1
|
Lyu H, Chen X, Cheng Y, Zhang T, Wang P, Wong JHY, Wang J, Stasiak L, Sun L, Yang G, Wang L, Yue F. Pioneer factor GATA6 promotes colorectal cancer through 3D genome regulation. SCIENCE ADVANCES 2025; 11:eads4985. [PMID: 39919174 PMCID: PMC11804904 DOI: 10.1126/sciadv.ads4985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/09/2025] [Indexed: 02/09/2025]
Abstract
Colorectal cancer (CRC) is one of the most lethal and prevalent malignancies. While the overexpression of pioneer factor GATA6 in CRC has been linked with metastasis, its role in genome-wide gene expression dysregulation remains unclear. Through studies of primary human CRC tissues and analysis of the TCGA data, we found that GATA6 preferentially binds at CRC-specific active enhancers, with enrichment at enhancer-promoter loop anchors. GATA6 protein also physically interacts with CTCF, suggesting its critical role in 3D genome organization. The ablation of GATA6 through AID and CRISPR systems severely impaired cancer cell clonogenicity and proliferation. Mechanistically, GATA6 knockout induced global loss of CRC-specific open chromatins and extensive alterations of critical enhancer-promoter interactions for CRC oncogenes. Last, we showed that GATA6 knockout greatly reduced tumor growth and improved survival in mice. Together, we revealed a previously unidentified mechanism by which GATA6 contributes to the pathogenesis of colorectal cancer.
Collapse
Affiliation(s)
- Huijue Lyu
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xintong Chen
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yang Cheng
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Te Zhang
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ping Wang
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Josiah Hiu-yuen Wong
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Juan Wang
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lena Stasiak
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Leyu Sun
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Guangyu Yang
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Lu Wang
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| |
Collapse
|
2
|
Balamurli G, Liew AQX, Tee WW, Pervaiz S. Interplay between epigenetics, senescence and cellular redox metabolism in cancer and its therapeutic implications. Redox Biol 2024; 78:103441. [PMID: 39612910 PMCID: PMC11629570 DOI: 10.1016/j.redox.2024.103441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024] Open
Abstract
There is accumulating evidence indicating a close crosstalk between key molecular events regulating cell growth and proliferation, which could profoundly impact carcinogenesis and its progression. Here we focus on reviewing observations highlighting the interplay between epigenetic modifications, irreversible cell cycle arrest or senescence, and cellular redox metabolism. Epigenetic alterations, such as DNA methylation and histone modifications, dynamically influence tumour transcriptome, thereby impacting tumour phenotype, survival, growth and spread. Interestingly, the acquisition of senescent phenotype can be triggered by epigenetic changes, acting as a double-edged sword via its ability to suppress tumorigenesis or by facilitating an inflammatory milieu conducive for cancer progression. Concurrently, an aberrant redox metabolism, which is a function of the balance between reactive oxygen species (ROS) generation and intracellular anti-oxidant defences, influences signalling cascades and genomic stability in cancer cells by serving as a critical link between epigenetics and senescence. Recognizing this intricate interconnection offers a nuanced perspective for therapeutic intervention by simultaneously targeting specific epigenetic modifications, modulating senescence dynamics, and restoring redox homeostasis.
Collapse
Affiliation(s)
- Geoffrey Balamurli
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, NUS, Singapore; Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Angeline Qiu Xia Liew
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore; Integrative Science and Engineering Programme (ISEP), NUS Graduate School (NUSGS), NUS, Singapore
| | - Wee Wei Tee
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, NUS, Singapore; Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, NUS, Singapore; Integrative Science and Engineering Programme (ISEP), NUS Graduate School (NUSGS), NUS, Singapore; NUS Medicine Healthy Longevity Program, NUS, Singapore; National University Cancer Institute, National University Health System, Singapore.
| |
Collapse
|
3
|
Tong X, Gao Y, Su Z. Interaction of CTCF and CTCFL in genome regulation through chromatin architecture during the spermatogenesis and carcinogenesis. PeerJ 2024; 12:e18240. [PMID: 39430552 PMCID: PMC11488495 DOI: 10.7717/peerj.18240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/15/2024] [Indexed: 10/22/2024] Open
Abstract
The zinc finger protein CTCF is ubiquitously expressed and is integral to the regulation of chromatin architecture through its interaction with cohesin. Conversely, CTCFL expression is predominantly restricted to the adult male testis but is aberrantly expressed in certain cancers. Despite their distinct expression patterns, the cooperative and competitive mechanisms by which CTCF and CTCFL regulate target gene expression in spermatocytes and cancer cells remain inadequately understood. In this review, we comprehensively examine the literature on the divergent amino acid sequences, target sites, expression profiles and functions of CTCF and CTCFL in normal tissues and cancers. We further elucidate the mechanisms by which CTCFL competitively or cooperatively binds to CTCF target sites during spermatogenesis and carcinogenesis to modulate chromatin architecture. We mainly focus on the role of CTCFL in testicular and cancer development, highlighting its interaction with CTCF at CTCF binding sites to regulate target genes. In the testis, CTCF and CTCFL cooperate to regulate the expression of testis-specific genes, essential for proper germ cell progression. In cancers, CTCFL overexpression competes with CTCF for DNA binding, leading to aberrant gene expression, a more relaxed chromatin state, and altered chromatin loops. By uncovering the roles of CTCF and CTCFL in spermatogenesis and carcinogenesis, we can better understand the implications of aberrant CTCFL expression in altering chromatin loops and its contribution to disease pathogenesis.
Collapse
Affiliation(s)
- Xin Tong
- Department of Histology and Embryology, Shantou University Medical College, Shantou, Guangdong, China
| | - Yang Gao
- Department of Histology and Embryology, Shantou University Medical College, Shantou, Guangdong, China
| | - Zhongjing Su
- Department of Histology and Embryology, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
4
|
Yao W, Liu C, Zhang N, Zhang Y, Qian Y. Atractyloside inhibits gefitinib‑resistant non‑small‑cell lung cancer cell proliferation. Oncol Lett 2024; 28:466. [PMID: 39119229 PMCID: PMC11306992 DOI: 10.3892/ol.2024.14599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/23/2024] [Indexed: 08/10/2024] Open
Abstract
Atractyloside is a traditional Chinese medicine used to treat nasal congestion, and allergic rhinitis; however, its effects on cancer are unknown. Non-small cell lung cancer (NSCLC) is associated with high mortality rates worldwide, and relapse due to epidermal growth factor receptor mutations is a problem in clinical therapy. Therefore, novel biomarkers are required for the diagnosis and treatment of NSCLC. Brother of the regulator of imprinted sites (BORIS; also known as CTCFL) is a potential therapeutic target in NSCLC. BORIS promotes cisplatin resistance and it has been suggested that it may account for multidrug resistance. The present study examined BORIS expression in tyrosine kinase inhibitor (TKI)-resistant NSCLC cells. Subsequently, small interfering RNA was used to knock down BORIS expression, and the effects of this knockdown were assessed on TKI-resistant NSCLC cell viability. The present study also investigated the effect of atractyloside on the proliferation of NSCLC cells using MTT assay. The results of the present study indicated that the inhibition of BORIS or its related downstream pathways may have potential for the treatment of TKI-resistant NSCLC. In addition, atractyloside mimicked BORIS knockdown, regulated its downstream genes and inhibited the proliferation of TKI-resistant NSCLC cells. In conclusion, the findings of the present study supported the potential application of atractyloside in TKI-resistant NSCLC therapy.
