1
|
Gallitto M, Pan PC, Chan MD, Milano MT, Wang TJC. The role of radiotherapy in immunotherapy strategies in the central nervous system. Neuro Oncol 2024; 26:S66-S75. [PMID: 38437664 PMCID: PMC10911795 DOI: 10.1093/neuonc/noad184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
The clinical efficacy and relative tolerability of adverse effects of immune checkpoint immunotherapy have led to its increasingly routine use in the management of multiple advanced solid malignancies. Radiation therapy (RT) is well-known to have both local and distant immunomodulatory effects, which has led to extensive investigation into the synergism of these 2 therapies. While the central nervous system (CNS) has historically been thought to be a sanctuary site, well-protected by the blood-brain barrier from the effects of immunotherapy, over the last several years studies have shown the benefits of these drugs, particularly in metastatic disease involving the CNS. This review explores current progress and the future of combination therapy with immune checkpoint inhibitors and RT.
Collapse
Affiliation(s)
- Matthew Gallitto
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York, USA
| | - Peter C Pan
- Division of Neuro-Oncology, Columbia University Irving Medical Center, New York, New York , USA
| | - Michael D Chan
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Michael T Milano
- Department of Radiation Oncology, University of Rochester, Rochester, New York, USA
| | - Tony J C Wang
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
2
|
Wan S, Moure UAE, Liu R, Liu C, Wang K, Deng L, Liang P, Cui H. Combined bulk RNA-seq and single-cell RNA-seq identifies a necroptosis-related prognostic signature associated with inhibitory immune microenvironment in glioma. Front Immunol 2022; 13:1013094. [PMID: 36466844 PMCID: PMC9713702 DOI: 10.3389/fimmu.2022.1013094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/19/2022] [Indexed: 08/20/2023] Open
Abstract
Necroptosis is a programmed cell death playing a significant role in cancer. Although necroptosis has been related to tumor immune environment (TIME) remodeling and cancer prognosis, however, the role of necroptosis-related genes (NRGs) in glioma is still elusive. In this study, a total of 159 NRGs were obtained, and parameters such as mutation rate, copy number variation (CNV), and relative expression level were assessed. Then, we constructed an 18-NRGs-based necroptosis-related signature (NRS) in the TCGA dataset, which could predict the patient's prognosis and was validated in two external CGGA datasets. We also explored the correlation between NRS and glioma TIME, chemotherapy sensitivity, and certain immunotherapy-related factors. The two necroptosis-related subtypes were discovered and could also distinguish the patients' prognosis. Through the glioblastoma (GBM) scRNA-seq data analysis, NRGs' expression levels in different GBM patient tissue cell subsets were investigated and the relative necroptosis status of different cell subsets was assessed, with the microglia score culminating among all. Moreover, we found a high infiltration level of immunosuppressive cells in glioma TIME, which was associated with poor prognosis in the high-NRS glioma patient group. Finally, the necroptosis suppressor CASP8 exhibited a high expression in glioma and was associated with poor prognosis. Subsequent experiments were performed in human glioma cell lines and patients' tissue specimens to verify the bioinformatic analytic findings about CASP8. Altogether, this study provides comprehensive evidence revealing a prognostic value of NRGs in glioma, which is associated with TIME regulation.
Collapse
Affiliation(s)
- Sicheng Wan
- The State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Ulrich Aymard Ekomi Moure
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- The Ninth People’s Hospital of Chongqing, Affiliated Hospital of Southwest University, Chongqing, China
| | - Ruochen Liu
- The State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Chaolong Liu
- The State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Kun Wang
- The State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Longfei Deng
- The State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Ping Liang
- Department of Neurosurgery, Chongqing Children’s Hospital, Chongqing, China
| | - Hongjuan Cui
- The State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| |
Collapse
|