024; 12:1342. [PMID: 38927549 PMCID: PMC11202222 DOI: 10.3390/biomedicines12061342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Gastrointestinal cancers, which include a variety of esophageal and colorectal malignancies, present a global health challenge and require effective treatment strategies. In the evolving field of cancer immunotherapy, tissue-resident memory T cells (Trm cells) have emerged as important players in the immune response within nonlymphoid tissues. In this review, we summarize the characteristics and functions of Trm cells and discuss their profound implications for patient outcomes in gastrointestinal cancers. Positioned strategically in peripheral tissues, Trm cells have functions beyond immune surveillance, affecting tumor progression, prognosis, and response to immunotherapy. Studies indicate that Trm cells are prognostic markers and correlate positively with enhanced survival. Their presence in the tumor microenvironment has sparked interest in their therapeutic potential, particularly with respect to immune checkpoint inhibitors, which may improve cancer treatment. Understanding how Trm cells work will not only help to prevent cancer spread through effective treatment but will also contribute to disease prevention at early stages as well as vaccine development. The role of Trm cells goes beyond just cancer, and they have potential applications in infectious and autoimmune diseases. This review provides a thorough analysis of Trm cells in gastrointestinal cancers, which may lead to personalized and effective cancer therapies.
Collapse
Affiliation(s)
- Hiromichi Sato
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan; (H.S.)
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan
| | - Sikun Meng
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan; (H.S.)
| | - Tomoaki Hara
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan; (H.S.)
| | - Yoshiko Tsuji
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan; (H.S.)
| | - Yasuko Arao
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan; (H.S.)
| | - Kazuki Sasaki
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan; (H.S.)
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan
| | - Eric di Luccio
- Hirotsu Bio Science Inc., Chiyoda-Ku, Tokyo 102-0094, Japan
| | | | - Taroh Satoh
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan
| | - Hideshi Ishii
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan; (H.S.)
| |
Collapse
|
6
|
Kang S, Jin S, Mao X, He B, Wu C. CD4 +T and CD8 +T Cells in Uterus Exhibit Both Selective Dysfunction and Residency Signatures. J Immunol Res 2024; 2024:5582151. [PMID: 38690552 PMCID: PMC11057950 DOI: 10.1155/2024/5582151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 03/01/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024] Open
Abstract
Unlike T cells in other tissues, uterine T cells must balance strong immune defense against pathogens with tolerance to semiallogeneic fetus. Our previous study fully elucidated the characteristics of γδT cells in nonpregnant uterus and the mechanism modulated by estrogen. However, comprehensive knowledge of the immunological properties of αβT (including CD4+T cells and CD8+T) cells in nonpregnancy uterus has not been acquired. In this study, we fully compared the immunological properties of αβT cells between uterus and blood using mouse and human sample. It showed that most of CD4+T cells and CD8+T cells in murine uterus and human endometrium were tissue resident memory T cells which highly expressed tissue residence markers CD69 and/or CD103. In addition, both CD4+T cells and CD8+T cells in uterus highly expressed inhibitory molecular PD-1 and cytokine IFN-γ. Uterine CD4+T cells highly expressed IL-17 and modulated by transcription factor pSTAT3. Moreover, we compared the similarities and differences between human and murine uterine T cell phenotype. Together, uterine CD4+T cells and CD8+ cells exhibited a unique mixed signature of T cell dysfunction, activation, and effector function which enabled them to balance strong immune defense against pathogens with tolerance to fetus. Our study fully elucidated the unique immunologic properties of uterine CD4+T and CD8+T cells and provided a base for further investigation of functions.