Collapse
Affiliation(s)
- Wanxin Yao
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang 310013, P.R. China
| | - Chen Liu
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Ningyin Zhang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang 310013, P.R. China
| | - Yanmei Zhang
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang 310013, P.R. China
| | - Yong Qian
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
5
|
Volegova MP, Brown LE, Banerjee U, Dries R, Sharma B, Kennedy A, Porco JA, George RE. The MYCN 5' UTR as a therapeutic target in neuroblastoma. Cell Rep 2024; 43:114134. [PMID: 38662542 PMCID: PMC11284644 DOI: 10.1016/j.celrep.2024.114134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/07/2024] [Accepted: 04/05/2024] [Indexed: 06/01/2024] Open
Abstract
Tumor MYCN amplification is seen in high-risk neuroblastoma, yet direct targeting of this oncogenic transcription factor has been challenging. Here, we take advantage of the dependence of MYCN-amplified neuroblastoma cells on increased protein synthesis to inhibit the activity of eukaryotic translation initiation factor 4A1 (eIF4A1) using an amidino-rocaglate, CMLD012824. Consistent with the role of this RNA helicase in resolving structural barriers in 5' untranslated regions (UTRs), CMLD012824 increased eIF4A1 affinity for polypurine-rich 5' UTRs, including that of the MYCN and associated transcripts with critical roles in cell proliferation. CMLD012824-mediated clamping of eIF4A1 spanned the full lengths of mRNAs, while translational inhibition was mediated through 5' UTR binding in a cap-dependent and -independent manner. Finally, CMLD012824 led to growth inhibition in MYCN-amplified neuroblastoma models without generalized toxicity. Our studies highlight the key role of eIF4A1 in MYCN-amplified neuroblastoma and demonstrate the therapeutic potential of disrupting its function.
Collapse
Affiliation(s)
- Marina P Volegova
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Lauren E Brown
- Boston University, Center for Molecular Discovery (BU-CMD), Boston, MA, USA; Boston University, Department of Chemistry, Boston, MA, USA
| | - Ushashi Banerjee
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Ruben Dries
- Boston University School of Medicine, Computational Biomedicine, Boston, MA, USA
| | - Bandana Sharma
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Alyssa Kennedy
- Boston Children's Cancer and Blood Disorders Center, Pediatric Hematology/Oncology, Boston, MA, USA
| | - John A Porco
- Boston University, Center for Molecular Discovery (BU-CMD), Boston, MA, USA; Boston University, Department of Chemistry, Boston, MA, USA
| | - Rani E George
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Pucci P, Lee LC, Han M, Matthews JD, Jahangiri L, Schlederer M, Manners E, Sorby-Adams A, Kaggie J, Trigg RM, Steel C, Hare L, James ER, Prokoph N, Ducray SP, Merkel O, Rifatbegovic F, Luo J, Taschner-Mandl S, Kenner L, Burke GAA, Turner SD. Targeting NRAS via miR-1304-5p or farnesyltransferase inhibition confers sensitivity to ALK inhibitors in ALK-mutant neuroblastoma. Nat Commun 2024; 15:3422. [PMID: 38653965 PMCID: PMC11039739 DOI: 10.1038/s41467-024-47771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
Targeting Anaplastic lymphoma kinase (ALK) is a promising therapeutic strategy for aberrant ALK-expressing malignancies including neuroblastoma, but resistance to ALK tyrosine kinase inhibitors (ALK TKI) is a distinct possibility necessitating drug combination therapeutic approaches. Using high-throughput, genome-wide CRISPR-Cas9 knockout screens, we identify miR-1304-5p loss as a desensitizer to ALK TKIs in aberrant ALK-expressing neuroblastoma; inhibition of miR-1304-5p decreases, while mimics of this miRNA increase the sensitivity of neuroblastoma cells to ALK TKIs. We show that miR-1304-5p targets NRAS, decreasing cell viability via induction of apoptosis. It follows that the farnesyltransferase inhibitor (FTI) lonafarnib in addition to ALK TKIs act synergistically in neuroblastoma, inducing apoptosis in vitro. In particular, on combined treatment of neuroblastoma patient derived xenografts with an FTI and an ALK TKI complete regression of tumour growth is observed although tumours rapidly regrow on cessation of therapy. Overall, our data suggests that combined use of ALK TKIs and FTIs, constitutes a therapeutic approach to treat high risk neuroblastoma although prolonged therapy is likely required to prevent relapse.
Collapse
Affiliation(s)
- Perla Pucci
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK
| | - Liam C Lee
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK
- Merck & Co, 2000 Galloping Hill Rd, Kenilworth, NJ, 07033, USA
| | - Miaojun Han
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK
- OncoSec, San Diego, CA, 92121, USA
| | - Jamie D Matthews
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK
| | - Leila Jahangiri
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK
- Department of Life Sciences, Birmingham City University, Birmingham, UK
- Nottingham Trent University, School of Science & Technology, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Michaela Schlederer
- Department of Pathology, Division of Experimental and Translational Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - Eleanor Manners
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK
- Chelsea and Westminster Hospital, NHS Foundation Trust, London, SW10 9NH, UK
| | - Annabel Sorby-Adams
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Joshua Kaggie
- Department of Radiology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Ricky M Trigg
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK
- Functional Genomics, GlaxoSmithKline, Stevenage, SG1 2NY, UK
| | - Christopher Steel
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK
| | - Lucy Hare
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK
- Department of Paediatric Haematology, Oncology and Palliative Care, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Emily R James
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK
| | - Nina Prokoph
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK
| | - Stephen P Ducray
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK
| | - Olaf Merkel
- Department of Pathology, Medical University of Vienna, Vienna, 1090, Austria
- European Research Initiative for ALK related malignancies (ERIA), Cambridge, CB2 0QQ, UK
| | - Firkret Rifatbegovic
- St. Anna Children's Cancer Research Institute, CCRI, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Ji Luo
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Sabine Taschner-Mandl
- St. Anna Children's Cancer Research Institute, CCRI, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Lukas Kenner
- Department of Pathology, Medical University of Vienna, Vienna, 1090, Austria
- European Research Initiative for ALK related malignancies (ERIA), Cambridge, CB2 0QQ, UK
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
- Christian Doppler Laboratory for Applied Metabolomics (CDL-AM), Medical University of Vienna, Vienna, Austria
| | - G A Amos Burke
- Department of Paediatric Haematology, Oncology and Palliative Care, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Suzanne D Turner
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK.
- European Research Initiative for ALK related malignancies (ERIA), Cambridge, CB2 0QQ, UK.
- Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
7
|
Xian L, Xiong Y, Qin L, Wei L, Zhou S, Wang Q, Fu Q, Chen M, Qin Y. Jun/Fos promotes migration and invasion of hepatocellular carcinoma cells by enhancing BORIS promoter activity. Int J Biochem Cell Biol 2024; 169:106540. [PMID: 38281696 DOI: 10.1016/j.biocel.2024.106540] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 01/30/2024]
Abstract
The Brother of the Regulator of Imprinted Sites (BORIS), as a specific indicator of hepatocellular carcinoma, exhibits a significant increase in expression. However, its upstream regulatory network remains enigmatic. Previous research has indicated a strong correlation between the Hippo pathway and the progression of hepatocellular carcinoma. It is well established that the Activator Protein-1 (AP-1) frequently engages in interactions with the Hippo pathway. Thus, we attempt to prove whether Jun and Fos, a major member of the AP-1 family, are involved in the regulation of BORIS expression. Bioinformatics analysis revealed the existence of binding sites for Jun and Fos within the BORIS promoter. Through a series of overexpression and knockdown experiments, we corroborated that Jun and Fos have the capacity to augment BORIS expression, thereby fostering the migration and invasion of hepatocellular carcinoma cells. Moreover, Methylation-Specific PCR and Bisulfite Sequencing PCR assays revealed that Jun and Fos do not have a significant impact on the demethylation of the BORIS promoter. However, luciferase reporter and chromatin immunoprecipitation experiments substantiated that Jun and Fos could directly bind to the BORIS promoter, thereby enhancing its transcription. In conclusion, these results suggest that Jun and Fos can promote the development of hepatocellular carcinoma by directly regulating the expression of BORIS. These findings may provide experimental evidence positioning BORIS as a novel target for the clinical intervention of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Longjun Xian
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu 610041, Sichuan Province, China
| | - Yimei Xiong
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu 610041, Sichuan Province, China
| | - Lu Qin
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu 610041, Sichuan Province, China
| | - Ling Wei
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu 610041, Sichuan Province, China
| | - Siqi Zhou
- Department of Surgery Division of Liver Transplantation, West China Hospital, Sichuan University, 37 Guo Xue Rd., Chengdu 610041, Sichuan Province, China
| | - Qinda Wang
- Department of Surgery Division of Liver Transplantation, West China Hospital, Sichuan University, 37 Guo Xue Rd., Chengdu 610041, Sichuan Province, China
| | - Qiang Fu
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu 610041, Sichuan Province, China
| | - Mingmei Chen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu 610041, Sichuan Province, China.
