1
|
Rhee JW, Adzavon YM, Sun Z. Stromal androgen signaling governs essential niches in supporting prostate development and tumorigenesis. Oncogene 2024:10.1038/s41388-024-03175-1. [PMID: 39369165 DOI: 10.1038/s41388-024-03175-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/07/2024]
Abstract
Androgens and androgen receptor (AR) mediated signaling pathways are essential for prostate development, morphogenesis, growth, and regeneration. Early tissue recombination experiments showed that AR-deficient urogenital sinus mesenchyme combined with intact urogenital sinus epithelium failed to develop into a prostate, demonstrating a stem cell niche for mesenchymal AR in prostatic development. Androgen signaling remains critical for prostate maturation and growth during postnatal stages. Importantly, most primary prostate cancer (PCa) cells express the AR, and aberrant activation of AR directly promotes PCa development, growth, and progression. Therefore, androgen deprivation therapy (ADT) targeting the AR in PCa cells is the main treatment for advanced PCa. However, it eventually fails, leading to the development of castration-resistant PCa, an incurable disease. Given these clinical challenges, the oncogenic AR action needs to be reevaluated for developing new and effective therapies. Recently, an essential niche role of stromal AR was identified in regulating prostate development and tumorigenesis. Here, we summarize the latest discoveries of stromal AR niches and their interactions with prostatic epithelia. In combination with emerging clinical and experimental evidence, we specifically discuss several important and long-term unanswered questions regarding tumor niche roles of stromal AR and highlight future therapeutic strategies by co-targeting epithelial and stromal AR for treating advanced PCa.
Collapse
Affiliation(s)
- June-Wha Rhee
- Department of Medicine, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Yao Mawulikplimi Adzavon
- Department of Cell Biology, Department of Oncology, Montefiore Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Zijie Sun
- Department of Cell Biology, Department of Oncology, Montefiore Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
2
|
Zhang T, Mao C, Chang Y, Lyu J, Zhao D, Ding S. Hypoxia activates the hypoxia-inducible factor-1α/vascular endothelial growth factor pathway in a prostatic stromal cell line: A mechanism for the pathogenesis of benign prostatic hyperplasia. Curr Urol 2024; 18:185-193. [PMID: 39219634 PMCID: PMC11337991 DOI: 10.1097/cu9.0000000000000233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 08/29/2023] [Indexed: 09/04/2024] Open
Abstract
Background The development of benign prostatic hyperplasia (BPH) is closely related to hypoxia in the prostatic stroma, and the hypoxia-inducible factor-1α/vascular endothelial growth factor (HIF-1α/VEGF) pathway has been shown to significantly activate in response to hypoxia. The underlying mechanism for activation of this pathway in the pathogenesis of BPH remains unclear. Materials and methods We constructed HIF-1α overexpression and knockdown BPH stromal (WPMY-1) and epithelial (BPH-1) cell lines, which were cultured under different oxygen conditions (hypoxia, normoxia, and hypoxia + HIF-1α inhibitor). Quantitative real-time polymerase chain reaction (qPCR) and Western blotting were applied to detect the expression of the HIF-1α/VEGF pathway. Cell proliferation and apoptosis were analyzed by Cell Counting Kit-8 and flow cytometry. We used the miRWalk 2.0 database and Western blotting to predict the potential miRNA that selectively targets the HIF-1α/VEGF pathway, and verified the prediction by qPCR and dual-luciferase assays. Results In a BPH stromal cell line (WPMY-1), the expression of VEGF was in accordance with HIF-1α levels, elevated in the overexpression cells and decreased in the knockdown cells. Hypoxia-induced HIF-1α overexpression, which could be reversed by a HIF-1α inhibitor. Moreover, the HIF-1α inhibitor significantly depressed cellular proliferation and promoted apoptosis in hypoxic conditions, assessed by Cell Counting Kit-8 and flow cytometry. However, in the BPH epithelial cell line (BPH-1), the expression level of HIF-1α did not influence the expression of VEGF. Finally, a potential miRNA, miR-17-5p, regulating the HIF-1α/VEGF pathway was predicted from the miRWalk 2.0 database and Western blotting, and verified by qPCR and dual-luciferase assay. Conclusions In hypoxia, activation of the HIF-1α/VEGF pathway plays a crucial role in regulating cell proliferation in a BPH stromal cell line. Regulation by miR-17-5p may be the potential mechanism for the activation of this pathway. Regulation of this pathway may be involved in the pathogenesis of BPH.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Changlin Mao
- Department of Urology, Mindong Hospital Affiliated to Fujian Medical University, Fuan, China
| | - Yao Chang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jiaju Lyu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Delong Zhao
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Sentai Ding
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
3
|
Li Y, Li J, Zhou L, Wang Z, Jin L, Cao J, Xie H, Wang L. Aberrant activation of TGF-β/ROCK1 enhances stemness during prostatic stromal hyperplasia. Cell Commun Signal 2024; 22:257. [PMID: 38711089 PMCID: PMC11071275 DOI: 10.1186/s12964-024-01644-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024] Open
Abstract
Benign prostatic hyperplasia (BPH) is a multifactorial disease in which abnormal growth factor activation and embryonic reawakening are considered important factors. Here we demonstrated that the aberrant activation of transforming growth factor β (TGF-β)/Rho kinase 1 (ROCK1) increased the stemness of BPH tissue by recruiting mesenchymal stem cells (MSCs), indicating the important role of embryonic reawakening in BPH. When TGF-β/ROCK1 is abnormally activated, MSCs are recruited and differentiate into fibroblasts/myofibroblasts, leading to prostate stromal hyperplasia. Further research showed that inhibition of ROCK1 activation suppressed MSC migration and their potential for stromal differentiation. Collectively, our findings suggest that abnormal activation of TGF-β/ROCK1 regulates stem cell lineage specificity, and the small molecule inhibitor GSK269962A could target ROCK1 and may be a potential treatment for BPH.
Collapse
Affiliation(s)
- Youyou Li
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Jiaren Li
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Liang Zhou
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Zhenxing Wang
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ling Jin
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jia Cao
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Hui Xie
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Long Wang
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
4
|
Mori JO, Elhussin I, Brennen WN, Graham MK, Lotan TL, Yates CC, De Marzo AM, Denmeade SR, Yegnasubramanian S, Nelson WG, Denis GV, Platz EA, Meeker AK, Heaphy CM. Prognostic and therapeutic potential of senescent stromal fibroblasts in prostate cancer. Nat Rev Urol 2024; 21:258-273. [PMID: 37907729 PMCID: PMC11058122 DOI: 10.1038/s41585-023-00827-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 11/02/2023]
Abstract
The stromal component of the tumour microenvironment in primary and metastatic prostate cancer can influence and promote disease progression. Within the prostatic stroma, fibroblasts are one of the most prevalent cell types associated with precancerous and cancerous lesions; they have a vital role in the structural composition, organization and integrity of the extracellular matrix. Fibroblasts within the tumour microenvironment can undergo cellular senescence, which is a stable arrest of cell growth and a phenomenon that is emerging as a recognized hallmark of cancer. Supporting the idea that cellular senescence has a pro-tumorigenic role, a subset of senescent cells exhibits a senescence-associated secretory phenotype (SASP), which, along with increased inflammation, can promote prostate cancer cell growth and survival. These cellular characteristics make targeting senescent cells and/or modulating SASP attractive as a potential preventive or therapeutic option for prostate cancer.
Collapse
Affiliation(s)
- Joakin O Mori
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Isra Elhussin
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - W Nathaniel Brennen
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mindy K Graham
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tamara L Lotan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Clayton C Yates
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Angelo M De Marzo
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Samuel R Denmeade
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Srinivasan Yegnasubramanian
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William G Nelson
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gerald V Denis
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, MA, USA
- Department of Pharmacology and Experimental Therapeutics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Elizabeth A Platz
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Alan K Meeker
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher M Heaphy
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, MA, USA.