Collapse
Affiliation(s)
- Shuangpeng Kang
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, China
| | - Shuiping Jin
- Clinical Research Center of Clifford Hospital, Guangzhou, China
| | - Xueying Mao
- Clinical Research Center of Clifford Hospital, Guangzhou, China
| | - BinSheng He
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, China
| | - Changyou Wu
- Clinical Research Center of Clifford Hospital, Guangzhou, China
- Institute of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Furukawa Y, Ishii M, Ando J, Ikeda K, Igarashi KJ, Kinoshita S, Azusawa Y, Toyota T, Honda T, Nakanishi M, Ohshima K, Masuda A, Yoshida E, Kitade M, Porteus M, Terao Y, Nakauchi H, Ando M. iPSC-derived hypoimmunogenic tissue resident memory T cells mediate robust anti-tumor activity against cervical cancer. Cell Rep Med 2023; 4:101327. [PMID: 38091985 PMCID: PMC10772465 DOI: 10.1016/j.xcrm.2023.101327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/20/2023] [Accepted: 11/17/2023] [Indexed: 12/22/2023]
Abstract
Functionally rejuvenated human papilloma virus-specific cytotoxic T lymphocytes (HPV-rejTs) generated from induced pluripotent stem cells robustly suppress cervical cancer. However, autologous rejT generation is time consuming, leading to difficulty in treating patients with advanced cancer. Although use of allogeneic HPV-rejTs can obviate this, the major obstacle is rejection by the patient immune system. To overcome this, we develop HLA-A24&-E dual integrated HPV-rejTs after erasing HLA class I antigens. These rejTs effectively suppress recipient immune rejection while maintaining more robust cytotoxicity than original cytotoxic T lymphocytes. Single-cell RNA sequencing performed to gain deeper insights reveal that HPV-rejTs are highly enriched with tissue resident memory T cells, which enhance cytotoxicity against cervical cancer through TGFβR signaling, with increased CD103 expression. Genes associated with the immunological synapse also are upregulated, suggesting that these features promote stronger activation of T cell receptor (TCR) and increased TCR-mediated target cell death. We believe that our work will contribute to feasible "off-the-shelf" T cell therapy with robust anti-cervical cancer effects.
Collapse
Affiliation(s)
- Yoshiki Furukawa
- Department of Hematology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Midori Ishii
- Department of Hematology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Jun Ando
- Department of Hematology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Division of Cell Therapy & Blood Transfusion Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kazuya Ikeda
- Department of Pediatrics, School of Medicine, Stanford University, 291 Campus Drive, Stanford, CA 94305, USA
| | - Kyomi J Igarashi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Shintaro Kinoshita
- Department of Hematology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yoko Azusawa
- Division of Cell Therapy & Blood Transfusion Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Tokuko Toyota
- Department of Hematology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Tadahiro Honda
- Department of Hematology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Mahito Nakanishi
- TOKIWA-Bio, Inc., Tsukuba Center Inc. (TCI), Building G, 2-1-6 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Koichi Ohshima
- Department of Pathology, School of Medicine, Kurume University, Fukuoka 830-0011, Japan
| | - Ayako Masuda
- Department of Obstetrics and Gynecology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Emiko Yoshida
- Department of Obstetrics and Gynecology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Mari Kitade
- Department of Obstetrics and Gynecology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Matthew Porteus
- Department of Pediatrics, School of Medicine, Stanford University, 291 Campus Drive, Stanford, CA 94305, USA
| | - Yasuhisa Terao
- Department of Obstetrics and Gynecology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA.
| | - Miki Ando
- Department of Hematology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| |
Collapse
|
8
|
Zhang S, Yang H, Wang M, Mantovani D, Yang K, Witte F, Tan L, Yue B, Qu X. Immunomodulatory biomaterials against bacterial infections: Progress, challenges, and future perspectives. Innovation (N Y) 2023; 4:100503. [PMID: 37732016 PMCID: PMC10507240 DOI: 10.1016/j.xinn.2023.100503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023] Open
Abstract
Bacterial infectious diseases are one of the leading causes of death worldwide. Even with the use of multiple antibiotic treatment strategies, 4.95 million people died from drug-resistant bacterial infections in 2019. By 2050, the number of deaths will reach 10 million annually. The increasing mortality may be partly due to bacterial heterogeneity in the infection microenvironment, such as drug-resistant bacteria, biofilms, persister cells, intracellular bacteria, and small colony variants. In addition, the complexity of the immune microenvironment at different stages of infection makes biomaterials with direct antimicrobial activity unsatisfactory for the long-term treatment of chronic bacterial infections. The increasing mortality may be partly attributed to the biomaterials failing to modulate the active antimicrobial action of immune cells. Therefore, there is an urgent need for effective alternatives to treat bacterial infections. Accordingly, the development of immunomodulatory antimicrobial biomaterials has recently received considerable interest; however, a comprehensive review of their research progress is lacking. In this review, we focus mainly on the research progress and future perspectives of immunomodulatory antimicrobial biomaterials used at different stages of infection. First, we describe the characteristics of the immune microenvironment in the acute and chronic phases of bacterial infections. Then, we highlight the immunomodulatory strategies for antimicrobial biomaterials at different stages of infection and their corresponding advantages and disadvantages. Moreover, we discuss biomaterial-mediated bacterial vaccines' potential applications and challenges for activating innate and adaptive immune memory. This review will serve as a reference for future studies to develop next-generation immunomodulatory biomaterials and accelerate their translation into clinical practice.