| | - Yang Qin
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu 610041, Sichuan Province, China.
| |
Collapse
|
8
|
Pugacheva EM, Bhatt DN, Rivero-Hinojosa S, Tajmul M, Fedida L, Price E, Ji Y, Loukinov D, Strunnikov AV, Ren B, Lobanenkov VV. BORIS/CTCFL epigenetically reprograms clustered CTCF binding sites into alternative transcriptional start sites. Genome Biol 2024; 25:40. [PMID: 38297316 PMCID: PMC10832218 DOI: 10.1186/s13059-024-03175-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/15/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Pervasive usage of alternative promoters leads to the deregulation of gene expression in carcinogenesis and may drive the emergence of new genes in spermatogenesis. However, little is known regarding the mechanisms underpinning the activation of alternative promoters. RESULTS Here we describe how alternative cancer-testis-specific transcription is activated. We show that intergenic and intronic CTCF binding sites, which are transcriptionally inert in normal somatic cells, could be epigenetically reprogrammed into active de novo promoters in germ and cancer cells. BORIS/CTCFL, the testis-specific paralog of the ubiquitously expressed CTCF, triggers the epigenetic reprogramming of CTCF sites into units of active transcription. BORIS binding initiates the recruitment of the chromatin remodeling factor, SRCAP, followed by the replacement of H2A histone with H2A.Z, resulting in a more relaxed chromatin state in the nucleosomes flanking the CTCF binding sites. The relaxation of chromatin around CTCF binding sites facilitates the recruitment of multiple additional transcription factors, thereby activating transcription from a given binding site. We demonstrate that the epigenetically reprogrammed CTCF binding sites can drive the expression of cancer-testis genes, long noncoding RNAs, retro-pseudogenes, and dormant transposable elements. CONCLUSIONS Thus, BORIS functions as a transcription factor that epigenetically reprograms clustered CTCF binding sites into transcriptional start sites, promoting transcription from alternative promoters in both germ cells and cancer cells.
Collapse
Affiliation(s)
- Elena M Pugacheva
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Dharmendra Nath Bhatt
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Samuel Rivero-Hinojosa
- Center for Cancer and Immunology Research, Children's National Research Institute, Washington, DC, 20010, USA
| | - Md Tajmul
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Liron Fedida
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Emma Price
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yon Ji
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dmitri Loukinov
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alexander V Strunnikov
- Guangzhou Institutes of Biomedicine and Health, Molecular Epigenetics Laboratory, 190 Kai Yuan Avenue, Science Park, Guangzhou, 510530, China
| | - Bing Ren
- Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Department of Cellular and Molecular Medicine, Center for Epigenomics, Moores Cancer Center and Institute of Genomic Medicine, University of California, San Diego School of Medicine, La Jolla, CA, 92093-0653, USA
| | - Victor V Lobanenkov
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
9
|
Liu M, Wang W, Zhang H, Bi J, Zhang B, Shi T, Su G, Zheng Y, Fan S, Huang X, Chen B, Song Y, Zhao Z, Shi J, Li P, Lu W, Zhang L. Three-Dimensional Gene Regulation Network in Glioblastoma Ferroptosis. Int J Mol Sci 2023; 24:14945. [PMID: 37834393 PMCID: PMC10574000 DOI: 10.3390/ijms241914945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Ferroptosis is an iron-dependent form of cell death, which is reported to be associated with glioma progression and drug sensitivity. Targeting ferroptosis is a potential therapeutic approach for glioma. However, the molecular mechanism of glioma cell ferroptosis is not clear. In this study, we profile the change of 3D chromatin structure in glioblastoma ferroptosis by using HiChIP and study the 3D gene regulation network in glioblastoma ferroptosis. A combination of an analysis of HiChIP and RNA-seq data suggests that change of chromatin loops mediated by 3D chromatin structure regulates gene expressions in glioblastoma ferroptosis. Genes that are regulated by 3D chromatin structures include genes that were reported to function in ferroptosis, like HDM2 and TXNRD1. We propose a new regulatory mechanism governing glioblastoma cell ferroptosis by 3D chromatin structure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Wange Lu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.L.); (W.W.); (H.Z.); (J.B.); (B.Z.); (T.S.); (G.S.); (Y.Z.); (S.F.); (X.H.); (B.C.); (Y.S.); (Z.Z.); (J.S.); (P.L.)
| | - Lei Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.L.); (W.W.); (H.Z.); (J.B.); (B.Z.); (T.S.); (G.S.); (Y.Z.); (S.F.); (X.H.); (B.C.); (Y.S.); (Z.Z.); (J.S.); (P.L.)
| |
Collapse
|
10
|
Guan J, Borenäs M, Xiong J, Lai WY, Palmer RH, Hallberg B. IGF1R Contributes to Cell Proliferation in ALK-Mutated Neuroblastoma with Preference for Activating the PI3K-AKT Signaling Pathway. Cancers (Basel) 2023; 15:4252. [PMID: 37686528 PMCID: PMC10563084 DOI: 10.3390/cancers15174252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Aberrant activation of anaplastic lymphoma kinase (ALK) by activating point mutation or amplification drives 5-12% of neuroblastoma (NB). Previous work has identified the involvement of the insulin-like growth factor 1 receptor (IGF1R) receptor tyrosine kinase (RTK) in a wide range of cancers. We show here that many NB cell lines exhibit IGF1R activity, and that IGF1R inhibition led to decreased cell proliferation to varying degrees in ALK-driven NB cells. Furthermore, combined inhibition of ALK and IGF1R resulted in synergistic anti-proliferation effects, in particular in ALK-mutated NB cells. Mechanistically, both ALK and IGF1R contribute significantly to the activation of downstream PI3K-AKT and RAS-MAPK signaling pathways in ALK-mutated NB cells. However, these two RTKs employ a differential repertoire of adaptor proteins to mediate downstream signaling effects. We show here that ALK signaling led to activation of the RAS-MAPK pathway by preferentially phosphorylating the adaptor proteins GAB1, GAB2, and FRS2, while IGF1R signaling preferentially phosphorylated IRS2, promoting activation of the PI3K-AKT pathway. Together, these findings reveal a potentially important role of the IGF1R RTK in ALK-mutated NB and that co-targeting of ALK and IGF1R may be advantageous in clinical treatment of ALK-mutated NB patients.
Collapse
Affiliation(s)
- Jikui Guan
- Institute of Pediatric Medicine, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden (R.H.P.); (B.H.)
| | - Marcus Borenäs
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden (R.H.P.); (B.H.)
| | - Junfeng Xiong
- Institute of Pediatric Medicine, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China
| | - Wei-Yun Lai
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden (R.H.P.); (B.H.)
| | - Ruth H. Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden (R.H.P.); (B.H.)