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
5
|
Fei X, Liu J, Xu J, Jing H, Cai Z, Yan J, Wu Z, Li H, Wang Z, Shen Y. Integrating spatial transcriptomics and single-cell RNA-sequencing reveals the alterations in epithelial cells during nodular formation in benign prostatic hyperplasia. J Transl Med 2024; 22:380. [PMID: 38654277 PMCID: PMC11036735 DOI: 10.1186/s12967-024-05212-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
OBJECTIVE Proliferative nodular formation represents a characteristic pathological feature of benign prostatic hyperplasia (BPH) and serves as the primary cause for prostate volume enlargement and consequent lower urinary tract symptoms (LUTS). Its specific mechanism is largely unknown, although several cellular processes have been reported to be involved in BPH initiation and development and highlighted the crucial role of epithelial cells in proliferative nodular formation. However, the technological limitations hinder the in vivo investigation of BPH patients. METHODS The robust cell type decomposition (RCTD) method was employed to integrate spatial transcriptomics and single cell RNA sequencing profiles, enabling the elucidation of epithelial cell alterations during nodular formation. Immunofluorescent and immunohistochemical staining was performed for verification. RESULTS The alterations of epithelial cells during the formation of nodules in BPH was observed, and a distinct subgroup of basal epithelial (BE) cells, referred to as BE5, was identified to play a crucial role in driving this progression through the hypoxia-induced epithelial-mesenchymal transition (EMT) signaling pathway. BE5 served as both the initiating cell during nodular formation and the transitional cell during the transformation from luminal epithelial (LE) to BE cells. A distinguishing characteristic of the BE5 cell subgroup in patients with BPH was its heightened hypoxia and upregulated expression of FOS. Histological verification results confirmed a significant association between c-Fos expression and key biological processes such as hypoxia and cell proliferation, as well as the close relationship between hypoxia and EMT in BPH tissues. Furthermore, a strong link between c-Fos expression and the progression of BPH was also been validated. Additionally, notable functional differences were observed in glandular and stromal nodules regarding BE5 cells, with BE5 in glandular nodules exhibiting enhanced capacities for EMT and cell proliferation characterized by club-like cell markers. CONCLUSIONS This study elucidated the comprehensive landscape of epithelial cells during in vivo nodular formation in patients, thereby offering novel insights into the initiation and progression of BPH.
Collapse
Affiliation(s)
- Xiawei Fei
- Department of Urology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201799, People's Republic of China
| | - Jican Liu
- Department of Pathology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201799, People's Republic of China
| | - Junyan Xu
- University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
- Department of Urology and Andrology, Gongli Hospital, the Second Military Medical University, Shanghai, 200135, People's Republic of China
| | - Hongyan Jing
- Department of Pathology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201799, People's Republic of China
| | - Zhonglin Cai
- Department of Urology and Andrology, Gongli Hospital, the Second Military Medical University, Shanghai, 200135, People's Republic of China
| | - Jiasheng Yan
- Department of Urology and Andrology, Gongli Hospital, the Second Military Medical University, Shanghai, 200135, People's Republic of China
| | - Zhenqi Wu
- Department of Urology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201799, People's Republic of China
| | - Huifeng Li
- Department of Urology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201799, People's Republic of China.
| | - Zhong Wang
- Department of Urology and Andrology, Gongli Hospital, the Second Military Medical University, Shanghai, 200135, People's Republic of China.
| | - Yanting Shen
- Department of Urology and Andrology, Gongli Hospital, the Second Military Medical University, Shanghai, 200135, People's Republic of China.
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
6
|
Kang JW, He JP, Liu YN, Zhang Y, Song SS, Xu QX, Wei SW, Lu L, Meng XQ, Xu L, Guo B, Su RW. Aberrant activated Notch1 promotes prostate enlargement driven by androgen signaling via disrupting mitochondrial function in mouse. Cell Mol Life Sci 2024; 81:155. [PMID: 38538986 PMCID: PMC10973062 DOI: 10.1007/s00018-024-05143-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/20/2023] [Accepted: 01/03/2024] [Indexed: 04/02/2024]
Abstract
The prostate is a vital accessory gonad in the mammalian male reproductive system. With the ever-increasing proportion of the population over 60 years of age worldwide, the incidence of prostate diseases, such as benign prostatic hyperplasia (BPH) and prostate cancer (PCa), is on the rise and is gradually becoming a significant medical problem globally. The notch signaling pathway is essential in regulating prostate early development. However, the potential regulatory mechanism of Notch signaling in prostatic enlargement and hyperplasia remains unclear. In this study, we proved that overactivation of Notch1 signaling in mouse prostatic epithelial cells (OEx) led to prostatic enlargement via enhancing proliferation and inhibiting apoptosis of prostatic epithelial cells. Further study showed that N1ICD/RBPJ directly up-regulated the androgen receptor (AR) and enhanced prostatic sensitivity to androgens. Hyper-proliferation was not found in orchidectomized OEx mice without androgen supply but was observed after Dihydrotestosterone (DHT) supplementation. Our data showed that the number of mitochondrion in prostatic epithelial cells of OEx mice was increased, but the mitochondrial function was impaired, and the essential activity of the mitochondrial respiratory electron transport chain was significantly weakened. Disordered mitochondrial number and metabolic function further resulted in excessive accumulation of reactive oxygen species (ROS). Importantly, anti-oxidant N-Acetyl-L-Cysteine (NAC) therapy could alleviate prostatic hyperplasia caused by the over-activation of Notch1 signaling. Furthermore, we observed the incremental Notch signaling activity in progenitor-like club cells in the scRNA-seq data set of human BPH patients. Moreover, the increased number of TROP2+ progenitors and Club cells was also confirmed in our OEx mice. In conclusion, our study revealed that over-activated Notch1 signaling induces prostatic enlargement by increasing androgen receptor sensitivity, disrupting cellular mitochondrial metabolism, increasing ROS, and a higher number of progenitor cells, all of which can be effectively rescued by NAC treatment.
Collapse
Affiliation(s)
- Jin-Wen Kang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Jia-Peng He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Ying-Nan Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Yu Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Shan-Shan Song
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Qi-Xin Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Shu-Wen Wei
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Lei Lu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Xiang-Qi Meng
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Lin Xu
- College of Sports and Human Science, Harbin Sport University, Harbin, PR China.
| | - Bin Guo
- College of Veterinary Medicine, Jilin University, Changchun, PR China.
| | - Ren-Wei Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China.
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, PR China.
| |
Collapse
|
7
|
Liu Z, Li S, Chen S, Sheng J, Li Z, Lv T, Yu W, Fan Y, Wang J, Liu W, Hu S, Jin J. YAP-mediated GPER signaling impedes proliferation and survival of prostate epithelium in benign prostatic hyperplasia. iScience 2024; 27:109125. [PMID: 38420594 PMCID: PMC10901089 DOI: 10.1016/j.isci.2024.109125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/21/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Benign prostatic hyperplasia (BPH) occurs when there is an imbalance between the proliferation and death of prostate cells, which is regulated tightly by estrogen signaling. However, the role of G protein-coupled estrogen receptor (GPER) in prostate cell survival remains ambiguous. In this study, we observed that prostates with epithelial hyperplasia showed increased yes-associated protein 1 (YAP) expression and decreased levels of estrogen and GPER. Blocking YAP through genetic or drug interventions led to reduced proliferation and increased apoptosis in the prostate epithelial cells. Interestingly, GPER agonists produced similar effects. GPER activation enhanced the phosphorylation and degradation of YAP, which was crucial for suppressing cell proliferation and survival. The Gαs/cAMP/PKA/LATS pathway, downstream of GPER, transmitted signals that facilitated YAP inhibition. This study investigated the interaction between GPER and YAP in the prostate epithelial cells and its contribution to BPH development. It lays the groundwork for future research on developing BPH treatments.