Collapse
Affiliation(s)
- Shutao Zhang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
| | - Hongtao Yang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Minqi Wang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Department of Min-Met-Materials Engineering, Research Center of CHU de Quebec, Division of Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Ke Yang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Frank Witte
- Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Charite Medical University, Assmannshauser Strasse 4–6, 14197 Berlin, Germany
| | - Lili Tan
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Bing Yue
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
| |
Collapse
|
9
|
Hullegie-Peelen DM, Tejeda Mora H, Hesselink DA, Bindels EM, van den Bosch TP, Clahsen-van Groningen MC, Dieterich M, Heidt S, Minnee RC, Verjans GM, Hoogduijn MJ, Baan CC. Virus-specific TRM cells of both donor and recipient origin reside in human kidney transplants. JCI Insight 2023; 8:e172681. [PMID: 37751288 PMCID: PMC10721264 DOI: 10.1172/jci.insight.172681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023] Open
Abstract
Tissue-resident lymphocytes (TRLs) are critical for local protection against viral pathogens in peripheral tissue. However, it is unclear if TRLs perform a similar role in transplanted organs under chronic immunosuppressed conditions. In this study, we aimed to characterize the TRL compartment in human kidney transplant nephrectomies and examine its potential role in antiviral immunity. The TRL compartment of kidney transplants contained diverse innate, innate-like, and adaptive TRL populations expressing the canonical residency markers CD69, CD103, and CD49a. Chimerism of donor and recipient cells was present in 43% of kidney transplants and occurred in all TRL subpopulations. Paired single-cell transcriptome and T cell receptor (TCR) sequencing showed that donor and recipient tissue-resident memory T (TRM) cells exhibit striking similarities in their transcriptomic profiles and share numerous TCR clonotypes predicted to target viral pathogens. Virus dextramer staining further confirmed that CD8 TRM cells of both donor and recipient origin express TCRs with specificities against common viruses, including CMV, EBV, BK polyomavirus, and influenza A. Overall, the study results demonstrate that a diverse population of TRLs resides in kidney transplants and offer compelling evidence that TRM cells of both donor and recipient origin reside within this TRL population and may contribute to local protection against viral pathogens.
Collapse
Affiliation(s)
- Daphne M. Hullegie-Peelen
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus University Medical Center (Erasmus MC) Transplant Institute
| | - Hector Tejeda Mora
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus University Medical Center (Erasmus MC) Transplant Institute
| | - Dennis A. Hesselink
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus University Medical Center (Erasmus MC) Transplant Institute
| | | | - Thierry P.P. van den Bosch
- Department of Pathology, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Marian C. Clahsen-van Groningen
- Department of Pathology, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
- Institute of Experimental Medicine and Systems Biology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Marjolein Dieterich
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus University Medical Center (Erasmus MC) Transplant Institute
| | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Robert C. Minnee
- Department of Surgery, Division of Hepatopancreatobiliary and Transplant Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Georges M.G.M. Verjans
- HerpeslabNL of the Department of Viroscience, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Martin J. Hoogduijn
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus University Medical Center (Erasmus MC) Transplant Institute
| | - Carla C. Baan
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus University Medical Center (Erasmus MC) Transplant Institute
| |
Collapse
|
10
|
Ibidapo-Obe O, Bruns T. Tissue-resident and innate-like T cells in patients with advanced chronic liver disease. JHEP Rep 2023; 5:100812. [PMID: 37691689 PMCID: PMC10485156 DOI: 10.1016/j.jhepr.2023.100812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 09/12/2023] Open
Abstract