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden (R.H.P.); (B.H.)
| |
Collapse
|
11
|
Xu H, Yi X, Fan X, Wu C, Wang W, Chu X, Zhang S, Dong X, Wang Z, Wang J, Zhou Y, Zhao K, Yao H, Zheng N, Wang J, Chen Y, Plewczynski D, Sham PC, Chen K, Huang D, Li MJ. Inferring CTCF-binding patterns and anchored loops across human tissues and cell types. PATTERNS (NEW YORK, N.Y.) 2023; 4:100798. [PMID: 37602215 PMCID: PMC10436006 DOI: 10.1016/j.patter.2023.100798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/25/2023] [Accepted: 06/20/2023] [Indexed: 08/22/2023]
Abstract
CCCTC-binding factor (CTCF) is a transcription regulator with a complex role in gene regulation. The recognition and effects of CTCF on DNA sequences, chromosome barriers, and enhancer blocking are not well understood. Existing computational tools struggle to assess the regulatory potential of CTCF-binding sites and their impact on chromatin loop formation. Here we have developed a deep-learning model, DeepAnchor, to accurately characterize CTCF binding using high-resolution genomic/epigenomic features. This has revealed distinct chromatin and sequence patterns for CTCF-mediated insulation and looping. An optimized implementation of a previous loop model based on DeepAnchor score excels in predicting CTCF-anchored loops. We have established a compendium of CTCF-anchored loops across 52 human tissue/cell types, and this suggests that genomic disruption of these loops could be a general mechanism of disease pathogenesis. These computational models and resources can help investigate how CTCF-mediated cis-regulatory elements shape context-specific gene regulation in cell development and disease progression.
Collapse
Affiliation(s)
- Hang Xu
- Department of Epidemiology and Biostatistics, Key Laboratory of Prevention and Control of Human Major Diseases (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore 138648, Singapore
| | - Xianfu Yi
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xutong Fan
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Chengyue Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Wei Wang
- Department of Epidemiology and Biostatistics, Key Laboratory of Prevention and Control of Human Major Diseases (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Xinlei Chu
- Department of Epidemiology and Biostatistics, Key Laboratory of Prevention and Control of Human Major Diseases (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Shijie Zhang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xiaobao Dong
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Zhao Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jianhua Wang
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yao Zhou
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Ke Zhao
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Hongcheng Yao
- Centre for PanorOmic Sciences-Genomics and Bioinformatics Cores, The University of Hong Kong, Hong Kong 999077, China
| | - Nan Zheng
- Department of Network Security and Informatization, Tianjin Medical University, Tianjin 300070, China
| | - Junwen Wang
- Department of Health Sciences Research and Center for Individualized Medicine, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Yupeng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Dariusz Plewczynski
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Pak Chung Sham
- Centre for PanorOmic Sciences-Genomics and Bioinformatics Cores, The University of Hong Kong, Hong Kong 999077, China
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Key Laboratory of Prevention and Control of Human Major Diseases (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Dandan Huang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Mulin Jun Li
- Department of Epidemiology and Biostatistics, Key Laboratory of Prevention and Control of Human Major Diseases (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
12
|
Doughan A, Adingo W, Salifu SP. RNA-seq research landscape in Africa: systematic review reveals disparities and opportunities. Eur J Med Res 2023; 28:244. [PMID: 37480073 PMCID: PMC10362609 DOI: 10.1186/s40001-023-01206-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 06/30/2023] [Indexed: 07/23/2023] Open
Abstract
RNA sequencing has emerged as the standard method for transcriptome profiling of several human diseases. We performed a systematic review detailing the state of RNA-seq analyses in Africa from its inception till February 2022. Our goal was to provide an update on the state of RNA-seq analyses in Africa, including research gaps, funding information, participants information, authorship and collaborations. Following the PRISMA guidelines, we performed an exhaustive literature search for RNA-seq studies conducted in Africa, using PubMed, Scopus and Academic Search Complete (EBSCOhost). The output was exported to Endnote X9 for analyses. The initial literature search yielded 10,369 articles spread across PubMed (4916), Scopus (4847) and EBSCOhost (580). By applying our exclusion criteria, 28 full-text articles remained and were thoroughly analyzed. Overall, 17 human diseases were studied, including cancers (10/28), infectious disease (4/28), parasitic disease (4/28), autoimmune disorders (2/28) and neglected tropical diseases (2/28). Majority of the articles were published in PLoS Pathogens, BioMed Central and Nature. The National Institutes of Health (42.4%), the Bill & Melinda Gates Foundation (7.5%) and the Wellcome Trust (7.5%) were the top funders of the research studies. Eleven African countries contributed to the participant group, with 57% located in Eastern Africa, 23.1% from Western and 16.7% from Southern Africa. The extremely low number of RNA-seq research studies in Africa is worrying and calls for an immediate investment in research by the African governments. The funding agencies and institutional review boards should also ensure that African collaborators are treated equitably in the course of the research projects.
Collapse
Affiliation(s)
- Albert Doughan
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Wisdom Adingo
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Samson Pandam Salifu
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana.
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana.
| |
Collapse
|
13
|
Dejosez M, Dall'Agnese A, Ramamoorthy M, Platt J, Yin X, Hogan M, Brosh R, Weintraub AS, Hnisz D, Abraham BJ, Young RA, Zwaka TP. Regulatory architecture of housekeeping genes is driven by promoter assemblies. Cell Rep 2023; 42:112505. [PMID: 37182209 PMCID: PMC10329844 DOI: 10.1016/j.celrep.2023.112505] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/22/2023] [Accepted: 04/28/2023] [Indexed: 05/16/2023] Open
Abstract
Genes that are key to cell identity are generally regulated by cell-type-specific enhancer elements bound by transcription factors, some of which facilitate looping to distant gene promoters. In contrast, genes that encode housekeeping functions, whose regulation is essential for normal cell metabolism and growth, generally lack interactions with distal enhancers. We find that Ronin (Thap11) assembles multiple promoters of housekeeping and metabolic genes to regulate gene expression. This behavior is analogous to how enhancers are brought together with promoters to regulate cell identity genes. Thus, Ronin-dependent promoter assemblies provide a mechanism to explain why housekeeping genes can forgo distal enhancer elements and why Ronin is important for cellular metabolism and growth control. We propose that clustering of regulatory elements is a mechanism common to cell identity and housekeeping genes but is accomplished by different factors binding distinct control elements to establish enhancer-promoter or promoter-promoter interactions, respectively.
Collapse
Affiliation(s)
- Marion Dejosez
- Black Family Stem Cell Institute, Huffington Center for Cell-based Research in Parkinson's Disease, Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA
| | - Alessandra Dall'Agnese
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Mahesh Ramamoorthy
- Black Family Stem Cell Institute, Huffington Center for Cell-based Research in Parkinson's Disease, Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA
| | - Jesse Platt
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Xing Yin
- Black Family Stem Cell Institute, Huffington Center for Cell-based Research in Parkinson's Disease, Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA
| | - Megan Hogan
- Black Family Stem Cell Institute, Huffington Center for Cell-based Research in Parkinson's Disease, Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA
| | - Ran Brosh
- Black Family Stem Cell Institute, Huffington Center for Cell-based Research in Parkinson's Disease, Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA
| | - Abraham S Weintraub
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Denes Hnisz
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Brian J Abraham
- St. Jude Research Children's Hospital, Memphis, TN 38105, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| | - Thomas P Zwaka
- Black Family Stem Cell Institute, Huffington Center for Cell-based Research in Parkinson's Disease, Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA.