Collapse
Affiliation(s)
- Zhifu Liu
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Senmao Li
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Shengbin Chen
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Jindong Sheng
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
- Department of Gynaecological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Zheng Li
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Tianjing Lv
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Wei Yu
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Yu Fan
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Jinlong Wang
- Department of Urology, Tibet Autonomous Region People's Hospital, Lhasa 850000, China
| | - Wei Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen 518036, China
- Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Shuai Hu
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Jie Jin
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| |
Collapse
|
8
|
He W, Tian Z, Dong B, Cao Y, Hu W, Wu P, Yu L, Zhang X, Guo S. Identification and functional activity of Nik related kinase (NRK) in benign hyperplastic prostate. J Transl Med 2024; 22:255. [PMID: 38459501 PMCID: PMC11367987 DOI: 10.1186/s12967-024-05048-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/27/2024] [Indexed: 03/10/2024] Open
Abstract
OBJECTIVE Benign prostatic hyperplasia (BPH) is common in elder men. The current study aims to identify differentially expressed genes (DEGs) in hyperplastic prostate and to explore the role of Nik related kinase (NRK) in BPH. METHODS Four datasets including three bulk and one single cell RNA-seq (scRNA-seq) were obtained to perform integrated bioinformatics. Cell clusters and specific metabolism pathways were analyzed. The localization, expression and functional activity of NRK was investigated via RT-PCR, western-blot, immunohistochemical staining, flow cytometry, wound healing assay, transwell assay and CCK-8 assay. RESULTS A total of 17 DEGs were identified by merging three bulk RNA-seq datasets. The findings of integrated single-cell analysis showed that NRK remarkably upregulated in fibroblasts and SM cells of hyperplasia prostate. Meanwhile, NRK was upregulated in BPH samples and localized almost in stroma. The expression level of NRK was significantly correlated with IPSS and Qmax of BPH patients. Silencing of NRK inhibited stromal cell proliferation, migration, fibrosis and EMT process, promoted apoptosis and induced cell cycle arrest, while overexpression of NRK in prostate epithelial cells showed opposite results. Meanwhile, induced fibrosis and EMT process were rescued by knockdown of NRK. Furthermore, expression level of NRK was positively correlated with that of α-SMA, collagen-I and N-cadherin, negatively correlated with that of E-cadherin. CONCLUSION Our novel data identified NRK was upregulated in hyperplastic prostate and associated with prostatic stromal cell proliferation, apoptosis, cell cycle, migration, fibrosis and EMT process. NRK may play important roles in the development of BPH and may be a promising therapeutic target for BPH/LUTS.
Collapse
Affiliation(s)
- Weixiang He
- Department of Urology, Xijing Hospital of Air Force Medical University, West Changle Road 127, Xi'an, China.
| | - Zelin Tian
- Department of Hepatobiliary Surgery, Xijing Hospital of Air Force Medical University, Xi'an, China
| | - Bingchen Dong
- Department of Orthopedics, Ninth Hospital of Xi'an, Xi'an, China
| | - Yitong Cao
- Department of Urology, Xijing Hospital of Air Force Medical University, West Changle Road 127, Xi'an, China
| | - Wei Hu
- Department of Urology, Xijing Hospital of Air Force Medical University, West Changle Road 127, Xi'an, China
| | - Peng Wu
- Department of Urology, Xijing Hospital of Air Force Medical University, West Changle Road 127, Xi'an, China
| | - Lei Yu
- Department of Urology, Xijing Hospital of Air Force Medical University, West Changle Road 127, Xi'an, China
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, China.
| | - Shanshan Guo
- Department of Physiology and Pathophysiology, Air Force Medical University, West Changle Road 169, Xi'an, China.
| |
Collapse
|
9
|
Lin D, Luo C, Wei P, Zhang A, Zhang M, Wu X, Deng B, Li Z, Cui K, Chen Z. YAP1 Recognizes Inflammatory and Mechanical Cues to Exacerbate Benign Prostatic Hyperplasia via Promoting Cell Survival and Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304274. [PMID: 38050650 PMCID: PMC10837380 DOI: 10.1002/advs.202304274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/07/2023] [Indexed: 12/06/2023]
Abstract
Chronic prostatic inflammation promotes cell survival and fibrosis, leading to benign prostatic hyperplasia (BPH) with aggravated urinary symptoms. It is investigated whether yes-associated protein 1 (YAP1), an organ size controller and mechanical transductor, is implicated in inflammation-induced BPH. The correlation between YAP1 expression and fibrosis in human and rat BPH specimens is analyzed. Furthermore, the effects of YAP1 activation on prostatic cell survival and fibrosis, as well as the underlying mechanism, are also studied. As a result, total and nuclear YAP1 expression, along with downstream genes are significantly upregulated in inflammation-associated human and rat specimens. There is a significant positive correlation between YAP1 expression and the severity of fibrosis or clinical performance. YAP1 silencing suppresses cell survival by decreasing cell proliferation and increasing apoptosis, and alleviates fibrosis by reversing epithelial-mesenchymal transition (EMT) and extracellular matrix (ECM) deposition in prostatic BPH-1 and WPMY-1 cells. Mechanistically, inflammatory stimulus and rigid matrix stiffness synergistically activate the RhoA/ROCK1 pathway to provoke cytoskeleton remodeling, thereby promoting YAP1 activation to exacerbate BPH development. Overall, inflammation-triggered mechanical stiffness reinforcement activates the RhoA/ROCK1/F-actin/YAP1 axis, thereby promoting prostatic cell survival and fibrosis to accelerate BPH progression.
Collapse
Affiliation(s)
- Dongxu Lin
- Department and Institute of UrologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Changcheng Luo
- Department and Institute of UrologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Pengyu Wei
- Department and Institute of UrologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - An Zhang
- Department of GeriatricsTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Mengyang Zhang
- Department of RehabilitationTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Xiaoliang Wu
- Department and Institute of UrologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Bolang Deng
- Department and Institute of UrologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Zhipeng Li
- Department and Institute of UrologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Kai Cui
- Department and Institute of UrologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Zhong Chen
- Department and Institute of UrologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| |
Collapse
|
10
|
Naiyila X, Li J, Huang Y, Chen B, Zhu M, Li J, Chen Z, Yang L, Ai J, Wei Q, Liu L, Cao D. A Novel Insight into the Immune-Related Interaction of Inflammatory Cytokines in Benign Prostatic Hyperplasia. J Clin Med 2023; 12:jcm12051821. [PMID: 36902608 PMCID: PMC10003138 DOI: 10.3390/jcm12051821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/26/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is a common male condition that impacts many men's quality of life by generating lower urinary tract symptoms (LUTS). In recent years, inflammation has become very common in the prostate, and BPH with inflammation has a higher International Prostate Symptom Score (IPSS) score and an enlarged prostate. Chronic inflammation leads to tissue damage and the release of pro-inflammatory cytokines, which play an important role in the pathogenesis of BPH. We will focus on current advancements in pro-inflammatory cytokines in BPH, as well as the future of pro-inflammatory cytokine research.
Collapse
Affiliation(s)
- Xiaokaiti Naiyila
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Jinze Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Yin Huang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Bo Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Mengli Zhu
- Research Core Facility, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Zeyu Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Lu Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liangren Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (L.L.); (D.C.); Tel./Fax: +86-28-8542-2451 (L.L. & D.C.)
| | - Dehong Cao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (L.L.); (D.C.); Tel./Fax: +86-28-8542-2451 (L.L. & D.C.)
| |
Collapse
|
11
|
Liu Z, Lin Z, Cao F, Jiang M, jin S, Cui Y, Niu YN. Upregulation of mir-1199-5p is associated with reduced type 2 5-α reductase expression in benign prostatic hyperplasia. BMC Urol 2022; 22:172. [PMID: 36344974 PMCID: PMC9639318 DOI: 10.1186/s12894-022-01121-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022] Open
Abstract
Background
5-α reductase inhibitors (5-ARIs) are first-line drugs for managing benign prostatic hyperplasia (BPH). Unfortunately, some patients do not respond to 5-ARI therapy and may even show worsening symptoms. The decreased expression of steroid 5-α reductase type 2(SRD5A2) in BPH tissues may explain the failure of 5-ARI therapy, however, the mechanisms underlying SRD5A2 decreased remained unelucidated. Objectives
To investigate microRNA-mediated regulation of the expression of SRD5A2 resulting in 5-ARI therapy failure. Materials and methods
The expression of SRD5A2 and microRNAs in BPH tissues and prostate cells were detected by immunohistochemistry, western blotting, and quantitative real-time PCR. Dual-luciferase reporter assay was performed to confirm that microRNA directly combine to SRD5A2 mRNA. The apoptosis of prostatic cells was detected by flow cytometry. Results
SRD5A2 expression was variable; it was negative, weak, and strong in 13.6%, 28.8%, and 57.6% of BPH tissues respectively. The normal human prostatic epithelial cell line RWPE-1 strongly expressed SRD5A2, whereas the immortalized human prostatic epithelial cell line BPH-1 weakly expressed SRD5A2. miR-1199-5p expression was remarkably higher in BPH-1 than in RWPE-1 cells(P<0.001), and miR-1199-5p expression was significantly upregulated in BPH tissues with negative SRD5A2 expression than those with positive SRD5A2 expression. Transfection of miR-1199-5p mimics in RWPE-1 cells led to a marked decrease in SRD5A2 expression, whereas miR-1199-5p inhibitor increased SRD5A2 expression in BPH-1 cells. Dual-luciferase reporter assay showed that miR-1199-5p could bind the 3′untranslated region of SRD5A2 mRNA. miR-1199-5p also decreased the RWPE-1 sensibility to finasteride, an inhibitor of SRD5A2. Conclusion
Our results show that SRD5A2 expression varies in BPH tissues and miR-1199-5p might be one of the several factors contributing to differential SRD5A2 expression in BPH patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12894-022-01121-5.