Chronic liver disease results from the orchestrated interplay of components of innate and adaptive immunity in response to liver tissue damage. Recruitment, positioning, and activation of immune cells can contribute to hepatic cell death, inflammation, and fibrogenesis. With disease progression and increasing portal pressure, repeated translocation of bacterial components from the intestinal lumen through the epithelial and vascular barriers leads to persistent mucosal, hepatic, and systemic inflammation which contributes to tissue damage, immune dysfunction, and microbial infection. It is increasingly recognised that innate-like and adaptive T-cell subsets located in the liver, mucosal surfaces, and body cavities play a critical role in the progression of advanced liver disease and inflammatory complications of cirrhosis. Mucosal-associated invariant T cells, natural killer T cells, γδ T cells, and tissue-resident memory T cells in the gut, liver, and ascitic fluid share certain characteristic features, which include that they recognise microbial products, tissue alarmins, cytokines, and stress ligands in tissues, and perform effector functions in chronic liver disease. This review highlights recent advances in the comprehension of human tissue-resident and unconventional T-cell populations and discusses the mechanisms by which they contribute to inflammation, fibrosis, immunosuppression, and antimicrobial surveillance in patients with cirrhosis. Understanding the complex interactions of immune cells in different compartments and their contribution to disease progression will provide further insights for effective diagnostic interventions and novel immunomodulatory strategies in patients with advanced chronic liver disease.
Collapse
Affiliation(s)
- Oluwatomi Ibidapo-Obe
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Tony Bruns
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
11
|
Ginsberg P, Panzer U, Asada N. Tissue-resident memory T cells in renal autoimmune diseases. Front Immunol 2023; 14:1111521. [PMID: 36756116 PMCID: PMC9899885 DOI: 10.3389/fimmu.2023.1111521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/10/2023] [Indexed: 01/24/2023] Open
Abstract
The discovery of tissue-resident memory T cells (TRM cells) reinterpreted the potential of human tissue-specific immunity. Following T cell receptor (TCR) activation and clonal expansion, effector T cells migrate to peripheral tissues where they remain long-term and differentiate to TRM cells after antigen clearance. This allows for prompt immunological responses upon antigen re-encounter. In addition to their protective properties in acute infections, recent studies have revealed that TRM cells might lead to aggravation of autoimmune diseases, such as lupus nephritis (LN) and anti-neutrophil cytoplasmic antibody (ANCA)-associated glomerulonephritis (GN). These diseases present as proliferative and crescentic glomerulonephritis (cGN), which is a life-threatening condition leading to end-stage renal disease (ESRD) if left untreated. A better understanding of renal TRM cells might lead to identifying new therapeutic targets for relapsing autoimmune diseases of the kidney. In this review, we summarize the current knowledge of renal TRM cells and discuss their potential pathophysiological roles in renal autoimmune diseases.
Collapse
|
12
|
Xu W, Wan S, Xie B, Song X. Novel potential therapeutic targets of alopecia areata. Front Immunol 2023; 14:1148359. [PMID: 37153617 PMCID: PMC10154608 DOI: 10.3389/fimmu.2023.1148359] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/05/2023] [Indexed: 05/10/2023] Open
Abstract
Alopecia areata (AA) is a non-scarring hair loss disorder caused by autoimmunity. The immune collapse of the hair follicle, where interferon-gamma (IFN-γ) and CD8+ T cells accumulate, is a key factor in AA. However, the exact functional mechanism remains unclear. Therefore, AA treatment has poor efficacy maintenance and high relapse rate after drug withdrawal. Recent studies show that immune-related cells and molecules affect AA. These cells communicate through autocrine and paracrine signals. Various cytokines, chemokines and growth factors mediate this crosstalk. In addition, adipose-derived stem cells (ADSCs), gut microbiota, hair follicle melanocytes, non-coding RNAs and specific regulatory factors have crucial roles in intercellular communication without a clear cause, suggesting potential new targets for AA therapy. This review discusses the latest research on the possible pathogenesis and therapeutic targets of AA.