| |
Collapse
|
14
|
Akhtar MS, Akhter N, Talat A, Alharbi RA, Sindi AA, Klufah F, Alyahyawi HE, Alruwetei A, Ahmad A, Zamzami MA, Deo SVS, Husain SA, Badi OA, Khan MJ. Association of mutation and expression of the brother of the regulator of imprinted sites (BORIS) gene with breast cancer progression. Oncotarget 2023; 14:528-541. [PMID: 37235839 PMCID: PMC10219660 DOI: 10.18632/oncotarget.28442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
INTRODUCTION The BORIS, 11 zinc-finger transcription factors, is a member of the cancer-testis antigen (CTA) family. It is mapped to chromosome number 20q13.2 and this region is genetically linked to the early onset of breast cancer. The current study analyzed the correlation between BORIS mutations and the expression of the protein in breast cancer cases. MATERIALS AND METHODS A population-based study including a total of 155 breast cancer tissue samples and an equal number of normal adjacent tissues from Indian female breast cancer patients was carried out. Mutations of the BORIS gene were detected by polymerase chain reaction-single standard confirmation polymorphisms (PCR-SSCP) and automated DNA sequencing and by immunohistochemistry for BORIS protein expression were performed. The observed findings were correlated with several clinicopathological parameters to find out the clinical relevance of associations. RESULTS Of all the cases 16.12% (25/155) showed mutations in the BORIS gene. The observed mutations present on codon 329 are missense, leading to Val> Ile (G>A) change on exon 5 of the BORIS gene. A significant association was observed between mutations of the BORIS gene and some clinicopathological features like nodal status (p = 0.013), estrogen receptor (ER) expression (p = 0.008), progesterone receptor (PR) expression (p = 0.039), clinical stage (p = 0.010) and menopausal status (p = 0.023). The protein expression analysis showed 20.64% (32/155) samples showing low or no expression (+), 34.19% (53/155) with moderate expression (++), and 45.17% (70/155) showing high expression (+++) of BORIS protein. A significant association was observed between the expression of BORIS protein and clinicopathological features like clinical stage (p = 0.013), nodal status (p = 0.049), ER expression (p = 0.039), and PR expression (p = 0.027). When mutation and protein expression were correlated in combination with clinicopathological parameters a significant association was observed in the category of high (+++) level of BORIS protein expression (p = 0.017). CONCLUSION The BORIS mutations and high protein expression occur frequently in carcinoma of the breast suggesting their association with the onset and progression of breast carcinoma. Further, the BORIS has the potential to be used as a biomarker.
Collapse
Affiliation(s)
- Mohammad Salman Akhtar
- Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - Naseem Akhter
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Arshi Talat
- Department of Orthodontics and Dentofacial Orthopedics, ITS Dental College, Hospital and Research Centre, Greater Noida, Delhi-NCR, India
| | - Raed A. Alharbi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Abdulmajeed A.A. Sindi
- Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Faisal Klufah
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Hanan E. Alyahyawi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Abdulmohsen Alruwetei
- Department of Medical Laboratory, College of Applied Medical Sciences, Qassim University, Qassim, Saudi Arabia
| | - Abrar Ahmad
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mazin A. Zamzami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - SVS Deo
- Department of Surgical Oncology, BRA- IRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Syed Akhtar Husain
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - Osama A. Badi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | | |
Collapse
|
15
|
Huang Y, Xiao L, Daba MY, Xu D, Wang Y, Li L, Li Q, Liu B, Qin W, Zhang H, Yuan X. Characterization of molecular subtypes based on chromatin regulators and identification of the role of NPAS2 in lung adenocarcinoma. Clin Epigenetics 2023; 15:72. [PMID: 37120564 PMCID: PMC10149025 DOI: 10.1186/s13148-023-01486-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/18/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Chromatin regulators (CRs) are critical epigenetic modifiers and have been reported to play critical roles during the progression of various tumors, but their role in lung adenocarcinoma (LUAD) has not been comprehensively studied. METHODS Differential expression and univariate Cox regression analyses were conducted to identify the prognostic CRs. Consensus clustering was applied to classify the subtypes of LUAD based on prognostic CRs. LASSO-multivariate Cox regression method was used for construction of a prognostic signature and development of chromatin regulator-related gene index (CRGI). The capacity of CRGI to distinguish survival was evaluated via Kaplan-Meier method in multiple datasets. Relationship between CRGI and tumor microenvironment (TME) was evaluated. Additionally, clinical variables and CRGI were incorporated to create a nomogram. The role of the prognostic gene NPAS2 in LUAD was elucidated via clinical samples validation and a series of in vitro and in vivo experiments. RESULTS Two subtypes of LUAD were classified based on 46 prognostic CRs via consensus clustering which had significantly different survival and TME. A prognostic signature consisting of six CRs (MOCS, PBK, CBX3, A1CF, NPAS2, and CTCFL) was developed and proved to be an effective survival predictor in multiple independent datasets. The prognostic signature was also demonstrated to be an indicator of TME and sensitivity to immunotherapy and chemotherapy. The nomogram was suggested to be a simple tool that can predict survival accurately. Clinical samples show that NPAS2 is highly expressed in LUAD tissues, and in vitro and in vivo experiments demonstrated that inhibition of NPAS2 impeded malignant progression of LUAD cells. CONCLUSIONS Our study comprehensively unveiled the functions of CRs in LUAD, developed a classifier to predict survival and response to treatments, and suggested that NPAS2 promoted LUAD progression for the first time.
Collapse
Affiliation(s)
- Yongbiao Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingyan Xiao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Motuma Yigezu Daba
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Duo Xu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Long Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wan Qin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Huixian Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
16
|
Nin DS, Deng LW. Biology of Cancer-Testis Antigens and Their Therapeutic Implications in Cancer. Cells 2023; 12:cells12060926. [PMID: 36980267 PMCID: PMC10047177 DOI: 10.3390/cells12060926] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Tumour-specific antigens have been an area of interest in cancer therapy since their discovery in the middle of the 20th century. In the era of immune-based cancer therapeutics, redirecting our immune cells to target these tumour-specific antigens has become even more relevant. Cancer-testis antigens (CTAs) are a class of antigens with an expression specific to the testis and cancer cells. CTAs have also been demonstrated to be expressed in a wide variety of cancers. Due to their frequency and specificity of expression in a multitude of cancers, CTAs have been particularly attractive as cancer-specific therapeutic targets. There is now a rapid expansion of CTAs being identified and many studies have been conducted to correlate CTA expression with cancer and therapy-resistant phenotypes. Furthermore, there is an increasing number of clinical trials involving using some of these CTAs as molecular targets in pharmacological and immune-targeted therapeutics for various cancers. This review will summarise the current knowledge of the biology of known CTAs in tumorigenesis and the regulation of CTA genes. CTAs as molecular targets and the therapeutic implications of these CTA-targeted anticancer strategies will also be discussed.
Collapse
Affiliation(s)
- Dawn Sijin Nin
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, MD 7, 8 Medical Drive, Singapore 117596, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - Lih-Wen Deng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, MD 7, 8 Medical Drive, Singapore 117596, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- National University Cancer Institute, National University Health System, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| |
Collapse
|
17
|
Zhou S, Li L, Zhang M, Qin Y, Li B. The function of brother of the regulator of imprinted sites in cancer development. Cancer Gene Ther 2023; 30:236-244. [PMID: 36376421 DOI: 10.1038/s41417-022-00556-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 11/15/2022]
Abstract
As Douglas Hanahan and Robert Weinberg compiled, there are nine hallmarks of cancer that are conducive to cancer cell development and survival. Previous studies showed that brother of the regulator of imprinted sites (BORIS) might promote cancer progression through these aspects. The competition between BORIS and CCCTC-binding factor (CTCF), which is crucial in the formation of chromatin loops, affects the normal function of CTCF and leads to neoplasia and deformity. In addition, BORIS belongs to the cancer-testis antigen families, which are potential targets in cancer diagnosis and treatment. Herein, we discuss the function and mechanisms of BORIS, especially in cancer development.