Collapse
|
12
|
Yan Q, Wang M, Xia H, Dai C, Diao T, Wang Y, Hou H, Zhang H, Liu M, Long X. Single-cell RNA-sequencing technology demonstrates the heterogeneity between aged prostate peripheral and transitional zone. Clin Transl Med 2022; 12:e1084. [PMID: 36245324 PMCID: PMC9574492 DOI: 10.1002/ctm2.1084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/29/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Identifying cellular and functional heterogeneity within aged prostate is critical for understanding the spatial distribution of prostate diseases. METHODS Aged human prostate peripheral zone (PZ) and transitional zone (TZ) tissues were used for single-cell RNA-sequencing. Results were validated by immunofluorescence staining. RESULTS We found that club/hillock epithelial cells, compared with other epithelial cells, had significantly higher NOTCH signaling activity and expressed higher levels of neuro-stems but lower androgen-related genes. These cells were primarily found in the TZ and provided a stem-like niche around the proximal prostate ducts. Significant heterogeneity was observed in the aged luminal population. A novel TFF3+ luminal subtype with elevated MYC and E2F pathway activities was observed, primarily in the PZ. Further analysis revealed that epithelial cells in the TZ had higher levels of stem- and inflammation-related pathway activities but lower androgen/lineage-related pathway activities than those in the PZ. Notably, the activation of MYC, E2F and DNA repair pathways significantly increased in PZ luminal cells. In the immune landscape, we found that the immune microenvironment in the TZ is more complex and disordered with more infiltration of NK and Treg cells. CD8 T cell and macrophage in the TZ exhibit both inflammation activation and suppression phenotypes. In the stroma, the TZ had a higher fibroblast density, and fibroblasts in the TZ exhibited stronger transcriptome activity in immunity and proliferation. Ligand-receptor interaction analysis revealed that fibroblasts could contribute to a NOTCH signaling niche for club/hillock cells in the TZ and balance the prostate immune microenvironment. The activation of stem properties, inflammatory infiltration and loss of androgen/lineage activity are prominent features distinguishing the TZ from PZ. CONCLUSIONS Our study explains the heterogeneity between the TZ and PZ of aged prostate, which may help understand the spatial distribution of prostate diseases and establish a foundation for novel target discovery.
Collapse
Affiliation(s)
- Qiuxia Yan
- Peking University Fifth School of Clinical MedicineBeijingChina,Department of UrologyBeijing HospitalNational Center of GerontologyBeijingChina
| | - Miao Wang
- Department of UrologyBeijing HospitalNational Center of GerontologyBeijingChina
| | - Haoran Xia
- Department of UrologyBeijing HospitalNational Center of GerontologyBeijingChina
| | - Cao Dai
- Department of General SurgeryThe Third Affiliated Hospital Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Tongxiang Diao
- Department of UrologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | | | - Huimin Hou
- Department of UrologyBeijing HospitalNational Center of GerontologyBeijingChina
| | - Hong Zhang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular SciencesPeking University Health Science CenterBeijingChina
| | - Ming Liu
- Department of UrologyBeijing HospitalNational Center of GerontologyBeijingChina
| | - Xingbo Long
- Department of UrologySun Yat‐sen University Cancer CenterGuangzhouGuangdongChina,State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhouGuangdongChina
| |
Collapse
|
13
|
Gangavarapu KJ, Jowdy PF, Foster BA, Huss WJ. Role of prostate stem cells and treatment strategies in benign prostate hyperplasia. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2022; 10:154-169. [PMID: 35874288 PMCID: PMC9301063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Benign prostate hyperplasia (BPH) is a progressive disease with a direct correlation between incidence and age. Since the treatment and management of BPH involve harmful side effects and decreased quality of life for the patient, the primary focus of research should be to find better and longer-lasting therapeutic options. The mechanisms regulating prostate stem cells in development can be exploited to decrease prostate growth. BPH is defined as the overgrowth of the prostate, and BPH is often diagnosed when lower urinary tract symptoms (LUTS) of urine storage or voiding symptoms cause patients to seek treatment. While multiple factors are involved in the hyperplastic growth of the stromal and epithelial compartments of the prostate, the clonal proliferation of stem cells is considered one of the main reasons for BPH initiation and regrowth of the prostate after therapies for BPH fail. Several theories explain possible reasons for the involvement of stem cells in the development, progression, and pathogenesis of BPH. The aim of the current review is to discuss current literature on the fundamentals of prostate development and the role of stem cells in BPH. This review examines the rationale for the hypothesis that unregulated stem cell properties can lead to BPH and therapeutic targeting of stem cells may reduce treatment-related side effects and prevent the regrowth of the prostate.
Collapse
Affiliation(s)
- Kalyan J Gangavarapu
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
| | - Peter F Jowdy
- Department of Dermatology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
- Jacobs School of Medicine and Biomedical Sciences, University at BuffaloBuffalo, NY 14203, USA
| | - Barbara A Foster
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
| | - Wendy J Huss
- Department of Dermatology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
| |
Collapse
|
14
|
Prostate luminal progenitor cells: from mouse to human, from health to disease. Nat Rev Urol 2022; 19:201-218. [DOI: 10.1038/s41585-021-00561-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2021] [Indexed: 12/11/2022]
|
15
|
Glucose-regulated protein 78 modulates cell growth, epithelial-mesenchymal transition, and oxidative stress in the hyperplastic prostate. Cell Death Dis 2022; 13:78. [PMID: 35075122 PMCID: PMC8786955 DOI: 10.1038/s41419-022-04522-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/14/2021] [Accepted: 01/11/2022] [Indexed: 01/11/2023]
Abstract
Benign prostatic hyperplasia (BPH) is a chronic condition which mainly affects elderly males. Existing scientific evidences have not completely revealed the pathogenesis of BPH. Glucose-regulated protein 78 (GRP78) is a member of the heat shock protein 70 superfamily, which serves as an important regulator in many diseases. This study aims at elucidating the role of GRP78 in the BPH process. Human prostate tissues, cultured human prostate cell lines (BPH-1 and WPMY-1) and clinical data from BPH patients were utilized. The expression and localization of GRP78 were determined with quantitative real time PCR (qRT-PCR), Western blotting and immunofluorescence staining. GRP78 knockdown and overexpression cell models were created with GRP78 siRNA and GRP78 plasmid transfection. With these models, cell viability, apoptosis rate, as well as marker levels for epithelial-mesenchymal transition (EMT) and oxidative stress (OS) were detected by CCK8 assay, flow cytometry analysis and Western blotting respectively. AKT/mTOR and MAPK/ERK pathways were also evaluated. Results showed GRP78 was localized in the epithelium and stroma of the prostate, with higher expression in BPH tissues. There was no significant difference in GRP78 expression between BPH-1 and WPMY-1 cell lines. In addition, GRP78 knockdown (KD) slowed cell growth and induced apoptosis, without effects on the cell cycle stage of both cell lines. Lack of GRP78 affected expression levels of markers for EMT and OS. Consistently, overexpression of GRP78 completely reversed all effects of knocking down GRP78. We further found that GRP78 modulated cell growth and OS via AKT/mTOR signaling, rather than the MAPK/ERK pathway. Overall, our novel data demonstrates that GRP78 plays a significant role in the development of BPH and suggests that GRP78 might be rediscovered as a new target for treatment of BPH.
