1
|
Dhami NK, Greenwood PF, Poropat SF, Tripp M, Elson A, Vijay H, Brosnan L, Holman AI, Campbell M, Hopper P, Smith L, Jian A, Grice K. Microbially mediated fossil concretions and their characterization by the latest methodologies: a review. Front Microbiol 2023; 14:1225411. [PMID: 37840715 PMCID: PMC10576451 DOI: 10.3389/fmicb.2023.1225411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/14/2023] [Indexed: 10/17/2023] Open
Abstract
The study of well-preserved organic matter (OM) within mineral concretions has provided key insights into depositional and environmental conditions in deep time. Concretions of varied compositions, including carbonate, phosphate, and iron-based minerals, have been found to host exceptionally preserved fossils. Organic geochemical characterization of concretion-encapsulated OM promises valuable new information of fossil preservation, paleoenvironments, and even direct taxonomic information to further illuminate the evolutionary dynamics of our planet and its biota. Full exploitation of this largely untapped geochemical archive, however, requires a sophisticated understanding of the prevalence, formation controls and OM sequestration properties of mineral concretions. Past research has led to the proposal of different models of concretion formation and OM preservation. Nevertheless, the formation mechanisms and controls on OM preservation in concretions remain poorly understood. Here we provide a detailed review of the main types of concretions and formation pathways with a focus on the role of microbes and their metabolic activities. In addition, we provide a comprehensive account of organic geochemical, and complimentary inorganic geochemical, morphological, microbial and paleontological, analytical methods, including recent advancements, relevant to the characterization of concretions and sequestered OM. The application and outcome of several early organic geochemical studies of concretion-impregnated OM are included to demonstrate how this underexploited geo-biological record can provide new insights into the Earth's evolutionary record. This paper also attempts to shed light on the current status of this research and major challenges that lie ahead in the further application of geo-paleo-microbial and organic geochemical research of concretions and their host fossils. Recent efforts to bridge the knowledge and communication gaps in this multidisciplinary research area are also discussed, with particular emphasis on research with significance for interpreting the molecular record in extraordinarily preserved fossils.
Collapse
Affiliation(s)
- Navdeep K. Dhami
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Paul F. Greenwood
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Stephen F. Poropat
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Madison Tripp
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Amy Elson
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Hridya Vijay
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Luke Brosnan
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Alex I. Holman
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Matthew Campbell
- The Trace and Environmental DNA lab (trEND), School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Peter Hopper
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Lisa Smith
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Andrew Jian
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Kliti Grice
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| |
Collapse
|
2
|
Wiemann J, Briggs DEG. Raman spectroscopy is a powerful tool in molecular paleobiology: An analytical response to Alleon et al. (https://doi.org/10.1002/bies.202000295). Bioessays 2022; 44:e2100070. [PMID: 34993976 DOI: 10.1002/bies.202100070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 01/08/2023]
Abstract
A recent article argued that signals from conventional Raman spectroscopy of organic materials are overwhelmed by edge filter and fluorescence artefacts. The article targeted a subset of Raman spectroscopic investigations of fossil and modern organisms and has implications for the utility of conventional Raman spectroscopy in comparative tissue analytics. The inferences were based on circular reasoning centered around the unconventional analysis of spectra from just two samples, one modern, and one fossil. We validated the disputed signals with in situ Fourier-Transform Infrared (FT-IR) Spectroscopy and through replication with different lasers, filters, and operators in independent laboratories. Our Raman system employs a holographic notch filter which is not affected by edge filter or other artefacts. Multiple lines of evidence confirm that conventional Raman spectra of fossils contain biologically and geologically meaningful information. Statistical analyses of large Raman and FT-IR spectral data sets reveal patterns in fossil composition and yield valuable insights into the history of life.
Collapse
Affiliation(s)
- Jasmina Wiemann
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, USA.,Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA.,Dinosaur Institute, Natural History Museum of LA County, Los Angeles, California, USA
| | - Derek E G Briggs
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, USA.,Yale Peabody Museum of Natural History, New Haven, Connecticut, USA
| |
Collapse
|