Collapse
Affiliation(s)
- Siqi Zhou
- Department of Liver Surgery, West China Hospital, Sichuan University Medical School, 37 Guo Xue Road, Chengdu, 610041, Sichuan Province, China
| | - Lian Li
- Department of Liver Surgery, West China Hospital, Sichuan University Medical School, 37 Guo Xue Road, Chengdu, 610041, Sichuan Province, China
| | - Ming Zhang
- Department of Liver Surgery, West China Hospital, Sichuan University Medical School, 37 Guo Xue Road, Chengdu, 610041, Sichuan Province, China
| | - Yang Qin
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China.
| | - Bo Li
- Department of Liver Surgery, West China Hospital, Sichuan University Medical School, 37 Guo Xue Road, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
18
|
Zuo BW, Yao WX, Fang MD, Ren J, Tu LL, Fan RJ, Zhang YM. Boris knockout eliminates AOM/DSS-induced in situ colorectal cancer by suppressing DNA damage repair and inflammation. Cancer Sci 2023; 114:1972-1985. [PMID: 36692143 PMCID: PMC10154901 DOI: 10.1111/cas.15732] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/10/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
The Brother of Regulator of Imprinted Sites (BORIS, gene symbol CTCFL) has previously been shown to promote colorectal cancer cell proliferation, inhibit cancer cell apoptosis, and resist chemotherapy. However, it is unknown whether Boris plays a role in the progression of in situ colorectal cancer. Here Boris knockout (KO) mice were constructed. The function loss of the cloned Boris mutation that was retained in KO mice was verified by testing its activities in colorectal cell lines compared with the Boris wild-type gene. Boris knockout reduced the incidence and severity of azoxymethane/dextran sulfate-sodium (AOM/DSS)-induced colon cancer. The importance of Boris is emphasized in the progression of in situ colorectal cancer. Boris knockout significantly promoted the phosphorylation of γH2AX and the DNA damage in colorectal cancer tissues and suppressed Wnt and MAPK pathways that are responsible for the callback of DNA damage repair. This indicates the strong inhibition of colorectal cancer in Boris KO mice. By considering that the DSS-promoted inflammation contributes to tumorigenesis, Boris KO mice were also studied in DSS-induced colitis. Our data showed that Boris knockout alleviated DSS-induced colitis and that Boris knockdown inhibited the NF-κB signaling pathway in RAW264.7 cells. Therefore Boris knockout eliminates colorectal cancer generation by inhibiting DNA damage repair in cancer cells and relieving inflammation in macrophages. Our findings demonstrate the importance of Boris in the development of in situ colorectal cancer and provide evidence for the feasibility of colorectal cancer therapy on Boris.
Collapse
Affiliation(s)
- Bo-Wen Zuo
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Wan-Xin Yao
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Meng-Die Fang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Juan Ren
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Ling-Lan Tu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Run-Jie Fan
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Yan-Mei Zhang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
19
|
Tan K, Mo J, Li M, Dong Y, Han Y, Sun X, Ma Y, Zhu K, Wu W, Lu L, Liu J, Zhao K, Zhang L, Tang Y, Lv Z. SMAD9-MYCN positive feedback loop represents a unique dependency for MYCN-amplified neuroblastoma. J Exp Clin Cancer Res 2022; 41:352. [PMID: 36539767 PMCID: PMC9764568 DOI: 10.1186/s13046-022-02563-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Neuroblastoma (NB) is the most common extracranial solid tumor occurring during childhood and high-risk NB patients have a poor prognosis. The amplified MYCN gene serves as an important determinant of a high risk of NB. METHODS We performed an integrative screen using public NB tissue and cell line data, and identified that SMAD9 played an important role in high-risk NB. An investigation of the super-enhancers database (SEdb) and chromatin immunoprecipitation sequencing (ChIP-seq) dataset along with biological experiments of incorporating gene knockdown and CRISPR interference (CRISPRi) were performed to identify upstream regulatory mechanism of SMAD9. Gene knockdown and rescue, quantitative real-time PCR (Q-RT-PCR), cell titer Glo assays, colony formation assays, a subcutaneous xenograft model and immunohistochemistry were used to determine the functional role of SMAD9 in NB. An integrative analysis of ChIP-seq data with the validation of CRISPRi and dual-luciferase reporter assays and RNA sequencing (RNA-seq) data with Q-RT-PCR validation was conducted to analyze the downstream regulatory mechanism of SMAD9. RESULTS High expression of SMAD9 was specifically induced by the transcription factors including MYCN, PHOX2B, GATA3 and HAND2 at the enhancer region. Genetic suppression of SMAD9 inhibited MYCN-amplified NB cell proliferation and tumorigenicity both in vitro and in vivo. Further studies revealed that SMAD9 bound to the MYCN promoter and transcriptionally regulate MYCN expression, with MYCN reciprocally binding to the SMAD9 enhancer and transactivating SMAD9, thus forming a positive feedback loop along with the MYCN-associated cancer cell cycle. CONCLUSION This study delineates that SMAD9 forms a positive transcriptional feedback loop with MYCN and represents a unique tumor-dependency for MYCN-amplified neuroblastoma.
Collapse
Affiliation(s)
- Kezhe Tan
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jialin Mo
- Research Center of Translational medicine, Shanghai Children's Hospital, State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Meng Li
- Research Center of Translational medicine, Shanghai Children's Hospital, State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Dong
- Shanghai Institute of Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yujie Han
- Research Center of Translational medicine, Shanghai Children's Hospital, State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xi Sun
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yingxuan Ma
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Zhu
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Wu
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Lu
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiangbin Liu
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kewen Zhao
- Research Center of Translational medicine, Shanghai Children's Hospital, State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Zhang
- Research Center of Translational medicine, Shanghai Children's Hospital, State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yujie Tang
- Research Center of Translational medicine, Shanghai Children's Hospital, State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Zhibao Lv
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
20
|
Motzer RJ, Martini JF, Mu XJ, Staehler M, George DJ, Valota O, Lin X, Pandha HS, Ching KA, Ravaud A. Molecular characterization of renal cell carcinoma tumors from a phase III anti-angiogenic adjuvant therapy trial. Nat Commun 2022; 13:5959. [PMID: 36216827 PMCID: PMC9550765 DOI: 10.1038/s41467-022-33555-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/22/2022] [Indexed: 12/02/2022] Open
Abstract
Multigene assays can provide insight into key biological processes and prognostic information to guide development and selection of adjuvant cancer therapy. We report a comprehensive genomic and transcriptomic analysis of tumor samples from 171 patients at high risk for recurrent renal cell carcinoma post nephrectomy from the S-TRAC trial (NCT00375674). We identify gene expression signatures, including STRAC11 (derived from the sunitinib-treated population). The overlap in key elements captured in these gene expression signatures, which include genes representative of the tumor stroma microenvironment, regulatory T cell, and myeloid cells, suggests they are likely to be both prognostic and predictive of the anti-angiogenic effect in the adjuvant setting. These signatures also point to the identification of potential therapeutic targets for development in adjuvant renal cell carcinoma, such as MERTK and TDO2. Finally, our findings suggest that while anti-angiogenic adjuvant therapy might be important, it may not be sufficient to prevent recurrence and that other factors such as immune response and tumor environment may be of greater importance.