Collapse
|
16
|
Buskin A, Singh P, Lorenz O, Robson C, Strand DW, Heer R. A Review of Prostate Organogenesis and a Role for iPSC-Derived Prostate Organoids to Study Prostate Development and Disease. Int J Mol Sci 2021; 22:ijms222313097. [PMID: 34884905 PMCID: PMC8658468 DOI: 10.3390/ijms222313097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 01/09/2023] Open
Abstract
The prostate is vulnerable to two major age-associated diseases, cancer and benign enlargement, which account for significant morbidity and mortality for men across the globe. Prostate cancer is the most common cancer reported in men, with over 1.2 million new cases diagnosed and 350,000 deaths recorded annually worldwide. Benign prostatic hyperplasia (BPH), characterised by the continuous enlargement of the adult prostate, symptomatically afflicts around 50% of men worldwide. A better understanding of the biological processes underpinning these diseases is needed to generate new treatment approaches. Developmental studies of the prostate have shed some light on the processes essential for prostate organogenesis, with many of these up- or downregulated genes expressions also observed in prostate cancer and/or BPH progression. These insights into human disease have been inferred through comparative biological studies relying primarily on rodent models. However, directly observing mechanisms of human prostate development has been more challenging due to limitations in accessing human foetal material. Induced pluripotent stem cells (iPSCs) could provide a suitable alternative as they can mimic embryonic cells, and iPSC-derived prostate organoids present a significant opportunity to study early human prostate developmental processes. In this review, we discuss the current understanding of prostate development and its relevance to prostate-associated diseases. Additionally, we detail the potential of iPSC-derived prostate organoids for studying human prostate development and disease.
Collapse
Affiliation(s)
- Adriana Buskin
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O’Gorman Building, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (P.S.); (C.R.)
- Correspondence: (A.B.); (R.H.)
| | - Parmveer Singh
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O’Gorman Building, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (P.S.); (C.R.)
| | - Oliver Lorenz
- Newcastle University School of Computing, Digital Institute, Urban Sciences Building, Newcastle University, Newcastle upon Tyne NE4 5TG, UK;
| | - Craig Robson
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O’Gorman Building, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (P.S.); (C.R.)
| | - Douglas W. Strand
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Rakesh Heer
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O’Gorman Building, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (P.S.); (C.R.)
- Department of Urology, Freeman Hospital, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
- Correspondence: (A.B.); (R.H.)
| |
Collapse
|
17
|
O'Connor LP, Ramedani S, Daneshvar M, George AK, Abreu AL, Cacciamani GE, Lebastchi AH. Future perspective of focal therapy for localized prostate cancer. Asian J Urol 2021; 8:354-361. [PMID: 34765443 PMCID: PMC8566361 DOI: 10.1016/j.ajur.2021.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/09/2021] [Accepted: 04/06/2021] [Indexed: 10/25/2022] Open
Abstract
Objective To summarize the recent literature discussing focal therapy for localized prostate cancer. Methods A thorough literature review was performed using PubMed to identify recent studies involving focal therapy for the treatment of localized prostate cancer. Results In an effort to decrease the morbidity associated with prostate cancer treatment, many urologists are turning to focal therapy as an alternative treatment option. With this approach, the cancer bearing portion of the prostate is targeted while leaving the benign tissue untouched. Multiparametric magnetic resonance imaging remains the gold standard for visualization during focal therapy, but new imaging modalities such as prostate specific membrane antigen/positron emission tomography and contrast enhanced ultrasound are being investigated. Furthermore, several biomarkers, such as prostate cancer antigen 3 and prostate health index, are used in conjunction with imaging to improve risk stratification prior to focal therapy. Lastly, there are several novel technologies such as nanoparticles and transurethral devices that are under investigation for use in focal therapy. Conclusion Focal therapy is proving to be a promising option for the treatment of localized prostate cancer. However, further study is needed to determine the true efficacy of these exciting new technologies.
Collapse
Affiliation(s)
- Luke P O'Connor
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shayann Ramedani
- College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Michael Daneshvar
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arvin K George
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Andre Luis Abreu
- Center for Image-Guided and Focal Therapy for Prostate Cancer, Institute of Urology and Catherine and Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Institute of Urology and Catherine and Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Giovanni E Cacciamani
- Center for Image-Guided and Focal Therapy for Prostate Cancer, Institute of Urology and Catherine and Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Institute of Urology and Catherine and Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Amir H Lebastchi
- Center for Image-Guided and Focal Therapy for Prostate Cancer, Institute of Urology and Catherine and Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Institute of Urology and Catherine and Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
18
|
Therapeutic Effects of 25-Hydroxyvitamin D on the Pathological Process of Benign Prostatic Hyperplasia: An In Vitro Evidence. DISEASE MARKERS 2021; 2021:4029470. [PMID: 34671434 PMCID: PMC8523287 DOI: 10.1155/2021/4029470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/23/2021] [Accepted: 09/04/2021] [Indexed: 02/07/2023]
Abstract
The pathogenesis of benign prostatic hyperplasia (BPH) is extremely complicated which involving the multiple signaling pathways. The deficiency of vitamin D is an important risk factor for BPH, and exogenous vitamin D is effective for the treatment of BPH. In this study, we provided in vitro mechanical evidence of vitamin D as a treatment for BPH using BPH-1, WPMY-1, and PBMC cells. We found that 25-hydroxyvitamin D (25-OH D) level is decreased in BPH and closely correlated with age, prostate volume, maximum flow, international prostate symptom score, and prostate-specific antigen of the BPH patients. We further revealed that 25-OH D ameliorated TGF-β1 induces epithelial-mesenchymal transition (EMT) of BPH-1 cells and proliferation of WPMY-1 cells via blocking TGF-β signaling. Moreover, 25-OH D was able to block NF-κB signaling in PBMCs of BPH patients and STAT3 signaling in BPH cells to relieve inflammation. 25-OH D also protects BPH cells from inflammatory cytokines selected by PBMCs. Finally, we uncovered that 25-OH D alleviated prostate cell oxidative stress by triggering Nrf2 signaling. In conclusion, our data verified that 25-OH D regulated multiple singling pathways to restrain prostate cell EMT, proliferation, inflammation, and oxidative stress. Our study provides in vitro mechanical evidence to support clinical use of vitamin D as a treatment for BPH.
Collapse
|
19
|
Olson AW, Le V, Wang J, Hiroto A, Kim WK, Lee DH, Aldahl J, Wu X, Kim M, Cunha GR, You S, Sun Z. Stromal androgen and hedgehog signaling regulates stem cell niches in pubertal prostate development. Development 2021; 148:271928. [PMID: 34427305 DOI: 10.1242/dev.199738] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022]
Abstract
Stromal androgen-receptor (AR) action is essential for prostate development, morphogenesis and regeneration. However, mechanisms underlying how stromal AR maintains the cell niche in support of pubertal prostatic epithelial growth are unknown. Here, using advanced mouse genetic tools, we demonstrate that selective deletion of stromal AR expression in prepubescent Shh-responsive Gli1-expressing cells significantly impedes pubertal prostate epithelial growth and development. Single-cell transcriptomic analyses showed that AR loss in these prepubescent Gli1-expressing cells dysregulates androgen signaling-initiated stromal-epithelial paracrine interactions, leading to growth retardation of pubertal prostate epithelia and significant development defects. Specifically, AR loss elevates Shh-signaling activation in both prostatic stromal and adjacent epithelial cells, directly inhibiting prostatic epithelial growth. Single-cell trajectory analyses further identified aberrant differentiation fates of prostatic epithelial cells directly altered by stromal AR deletion. In vivo recombination of AR-deficient stromal Gli1-lineage cells with wild-type prostatic epithelial cells failed to develop normal prostatic epithelia. These data demonstrate previously unidentified mechanisms underlying how stromal AR-signaling facilitates Shh-mediated cell niches in pubertal prostatic epithelial growth and development.
Collapse
Affiliation(s)
- Adam W Olson
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010-3000, USA
| | - Vien Le
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010-3000, USA
| | - Jinhui Wang
- Integrative Genomics Core, City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA 91010-3000, USA
| | - Alex Hiroto
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010-3000, USA
| | - Won Kyung Kim
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010-3000, USA
| | - Dong-Hoon Lee
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010-3000, USA
| | - Joseph Aldahl
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010-3000, USA
| | - Xiwei Wu
- Integrative Genomics Core, City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA 91010-3000, USA
| | - Minhyung Kim
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Gerald R Cunha
- Department of Urology, School of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Sungyong You
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Zijie Sun
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010-3000, USA
| |
Collapse
|
20
|
Fiard G, Stavrinides V, Chambers ES, Heavey S, Freeman A, Ball R, Akbar AN, Emberton M. Cellular senescence as a possible link between prostate diseases of the ageing male. Nat Rev Urol 2021; 18:597-610. [PMID: 34294916 DOI: 10.1038/s41585-021-00496-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2021] [Indexed: 02/07/2023]
Abstract
Senescent cells accumulate with age in all tissues. Although senescent cells undergo cell-cycle arrest, these cells remain metabolically active and their secretome - known as the senescence-associated secretory phenotype - is responsible for a systemic pro-inflammatory state, which contributes to an inflammatory microenvironment. Senescent cells can be found in the ageing prostate and the senescence-associated secretory phenotype and can be linked to BPH and prostate cancer. Indeed, a number of signalling pathways provide biological plausibility for the role of senescence in both BPH and prostate cancer, although proving causality is difficult. The theory of senescence as a mechanism for prostate disease has a number of clinical implications and could offer opportunities for targeting in the future.