Collapse
Affiliation(s)
- Wen Xu
- School of Medicine, Zhejiang University, Hangzhou, China
- Department of Dermatology, Hangzhou Third People’s Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Sheng Wan
- Department of Dermatology, Hangzhou Third People’s Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Xie
- Department of Dermatology, Hangzhou Third People’s Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People’s Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Xiuzu Song,
| |
Collapse
|
13
|
Liang M, Wang X, Cai D, Guan W, Shen X. Tissue-resident memory T cells in gastrointestinal tumors: turning immune desert into immune oasis. Front Immunol 2023; 14:1119383. [PMID: 36969190 PMCID: PMC10033836 DOI: 10.3389/fimmu.2023.1119383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Tissue-resident memory T cells (Trm) are a particular type of T cell subgroup, which stably reside in tissues and have been revealed to be the most abundant memory T cell population in various tissues. They can be activated in the local microenvironment by infection or tumor cells and rapidly clean them up to restore homeostasis of local immunity in gastrointestinal tissues. Emerging evidence has shown that tissue-resident memory T cells have great potential to be mucosal guardians against gastrointestinal tumors. Therefore, they are considered potential immune markers for immunotherapy of gastrointestinal tumors and potential extraction objects for cell therapy with essential prospects in clinical translational therapy. This paper systematically reviews the role of tissue-resident memory T cells in gastrointestinal tumors and looks to the future of their prospect in immunotherapy to provide a reference for clinical application.
Collapse
|
14
|
A Novel Technique for the Generation of Substantial Numbers of Functional Resident T Cells from Kidney Tissue. Cells 2022; 11:cells11142233. [PMID: 35883676 PMCID: PMC9321143 DOI: 10.3390/cells11142233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 11/18/2022] Open
Abstract
Studying functionality and antigen-specificity of resident kidney T cells derived from a kidney biopsy is hampered by the lack of sufficient numbers of T cells obtained by the standard method of enzymatic tissue dissociation. Enzymatic dissociation of kidney tissue was compared to a novel method of whole kidney tissue culture allowing T cells to migrate into the medium in the presence of exogenous IL-2 and IL-15. T cell numbers were quantified and phenotype of resident T cells (CD69+CD103+/−), TCR Vβ repertoire and functional characteristics were analyzed with multi-parameter flow cytometry. Renal tissue culture for four weeks in the presence of exogenous IL-2 and IL-15 yielded significantly higher numbers of T cells (1.3 × 104/mm3) when compared to cultures without exogenous cytokines (71/mm3) or direct isolation by enzymatic dissociation (662/mm3 T cells, p < 0.05). The proportion of T cells with a resident phenotype did not change in the tissue culture; percentages amounted to 87.2% and 85.1%, respectively. In addition, frequencies of CD4+, CD8+, CD4−CD8−, T cells and MAIT T cells remained similar. For both CD4+ and CD8+, T cells had a more differentiated memory phenotype after tissue culture, but the distribution of TCR Vβ families did not change. In addition, the predominant Th1 cytokine secretion profile and poly-functionality of resident kidney T cell remained intact. T cell proliferation potential was not affected, excluding exhaustion and enrichment of BKV- and CMV-reactive resident T cells was observed. In conclusion, the kidney tissue culture method yields significantly increased numbers of resident T cells without major effects on composition and functionality.