Collapse
Affiliation(s)
- Robert J Motzer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | | | - Xinmeng J Mu
- Oncology Research Unit, Pfizer Worldwide Research and Development Medicine, Pfizer Inc, La Jolla, CA, 92121, USA
| | - Michael Staehler
- Department of Urology, University Hospital of Munich, Munich, Bavaria, 80333, Germany
| | - Daniel J George
- Department of Medicine, Duke Cancer Institute, Durham, NC, 27710, USA
| | - Olga Valota
- Global Product Development-Oncology, Pfizer S.r.L, Milan, Lombardy, 20152, Italy
| | - Xun Lin
- Global Product Development-Oncology, Pfizer Inc, La Jolla, CA, 92121, USA
| | - Hardev S Pandha
- Department of Medical Oncology, University of Surrey, Guildford, England, GU2 7XS, UK
| | - Keith A Ching
- Oncology Research Unit, Pfizer Worldwide Research and Development Medicine, Pfizer Inc, La Jolla, CA, 92121, USA
| | - Alain Ravaud
- Department of Medical Oncology, Bordeaux University Hospital, Bordeaux, 33300, France
| |
Collapse
|
21
|
Ectopic expression of meiotic cohesin generates chromosome instability in cancer cell line. Proc Natl Acad Sci U S A 2022; 119:e2204071119. [PMID: 36179046 PMCID: PMC9549395 DOI: 10.1073/pnas.2204071119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
This work originated from mining of cancer genome data and proceeded to analyze the effects of ectopic expression of meiotic cohesins in mitotic cells in culture. In the process, apart from conclusively answering the question on mechanisms for RAD21L toxicity and its underrepresentation in tumor transcriptomes, we found an association of meiotic cohesin binding with BORIS/CTCFL sites in the normal testis. We also elucidated the patterns and outcomes of meiotic cohesin binding to chromosomes in model cell lines. Furthermore, we uncovered that RAD21L-based meiotic cohesin possesses a self-contained chromosome restructuring activity able to trigger sustainable but imperfect mitotic arrest leading to chromosomal instability. The discovered epigenomic and genetic mechanisms can be relevant to chromosome instability in cancer. Many tumors express meiotic genes that could potentially drive somatic chromosome instability. While germline cohesin subunits SMC1B, STAG3, and REC8 are widely expressed in many cancers, messenger RNA and protein for RAD21L subunit are expressed at very low levels. To elucidate the potential of meiotic cohesins to contribute to genome instability, their expression was investigated in human cell lines, predominately in DLD-1. While the induction of the REC8 complex resulted in a mild mitotic phenotype, the expression of the RAD21L complex produced an arrested but viable cell pool, thus providing a source of DNA damage, mitotic chromosome missegregation, sporadic polyteny, and altered gene expression. We also found that genomic binding profiles of ectopically expressed meiotic cohesin complexes were reminiscent of their corresponding specific binding patterns in testis. Furthermore, meiotic cohesins were found to localize to the same sites as BORIS/CTCFL, rather than CTCF sites normally associated with the somatic cohesin complex. These findings highlight the existence of a germline epigenomic memory that is conserved in cells that normally do not express meiotic genes. Our results reveal a mechanism of action by unduly expressed meiotic cohesins that potentially links them to aneuploidy and chromosomal mutations in affected cells.
Collapse
|
22
|
Sengupta S, Das S, Crespo AC, Cornel AM, Patel AG, Mahadevan NR, Campisi M, Ali AK, Sharma B, Rowe JH, Huang H, Debruyne DN, Cerda ED, Krajewska M, Dries R, Chen M, Zhang S, Soriano L, Cohen MA, Versteeg R, Jaenisch R, Spranger S, Romee R, Miller BC, Barbie DA, Nierkens S, Dyer MA, Lieberman J, George RE. Mesenchymal and adrenergic cell lineage states in neuroblastoma possess distinct immunogenic phenotypes. NATURE CANCER 2022; 3:1228-1246. [PMID: 36138189 PMCID: PMC10171398 DOI: 10.1038/s43018-022-00427-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/20/2022] [Indexed: 11/08/2022]
Abstract
Apart from the anti-GD2 antibody, immunotherapy for neuroblastoma has had limited success due to immune evasion mechanisms, coupled with an incomplete understanding of predictors of response. Here, from bulk and single-cell transcriptomic analyses, we identify a subset of neuroblastomas enriched for transcripts associated with immune activation and inhibition and show that these are predominantly characterized by gene expression signatures of the mesenchymal lineage state. By contrast, tumors expressing adrenergic lineage signatures are less immunogenic. The inherent presence or induction of the mesenchymal state through transcriptional reprogramming or therapy resistance is accompanied by innate and adaptive immune gene activation through epigenetic remodeling. Mesenchymal lineage cells promote T cell infiltration by secreting inflammatory cytokines, are efficiently targeted by cytotoxic T and natural killer cells and respond to immune checkpoint blockade. Together, we demonstrate that distinct immunogenic phenotypes define the divergent lineage states of neuroblastoma and highlight the immunogenic potential of the mesenchymal lineage.
Collapse
Affiliation(s)
- Satyaki Sengupta
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Sanjukta Das
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Angela C Crespo
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Annelisa M Cornel
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht University, Utrecht, The Netherlands
| | - Anand G Patel
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Navin R Mahadevan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Marco Campisi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alaa K Ali
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Cellular Therapy and Stem Cell Transplant Program, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Bandana Sharma
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Jared H Rowe
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Hao Huang
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - David N Debruyne
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Esther D Cerda
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Malgorzata Krajewska
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Ruben Dries
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Minyue Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shupei Zhang
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Luigi Soriano
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Malkiel A Cohen
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Rogier Versteeg
- Department of Oncogenomics, University Medical Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stefani Spranger
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Rizwan Romee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Cellular Therapy and Stem Cell Transplant Program, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Brian C Miller
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Stefan Nierkens
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht University, Utrecht, The Netherlands
| | - Michael A Dyer
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Judy Lieberman
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Rani E George
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
Protein tyrosine kinase inhibitor resistance in malignant tumors: molecular mechanisms and future perspective. Signal Transduct Target Ther 2022; 7:329. [PMID: 36115852 PMCID: PMC9482625 DOI: 10.1038/s41392-022-01168-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/08/2022] [Accepted: 08/26/2022] [Indexed: 02/07/2023] Open
Abstract
AbstractProtein tyrosine kinases (PTKs) are a class of proteins with tyrosine kinase activity that phosphorylate tyrosine residues of critical molecules in signaling pathways. Their basal function is essential for maintaining normal cell growth and differentiation. However, aberrant activation of PTKs caused by various factors can deviate cell function from the expected trajectory to an abnormal growth state, leading to carcinogenesis. Inhibiting the aberrant PTK function could inhibit tumor growth. Therefore, tyrosine kinase inhibitors (TKIs), target-specific inhibitors of PTKs, have been used in treating malignant tumors and play a significant role in targeted therapy of cancer. Currently, drug resistance is the main reason for limiting TKIs efficacy of cancer. The increasing studies indicated that tumor microenvironment, cell death resistance, tumor metabolism, epigenetic modification and abnormal metabolism of TKIs were deeply involved in tumor development and TKI resistance, besides the abnormal activation of PTK-related signaling pathways involved in gene mutations. Accordingly, it is of great significance to study the underlying mechanisms of TKIs resistance and find solutions to reverse TKIs resistance for improving TKIs efficacy of cancer. Herein, we reviewed the drug resistance mechanisms of TKIs and the potential approaches to overcome TKI resistance, aiming to provide a theoretical basis for improving the efficacy of TKIs.