Collapse
Affiliation(s)
- Gaelle Fiard
- UCL Division of Surgery & Interventional Science, University College London, London, UK.
- Department of Urology, Grenoble Alpes University Hospital, Grenoble, France.
- Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble, France.
| | - Vasilis Stavrinides
- UCL Division of Surgery & Interventional Science, University College London, London, UK
| | - Emma S Chambers
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK
| | - Susan Heavey
- UCL Division of Surgery & Interventional Science, University College London, London, UK
| | - Alex Freeman
- Department of Pathology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Rhys Ball
- Department of Pathology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Arne N Akbar
- Division of Medicine, The Rayne Building, University College London, London, UK
| | - Mark Emberton
- UCL Division of Surgery & Interventional Science, University College London, London, UK
| |
Collapse
|
21
|
Liu J, Yin J, Chen P, Liu D, He W, Li Y, Li M, Fu X, Zeng G, Guo Y, Wang X, DiSanto ME, Zhang X. Smoothened inhibition leads to decreased cell proliferation and suppressed tissue fibrosis in the development of benign prostatic hyperplasia. Cell Death Discov 2021; 7:115. [PMID: 34006832 PMCID: PMC8131753 DOI: 10.1038/s41420-021-00501-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/10/2021] [Accepted: 04/28/2021] [Indexed: 02/08/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is a common disease in aging males. It has been proven that the Hedgehog (HH) is implied as an effective and fundamental regulatory growth factor signal for organogenesis, homeostasis, and regeneration. Smoothened (SMO), as the major control point of HH signals, activates aberrantly in most human solid tumors. However, the specific function of SMO and its downstream glioma-associated oncogene (GLI) family in BPH has not been well understood. Here, we first revealed that the SMO cascade was upregulated in BPH tissues and was localized in both the stromal and the epithelium compartments of human prostate tissues. Cyclopamine, as a specific SMO inhibitor, was incubated with BPH-1 and WPMY-1, and intraperitoneally injected into a BPH rat model established by castration with testosterone supplementation. SMO inhibition could induce cell apoptosis, cell cycle arrest at the G0/G1 phase, and a reduction of tissue fibrosis markers, both in vitro and in vivo. Finally, a tissue microarray, containing 104 BPH specimens, was constructed to analyze the correlations between the expression of SMO cascade and clinical parameters. The GLI2 was correlated positively with nocturia and negatively with fPSA. The GLI3 was in a positive relationship with International Prostate Symptom Score and nocturia. In conclusion, our study suggested that SMO cascade could play important roles in the development of BPH and it might be rediscovered as a promising therapeutic target for BPH.
Collapse
Affiliation(s)
- Jianmin Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jing Yin
- Department of Rehabilitation, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ping Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Daoquan Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Weixiang He
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mingzhou Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xun Fu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guang Zeng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuming Guo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Michael E DiSanto
- Department of Surgery and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
22
|
Joseph DB, Turco AE, Vezina CM, Strand DW. Progenitors in prostate development and disease. Dev Biol 2021; 473:50-58. [PMID: 33529704 DOI: 10.1016/j.ydbio.2020.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022]
Abstract
The prostate develops by epithelial budding and branching processes that occur during fetal and postnatal stages. The adult prostate demonstrates remarkable regenerative capacity, with the ability to regrow to its original size over multiple cycles of castration and androgen administration. This capacity for controlled regeneration prompted the search for an androgen-independent epithelial progenitor in benign prostatic hyperplasia (BPH) and prostate cancer (PCa). BPH is hypothesized to be a reawakening of ductal branching, resulting in the formation of new proximal glands, all while androgen levels are decreasing in the aging male. Advanced prostate cancer can be slowed with androgen deprivation, but resistance eventually occurs, suggesting the existence of an androgen-independent progenitor. Recent studies indicate that there are multiple castration-insensitive epithelial cell types in the proximal area of the prostate, but not all act as progenitors during prostate development or regeneration. This review highlights how recent cellular and anatomical studies are changing our perspective on the identity of the prostate progenitor.
Collapse
Affiliation(s)
- Diya B Joseph
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Anne E Turco
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Chad M Vezina
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Douglas W Strand
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
23
|
Abstract
OBJECTIVES To present historical and contemporary hypotheses on the pathogenesis of benign prostatic hyperplasia (BPH), and the potential implications for current medical therapies. METHODS The literature on BPH was reviewed. BPH is a prevalent disease with significant health and economic impacts on patients and health organisations across the world, whilst the cause/initiation of the disease process has still not been fully determined. RESULTS In BPH, pathways involving androgens, oestrogens, insulin, inflammation, proliferative reawakening, stem cells and telomerase have been hypothesised in the pathogenesis of the disease. A number of pathways first described >40 years ago have been first rebuked and then have come back into favour. A system of an inflammatory process within the prostate, which leads to growth factor production, stem cell activation, and cellular proliferation encompassing a number of pathways, is currently in vogue. This review also highlights the physiology of the prostate cell subpopulations and how this may account for the delay/failure in treatment response for certain medical therapies. CONCLUSION BPH is an important disease, and as the pathogenesis is not fully understood it impacts the effectiveness of medical therapies. This impacts patients, with further research potentially highlighting novel therapeutic avenues.
Collapse
Affiliation(s)
- Conor M Devlin
- Cancer Research Unit, Department of Biology, University of York, York, UK.,Urology Department, Castle Hill Hospital, Cottingham, UK
| | | | - Norman J Maitland
- Cancer Research Unit, Department of Biology, University of York, York, UK
| |
Collapse
|
24
|
Overexpression of Placental Growth Factor in Stromal Cells from Benign Prostatic Hyperplasia: Another Piece in the Puzzle? EUR UROL SUPPL 2020; 21:29-32. [PMID: 34337465 PMCID: PMC8317913 DOI: 10.1016/j.euros.2020.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2020] [Indexed: 11/30/2022] Open
|
25
|
Zhang J, Zhang M, Tang J, Yin G, Long Z, He L, Zhou C, Luo L, Qi L, Wang L. Animal models of benign prostatic hyperplasia. Prostate Cancer Prostatic Dis 2020; 24:49-57. [PMID: 32873917 DOI: 10.1038/s41391-020-00277-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/16/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023]
Abstract
Benign prostatic hyperplasia (BPH) and associated lower urinary tract symptoms are common clinical concerns that affect aging men all over the world. The underlying molecular and cellular mechanisms remain elusive. Over the past few years, a number of animal models of BPH, including spontaneous model, BPH-induction model, xenograft model, metabolic syndrome model, mechanical obstruction model, and transgenic model, have been established that may provide useful tools to fill these critical knowledge gaps. In this review, we therefore outlined the present status quo for animal models of BPH, comparing the pros and cons with respect to their ability to mimic the etiological, histological, and clinical hallmarks of BPH and discussed their applicability for future research.
