1
|
Ross FC, Mayer DE, Horn J, Cryan JF, Del Rio D, Randolph E, Gill CIR, Gupta A, Ross RP, Stanton C, Mayer EA. Potential of dietary polyphenols for protection from age-related decline and neurodegeneration: a role for gut microbiota? Nutr Neurosci 2024; 27:1058-1076. [PMID: 38287652 DOI: 10.1080/1028415x.2023.2298098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Many epidemiological studies have shown the beneficial effects of a largely plant-based diet, and the strong association between the consumption of a Mediterranean-type diet with healthy aging including a lower risk of cognitive decline. The Mediterranean diet is characterized by a high intake of olive oil, fruits and vegetables and is rich in dietary fiber and polyphenols - both of which have been postulated to act as important mediators of these benefits. Polyphenols are large molecules produced by plants to protect them from environmental threats and injury. When ingested by humans, as little as 5% of these molecules are absorbed in the small intestine with the majority metabolized by the gut microbiota into absorbable simple phenolic compounds. Flavan-3-ols, a type of flavonoid, contained in grapes, berries, pome fruits, tea, and cocoa have been associated with many beneficial effects on several risk factors for cardiovascular disease, cognitive function and brain regions involved in memory formation. Both preclinical and clinical studies suggest that these brain and heart benefits can be attributed to endothelial vascular effects and anti-inflammatory properties among others. More recently the gut microbiota has emerged as a potential modulator of the aging brain and intriguingly polyphenols have been shown to alter microbiota composition and be metabolized by different microbial species. However, there is a need for well controlled studies in large populations to identify predictors of response, particularly given the vast inter-individual variation of human gut microbiota.
Collapse
Affiliation(s)
- F C Ross
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
| | - D E Mayer
- Institute of Human Nutrition, Columbia University, New York, USA
| | - J Horn
- Oppenheimer Centre for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, USA
| | - J F Cryan
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- Department Anatomy & Neuroscience, University College Cork, Co. Cork, Ireland
| | - D Del Rio
- Department of Food and Drugs, University of Parma, Parma, Italy
| | - E Randolph
- Oppenheimer Centre for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, USA
| | - C I R Gill
- Nutrition Innovation Centre for Food and Health, Northern Ireland, UK
| | - A Gupta
- Division of Digestive Diseases, UCLA, Los Angeles, USA
- Goodman Luskin Microbiome Center at UCLA, Los Angeles, CA, USA
| | - R P Ross
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
| | - C Stanton
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - E A Mayer
- Oppenheimer Centre for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, USA
- Goodman Luskin Microbiome Center at UCLA, Los Angeles, CA, USA
| |
Collapse
|