Collapse
|
15
|
Hu Z, Lu SH, Lowrie DB, Fan XY. Research Advances for Virus-vectored Tuberculosis Vaccines and Latest Findings on Tuberculosis Vaccine Development. Front Immunol 2022; 13:895020. [PMID: 35812383 PMCID: PMC9259874 DOI: 10.3389/fimmu.2022.895020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB), caused by respiratory infection with Mycobacterium tuberculosis, remains a major global health threat. The only licensed TB vaccine, the one-hundred-year-old Bacille Calmette-Guérin has variable efficacy and often provides poor protection against adult pulmonary TB, the transmissible form of the disease. Thus, the lack of an optimal TB vaccine is one of the key barriers to TB control. Recently, the development of highly efficacious COVID-19 vaccines within one year accelerated the vaccine development process in human use, with the notable example of mRNA vaccines and adenovirus-vectored vaccines, and increased the public acceptance of the concept of the controlled human challenge model. In the TB vaccine field, recent progress also facilitated the deployment of an effective TB vaccine. In this review, we provide an update on the current virus-vectored TB vaccine pipeline and summarize the latest findings that might facilitate TB vaccine development. In detail, on the one hand, we provide a systematic literature review of the virus-vectored TB vaccines are in clinical trials, and other promising candidate vaccines at an earlier stage of development are being evaluated in preclinical animal models. These research sharply increase the likelihood of finding a more effective TB vaccine in the near future. On the other hand, we provide an update on the latest tools and concept that facilitating TB vaccine research development. We propose that a pre-requisite for successful development may be a better understanding of both the lung-resident memory T cell-mediated mucosal immunity and the trained immunity of phagocytic cells. Such knowledge could reveal novel targets and result in the innovative vaccine designs that may be needed for a quantum leap forward in vaccine efficacy. We also summarized the research on controlled human infection and ultra-low-dose aerosol infection murine models, which may provide more realistic assessments of vaccine utility at earlier stages. In addition, we believe that the success in the ongoing efforts to identify correlates of protection would be a game-changer for streamlining the triage of multiple next-generation TB vaccine candidates. Thus, with more advanced knowledge of TB vaccine research, we remain hopeful that a more effective TB vaccine will eventually be developed in the near future.
Collapse
Affiliation(s)
- Zhidong Hu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of Ministry of Education (MOE)/Ministry of Health (MOH), Fudan University, Shanghai, China
- *Correspondence: Zhidong Hu, ; Xiao-Yong Fan,
| | - Shui-Hua Lu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of Ministry of Education (MOE)/Ministry of Health (MOH), Fudan University, Shanghai, China
- National Medical Center for Infectious Diseases of China, Shenzhen Third People Hospital, South Science & Technology University, Shenzhen, China
| | - Douglas B. Lowrie
- National Medical Center for Infectious Diseases of China, Shenzhen Third People Hospital, South Science & Technology University, Shenzhen, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of Ministry of Education (MOE)/Ministry of Health (MOH), Fudan University, Shanghai, China
- *Correspondence: Zhidong Hu, ; Xiao-Yong Fan,
| |
Collapse
|
16
|
Linke A, Tiegs G, Neumann K. Pathogenic T-Cell Responses in Immune-Mediated Glomerulonephritis. Cells 2022; 11:cells11101625. [PMID: 35626662 PMCID: PMC9139939 DOI: 10.3390/cells11101625] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 12/17/2022] Open
Abstract
Glomerulonephritis (GN) comprises a group of immune-mediated kidney diseases affecting glomeruli and the tubulointerstitium. Glomerular crescent formation is a histopathological characteristic of severe forms of GN, also referred to as crescentic GN (cGN). Based on histological findings, cGN includes anti-neutrophil cytoplasmic antibody (ANCA)-associated GN, a severe form of ANCA-associated vasculitis, lupus nephritis associated with systemic lupus erythematosus, Goodpasture’s disease, and IgA nephropathy. The immunopathogenesis of cGN is associated with activation of CD4+ and CD8+ T cells, which particularly accumulate in the periglomerular and tubulointerstitial space but also infiltrate glomeruli. Clinical observations and functional studies in pre-clinical animal models provide evidence for a pathogenic role of Th1 and Th17 cell-mediated immune responses in cGN. Emerging evidence further argues that CD8+ T cells have a role in disease pathology and the mechanisms of activation and function of recently identified tissue-resident CD4+ and CD8+ T cells in cGN are currently under investigation. This review summarizes the mechanisms of pathogenic T-cell responses leading to glomerular damage and renal inflammation in cGN. Advanced knowledge of the underlying immune mechanisms involved with cGN will enable the identification of novel therapeutic targets for the replacement or reduction in standard immunosuppressive therapy or the treatment of refractory disease.
Collapse
Affiliation(s)
- Alexandra Linke
- Institute of Experimental Immunology and Hepatology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Correspondence: (G.T.); (K.N.); Tel.: +49-40-741058731 (G.T.); +49-40-741058738 (K.N.)
| | - Katrin Neumann
- Institute of Experimental Immunology and Hepatology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Correspondence: (G.T.); (K.N.); Tel.: +49-40-741058731 (G.T.); +49-40-741058738 (K.N.)
| |
Collapse
|