Collapse
Affiliation(s)
- Junjie Zhang
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.,Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Mengda Zhang
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.,Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jin Tang
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Guangming Yin
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Zhi Long
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Leye He
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Chuanchi Zhou
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.,Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lufeng Luo
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.,Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lin Qi
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Long Wang
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
26
|
Joseph DB, Henry GH, Malewska A, Iqbal NS, Ruetten HM, Turco AE, Abler LL, Sandhu SK, Cadena MT, Malladi VS, Reese JC, Mauck RJ, Gahan JC, Hutchinson RC, Roehrborn CG, Baker LA, Vezina CM, Strand DW. Urethral luminal epithelia are castration-insensitive cells of the proximal prostate. Prostate 2020; 80:872-884. [PMID: 32497356 PMCID: PMC7339731 DOI: 10.1002/pros.24020] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Castration-insensitive epithelial progenitors capable of regenerating the prostate have been proposed to be concentrated in the proximal region based on facultative assays. Functional characterization of prostate epithelial populations isolated with individual cell surface markers has failed to provide a consensus on the anatomical and transcriptional identity of proximal prostate progenitors. METHODS Here, we use single-cell RNA sequencing to obtain a complete transcriptomic profile of all epithelial cells in the mouse prostate and urethra to objectively identify cellular subtypes. Pan-transcriptomic comparison to human prostate cell types identified a mouse equivalent of human urethral luminal cells, which highly expressed putative prostate progenitor markers. Validation of the urethral luminal cell cluster was performed using immunostaining and flow cytometry. RESULTS Our data reveal that previously identified facultative progenitors marked by Trop2, Sca-1, KRT4, and PSCA are actually luminal epithelial cells of the urethra that extend into the proximal region of the prostate, and are resistant to castration-induced androgen deprivation. Mouse urethral luminal cells were identified to be the equivalent of previously identified human club and hillock cells that similarly extend into proximal prostate ducts. Benign prostatic hyperplasia (BPH) has long been considered an "embryonic reawakening," but the cellular origin of the hyperplastic growth concentrated in the periurethral region is unclear. We demonstrate an increase in urethral luminal cells within glandular nodules from BPH patients. Urethral luminal cells are further increased in patients treated with a 5-α reductase inhibitor. CONCLUSIONS Our data demonstrate that cells of the proximal prostate that express putative progenitor markers, and are enriched by castration in the proximal prostate, are urethral luminal cells and that these cells may play an important role in the etiology of human BPH.
Collapse
Affiliation(s)
- Diya B. Joseph
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas
| | - Gervaise H. Henry
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas
- Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas
| | - Alicia Malewska
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas
| | - Nida S. Iqbal
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas
| | - Hannah M. Ruetten
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Anne E. Turco
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Lisa L. Abler
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Simran K. Sandhu
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Mark T. Cadena
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Venkat S. Malladi
- Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas
| | | | - Ryan J. Mauck
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas
| | - Jeffrey C. Gahan
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas
| | | | | | - Linda A. Baker
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas
| | - Chad M. Vezina
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Douglas W. Strand
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
27
|
Considering the role of radical prostatectomy in 21st century prostate cancer care. Nat Rev Urol 2020; 17:177-188. [PMID: 32086498 DOI: 10.1038/s41585-020-0287-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2020] [Indexed: 12/16/2022]
Abstract
The practice of radical prostatectomy for treating prostate cancer has evolved remarkably since its general introduction around 1900. Initially described using a perineal approach, the procedure was later popularized using a retropubic one, after it was first described as such in 1948. The open surgical method has now largely been abandoned in favour of the minimally invasive robot-assisted method, which was first described in 2000. Until 1980, the procedure was hazardous, often accompanied by massive blood loss and poor outcomes. For patients in whom surgery is indicated, prostatectomy is increasingly being used as the first step in a multitherapeutic approach in advanced local, and even early metastatic, disease. However, contemporary molecular insights have enabled many men to safely avoid surgical intervention when the disease is phenotypically indolent and use of active surveillance programmes continues to expand worldwide. In 2020, surgery is not recommended in those men with low-grade, low-volume Gleason 6 prostate cancer; previously these men - a large cohort of ~40% of men with newly diagnosed prostate cancer - were offered surgery in large numbers, with little clinical benefit and considerable adverse effects. Radical prostatectomy is appropriate for men with intermediate-risk and high-risk disease (Gleason score 7-9 or Grade Groups 2-5) in whom radical prostatectomy prevents further metastatic seeding of potentially lethal clones of prostate cancer cells. Small series have suggested that it might be appropriate to offer radical prostatectomy to men presenting with small metastatic burden (nodal and or bone) as part of a multimodal therapeutic approach. Furthermore, surgical treatment of prostate cancer has been reported in cohorts of octogenarian men in good health with minimal comorbidities, when 20 years ago such men were rarely treated surgically even when diagnosed with localized high-risk disease. As medical therapies for prostate cancer continue to increase, the use of surgery might seem to be less relevant; however, the changing demographics of prostate cancer means that radical prostatectomy remains an important and useful option in many men, with a changing indication.
Collapse
|
28
|
Le V, He Y, Aldahl J, Hooker E, Yu EJ, Olson A, Kim WK, Lee DH, Wong M, Sheng R, Mi J, Geradts J, Cunha GR, Sun Z. Loss of androgen signaling in mesenchymal sonic hedgehog responsive cells diminishes prostate development, growth, and regeneration. PLoS Genet 2020; 16:e1008588. [PMID: 31929563 PMCID: PMC6980684 DOI: 10.1371/journal.pgen.1008588] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/24/2020] [Accepted: 12/29/2019] [Indexed: 11/18/2022] Open
Abstract
Prostate embryonic development, pubertal and adult growth, maintenance, and regeneration are regulated through androgen signaling-mediated mesenchymal-epithelial interactions. Specifically, the essential role of mesenchymal androgen signaling in the development of prostate epithelium has been observed for over 30 years. However, the identity of the mesenchymal cells responsible for this paracrine regulation and related mechanisms are still unknown. Here, we provide the first demonstration of an indispensable role of the androgen receptor (AR) in sonic hedgehog (SHH) responsive Gli1-expressing cells, in regulating prostate development, growth, and regeneration. Selective deletion of AR expression in Gli1-expressing cells during embryogenesis disrupts prostatic budding and impairs prostate development and formation. Tissue recombination assays showed that urogenital mesenchyme (UGM) containing AR-deficient mesenchymal Gli1-expressing cells combined with wildtype urogenital epithelium (UGE) failed to develop normal prostate tissue in the presence of androgens, revealing the decisive role of AR in mesenchymal SHH responsive cells in prostate development. Prepubescent deletion of AR expression in Gli1-expressing cells resulted in severe impairment of androgen-induced prostate growth and regeneration. RNA-sequencing analysis showed significant alterations in signaling pathways related to prostate development, stem cells, and organ morphogenesis in AR-deficient Gli1-expressing cells. Among these altered pathways, the transforming growth factor β1 (TGFβ1) pathway was up-regulated in AR-deficient Gli1-expressing cells. We further demonstrated the activation of TGFβ1 signaling in AR-deleted prostatic Gli1-expressing cells, which inhibits prostate epithelium growth through paracrine regulation. These data demonstrate a novel role of the AR in the Gli1-expressing cellular niche for regulating prostatic cell fate, morphogenesis, and renewal, and elucidate the mechanism by which mesenchymal androgen-signaling through SHH-responsive cells elicits the growth and regeneration of prostate epithelium. Prostate formation, growth, and regeneration, as well as tumorigenesis, depend on androgens and androgen receptor (AR)-mediated signaling pathways. Tissue recombination assays done more than 30 years ago demonstrated a decisive role for stromal androgen signaling in prostatic epithelium development. However, in the intervening time, the identity of the mesenchymal cells in the urogenital sinus mesenchyme that convey androgen signaling and control prostate epithelium development, morphogenesis, and regeneration has not been determined. In this study, using mouse genetic tools, we demonstrate for the first time that selective deletion of AR in mesenchymal Gli1-expressing cells abolishes early development of prostate tissue and normal prostate formation, and diminishes prostate pubertal growth and regeneration. In addition, using tissue recombination assays, we directly determined an essential requirement for AR expression in mesenchymal Gli1-expressing cells during prostate epithelium development. Our results not only resolve a 30-year-old scientific puzzle by identifying the mesenchymal cell properties of androgen-responsive cells that elicit development of the embryonic prostate epithelium, but also explore a new regulatory mechanism for androgen and Shh signaling-mediated cellular niches in regulating prostatic cell fate, growth, and renewal through paracrine regulation. Given the importance of sex hormone and hedgehog signaling pathways in human development and tumorigenesis, this study extends beyond the field of prostate biology, raising new questions underlying sex hormone and SHH signaling in development and tumorigenesis.
Collapse
Affiliation(s)
- Vien Le
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Yongfeng He
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Joseph Aldahl
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Erika Hooker
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Eun-Jeong Yu
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Adam Olson
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Won Kyung Kim
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Dong-Hoon Lee
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Monica Wong
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Ruoyu Sheng
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Jiaqi Mi
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Joseph Geradts
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Gerald R. Cunha
- Department of Urology, School of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Zijie Sun
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
29
|
Stabile A, Giganti F, Rosenkrantz AB, Taneja SS, Villeirs G, Gill IS, Allen C, Emberton M, Moore CM, Kasivisvanathan V. Multiparametric MRI for prostate cancer diagnosis: current status and future directions. Nat Rev Urol 2020; 17:41-61. [PMID: 31316185 DOI: 10.1038/s41585-019-0212-4] [Citation(s) in RCA: 211] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2019] [Indexed: 12/31/2022]
Abstract
The current diagnostic pathway for prostate cancer has resulted in overdiagnosis and consequent overtreatment as well as underdiagnosis and missed diagnoses in many men. Multiparametric MRI (mpMRI) of the prostate has been identified as a test that could mitigate these diagnostic errors. The performance of mpMRI can vary depending on the population being studied, the execution of the MRI itself, the experience of the radiologist, whether additional biomarkers are considered and whether mpMRI-targeted biopsy is carried out alone or in addition to systematic biopsy. A number of challenges to implementation remain, such as ensuring high-quality execution and reporting of mpMRI and ensuring that this diagnostic pathway is cost-effective. Nevertheless, emerging clinical trial data support the adoption of this technology as part of the standard of care for the diagnosis of prostate cancer.
Collapse
Affiliation(s)
- Armando Stabile
- Division of Surgery and Interventional Science, University College London, London, UK.
- Department of Urology, University College London Hospitals NHS Foundation Trust, London, UK.
- Department of Urology and Division of Experimental Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Francesco Giganti
- Division of Surgery and Interventional Science, University College London, London, UK
- Department of Radiology, University College London Hospitals NHS Foundation Trust, London, UK
| | | | - Samir S Taneja
- Department of Radiology, NYU Langone Health, New York, NY, USA
- Department of Urology, NYU Langone Health, New York, NY, USA
| | - Geert Villeirs
- Department of Radiology, Ghent University Hospital, Ghent, Belgium
| | - Inderbir S Gill
- USC Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Clare Allen
- Department of Radiology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Mark Emberton
- Division of Surgery and Interventional Science, University College London, London, UK
- Department of Urology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Caroline M Moore
- Division of Surgery and Interventional Science, University College London, London, UK
- Department of Urology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Veeru Kasivisvanathan
- Division of Surgery and Interventional Science, University College London, London, UK
- Department of Urology, University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
30
|
Testa U, Castelli G, Pelosi E. Cellular and Molecular Mechanisms Underlying Prostate Cancer Development: Therapeutic Implications. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E82. [PMID: 31366128 PMCID: PMC6789661 DOI: 10.3390/medicines6030082] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/19/2019] [Accepted: 07/25/2019] [Indexed: 12/15/2022]
Abstract
Prostate cancer is the most frequent nonskin cancer and second most common cause of cancer-related deaths in man. Prostate cancer is a clinically heterogeneous disease with many patients exhibiting an aggressive disease with progression, metastasis, and other patients showing an indolent disease with low tendency to progression. Three stages of development of human prostate tumors have been identified: intraepithelial neoplasia, adenocarcinoma androgen-dependent, and adenocarcinoma androgen-independent or castration-resistant. Advances in molecular technologies have provided a very rapid progress in our understanding of the genomic events responsible for the initial development and progression of prostate cancer. These studies have shown that prostate cancer genome displays a relatively low mutation rate compared with other cancers and few chromosomal loss or gains. The ensemble of these molecular studies has led to suggest the existence of two main molecular groups of prostate cancers: one characterized by the presence of ERG rearrangements (~50% of prostate cancers harbor recurrent gene fusions involving ETS transcription factors, fusing the 5' untranslated region of the androgen-regulated gene TMPRSS2 to nearly the coding sequence of the ETS family transcription factor ERG) and features of chemoplexy (complex gene rearrangements developing from a coordinated and simultaneous molecular event), and a second one characterized by the absence of ERG rearrangements and by the frequent mutations in the E3 ubiquitin ligase adapter SPOP and/or deletion of CDH1, a chromatin remodeling factor, and interchromosomal rearrangements and SPOP mutations are early events during prostate cancer development. During disease progression, genomic and epigenomic abnormalities accrued and converged on prostate cancer pathways, leading to a highly heterogeneous transcriptomic landscape, characterized by a hyperactive androgen receptor signaling axis.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy.
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
31
|
Sun C, Zhang G, Cheng S, Qian H, Li D, Liu M. URG11 promotes proliferation and induced apoptosis of LNCaP cells. Int J Mol Med 2019; 43:2075-2085. [PMID: 30864678 PMCID: PMC6443344 DOI: 10.3892/ijmm.2019.4121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/27/2019] [Indexed: 12/20/2022] Open
Abstract
von Willebrand factor C and EGF domain-containing protein (URG11), a cell growth regulator, is involved in the progression of a variety of types of cancer, including prostate cancer (Pca). However, the functions of the URG11 gene in Pca cells require in-depth investigation. The mRNA and protein levels of URG11 were measured by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. Cell Counting kit-8 (CCK-8), wound-healing and Transwell assays were used to detect cell viability, migration and invasion, respectively. Apoptosis and cell cycle analyses were performed using flow cytometry. The mRNA and protein expression levels of epithelial (E)-cadherin, vimentin, α-smooth muscle actin (α-SMA), cyclin D1 and MYC proto-oncogene protein (c-Myc) were analyzed by RT-qPCR and western blot analysis. In the present study, the mRNA and protein levels of URG11 were markedly upregulated in Pca cell lines compared with those in the normal prostate epithelial cell line. With functional experiments, the cell viability, migration and invasion of Pca cells were markedly promoted by URG11 overexpression. The cell cycle was effectively induced by URG11 and apoptosis was inhibited by the overexpression of URG11. Concomitantly, the epithelial marker E-cadherin was downregulated, and the mesenchymal markers vimentin and α-SMA were upregulated following URG11 overexpression. By contrast, genetic knockout of URG11 elicited the opposite effects. The present study also identified that the downstream effector genes of the Wnt/β-catenin signal pathway, cyclin D1 and c-Myc, were increased following the overexpression of endogenous URG11, which are known to regulate cell proliferation. In addition, the Wnt/β-catenin inhibitor FH535 ameliorated the promotive effects of URG11 on LNCaP cells viability, migration and invasion, and the Wnt/β-catenin agonist LiCl reversed the inhibitory effects of siURG11 in LNCaP cells on cell viability, migration and invasion. The present study demonstrated that URG11 served an oncogenic role in the development of Pca cells and provided evidence that URG11 has potential as a novel therapeutic target in Pca.
Collapse
Affiliation(s)
- Chenmin Sun
- Department of Anesthesiology, Tongren Hospital Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| | - Guangming Zhang
- Department of Anesthesiology, Tongren Hospital Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| | - Shujie Cheng
- Department of Urology, Tongren Hospital Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| | - Haining Qian
- Department of Urology, Tongren Hospital Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| | - Dong Li
- Department of Urology, Tongren Hospital Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| | - Min Liu
- Department of Urology, Tongren Hospital Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| |
Collapse
|
32
|
van der Toom EE, Axelrod HD, de la Rosette JJ, de Reijke TM, Pienta KJ, Valkenburg KC. Prostate-specific markers to identify rare prostate cancer cells in liquid biopsies. Nat Rev Urol 2019; 16:7-22. [PMID: 30479377 DOI: 10.1038/s41585-018-0119-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Despite improvements in early detection and advances in treatment, patients with prostate cancer continue to die from their disease. Minimal residual disease after primary definitive treatment can lead to relapse and distant metastases, and increasing evidence suggests that circulating tumour cells (CTCs) and bone marrow-derived disseminated tumour cells (BM-DTCs) can offer clinically relevant biological insights into prostate cancer dissemination and metastasis. Using epithelial markers to accurately detect CTCs and BM-DTCs is associated with difficulties, and prostate-specific markers are needed for the detection of these cells using rare cell assays. Putative prostate-specific markers have been identified, and an optimized strategy for staining rare cancer cells from liquid biopsies using these markers is required. The ideal prostate-specific marker will be expressed on every CTC or BM-DTC throughout disease progression (giving high sensitivity) and will not be expressed on non-prostate-cancer cells in the sample (giving high specificity). Some markers might not be specific enough to the prostate to be used as individual markers of prostate cancer cells, whereas others could be truly prostate-specific and would make ideal markers for use in rare cell assays. The goal of future studies is to use sensitive and specific prostate markers to consistently and reliably identify rare cancer cells.
Collapse
Affiliation(s)
| | - Haley D Axelrod
- The James Buchanan Brady Urological Institute, Baltimore, MD, USA.,Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | - Kenneth J Pienta
- The James Buchanan Brady Urological Institute, Baltimore, MD, USA
| | | |
Collapse
|