Collapse
|
24
|
Cox A, Nierenberg D, Camargo O, Lee E, Khaled AS, Mazar J, Boohaker RJ, Westmoreland TJ, Khaled AR. Chaperonin containing TCP-1 (CCT/TRiC) is a novel therapeutic and diagnostic target for neuroblastoma. Front Oncol 2022; 12:975088. [PMID: 36185250 PMCID: PMC9520665 DOI: 10.3389/fonc.2022.975088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Chaperonin containing TCP1 (CCT/TRiC) is a multi-subunit protein folding complex that enables the cancer phenotype to emerge from the mutational landscape that drives oncogenesis. We and others linked increased expression of CCT subunits to advanced tumor stage and invasiveness that inversely correlates with cancer patient outcomes. In this study, we examined the expression of the second CCT subunit, CCT2, using genomic databases of adult and pediatric tumors and normal tissues, and found that it was highly expressed in pediatric cancers, showing a significant difference compared to normal tissues. Histologic staining confirmed that CCT subunits are highly expressed in tumor tissues, which was exemplified in neuroblastoma. Using two neuroblastoma cells, MYCN-amplified, IMR-32 cells, and non-amplified, SK-N-AS cells, we assessed baseline levels for CCT subunits and found expressions comparable to the highly invasive triple-negative breast cancer (TNBC) cell line, MDA-MB-231. Exogenous expression of CCT2 in both SK-N-AS and IMR-32 cells resulted in morphological changes, such as larger cell size and increased adherence, with significant increases in the CCT substrates, actin, and tubulin, as well as increased migration. Depletion of CCT2 reversed these effects and reduced cell viability. We evaluated CCT as a therapeutic target in IMR-32 cells by testing a novel peptide CCT inhibitor, CT20p. Treatment with CT20p induced cell death in these neuroblastoma cells. The use of CCT2 as a biological indicator for detection of neuroblastoma cells shed in blood was examined by spiking IMR-32 cells into human blood and using an anti-CCT2 antibody for the identification of spiked cancer cells with the CellSearch system. Results showed that using CCT2 for the detection of neuroblastoma cells in blood was more effective than the conventional approach of using epithelial markers like cytokeratins. CCT2 plays an essential role in promoting the invasive capacity of neuroblastoma cells and thus offers the potential to act as a molecular target in the development of novel therapeutics and diagnostics for pediatric cancers.
Collapse
Affiliation(s)
- Amanda Cox
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Daniel Nierenberg
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Oscar Camargo
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Eunkyung Lee
- College of Health Professions and Sciences, University of Central Florida, Orlando, FL, United States
| | - Amr S. Khaled
- Pathology and Laboratory Medicine, Orlando VA Medical Center, Orlando, FL, United States
| | - Joseph Mazar
- Department of Oncology, Southern Research Institute, Nemours Children’s Hospital, Orlando, FL, United States
| | - Rebecca J. Boohaker
- Department of Biomedical Research, Nemours Children’s Hospital, Southern Research, Birmingham, AL, United States
| | - Tamarah J. Westmoreland
- Department of Oncology, Southern Research Institute, Nemours Children’s Hospital, Orlando, FL, United States
| | - Annette R. Khaled
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, United States
- *Correspondence: Annette R. Khaled,
| |
Collapse
|
25
|
Wang X, Yan J, Ye Z, Zhang Z, Wang S, Hao S, Shen B, Wei G. Reorganization of 3D chromatin architecture in doxorubicin-resistant breast cancer cells. Front Cell Dev Biol 2022; 10:974750. [PMID: 36003143 PMCID: PMC9393755 DOI: 10.3389/fcell.2022.974750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Doxorubicin resistance remains a major therapeutic challenge leading to poor survival prognosis and treatment failure in breast cancer. Although doxorubicin induces massive changes in the transcriptional landscape are well known, potential diagnostic or therapeutic targets associated with the reorganization of three-dimensional (3D) chromatin architecture have not yet been systematically investigated. Methods: Here we performed in situ high-throughput chromosome conformation capture (Hi-C) on parental and doxorubicin-resistant MCF7 (MCF7-DR) human breast cancer cells, followed by integrative analysis of HiC, ATAC-seq, RNA-seq and TCGA data. Results: It revealed that A/B compartment switching was positively correlated to genome-wide differential gene expression. The genome of MCF7-DR cells was spatially reorganized into smaller topologically associating domains (TADs) and chromatin loops. We also revealed the contribution of increased chromatin accessibility and potential transcription factor families, including CTCF, AP-1 and bHLH, to gained TADs or loops. Intriguingly, we observed two condensed genomic regions (∼20 kb) with decreased chromatin accessibility flanking TAD boundaries, which might play a critical role in the formation or maintenance of TADs. Finally, combining data from TCGA, we identified a number of gained and lost enhancer-promoter interactions and their corresponding differentially expressed genes involved in chromatin organization and breast cancer signaling pathways, including FA2H, FOXA1 and JRKL, which might serve as potential treatment targets for breast cancer. Conclusion: These data uncovered a close connection between 3D genome reorganization, chromatin accessibility as well as gene transcription and provide novel insights into the epigenomic mechanisms involving doxorubicin resistance in breast cancer.
Collapse
Affiliation(s)
- Xuelong Wang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jizhou Yan
- Department of Developmental Biology, Institute for Marine Biosystem and Neurosciences, Shanghai Ocean University, Shanghai, China
| | - Zhao Ye
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhiqiang Zhang
- Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Sheng Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shuang Hao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Gang Wei
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
26
|
Zhang Y, Fang M, Li S, Xu H, Ren J, Tu L, Zuo B, Yao W, Liang G. BTApep-TAT peptide inhibits ADP-ribosylation of BORIS to induce DNA damage in cancer. Mol Cancer 2022; 21:158. [PMID: 35918747 PMCID: PMC9344678 DOI: 10.1186/s12943-022-01621-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Brother of regulator of imprinted sites (BORIS) is expressed in most cancers and often associated with short survival and poor prognosis in patients. BORIS inhibits apoptosis and promotes proliferation of cancer cells. However, its mechanism of action has not been elucidated, and there is no known inhibitor of BORIS. METHODS A phage display library was used to find the BORIS inhibitory peptides and BTApep-TAT was identified. The RNA sequencing profile of BTApep-TAT-treated H1299 cells was compared with that of BORIS-knockdown cells. Antitumor activity of BTApep-TAT was evaluated in a non-small cell lung cancer (NSCLC) xenograft mouse model. BTApep-TAT was also used to investigate the post-translational modification (PTM) of BORIS and the role of BORIS in DNA damage repair. Site-directed mutants of BORIS were constructed and used for investigating PTM and the function of BORIS. RESULTS BTApep-TAT induced DNA damage in cancer cells and suppressed NSCLC xenograft tumor progression. Investigation of the mechanism of action of BTApep-TAT demonstrated that BORIS underwent ADP ribosylation upon double- or single-strand DNA damage. Substitution of five conserved glutamic acid (E) residues with alanine residues (A) between amino acids (AAs) 198 and 228 of BORIS reduced its ADP ribosylation. Inhibition of ADP ribosylation of BORIS by a site-specific mutation or by BTApep-TAT treatment blocked its interaction with Ku70 and impaired the function of BORIS in DNA damage repair. CONCLUSIONS The present study identified an inhibitor of BORIS, highlighted the importance of ADP ribosylation of BORIS, and revealed a novel function of BORIS in DNA damage repair. The present work provides a practical method for the future screening or optimization of drugs targeting BORIS.
Collapse
Affiliation(s)
- Yanmei Zhang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China.
| | - Mengdie Fang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China.,College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Shouye Li
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China.,Zhejiang Eyoung Pharmaceutical Research and Development Center, Hangzhou, 311258, Zhejiang, China
| | - Hao Xu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China
| | - Juan Ren
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China
| | - Linglan Tu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China
| | - Bowen Zuo
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China
| | - Wanxin Yao
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China
| | - Guang Liang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China. .,College of Pharmacy, Hangzhou Medical College, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
27
|
Sou IF, Hamer G, Tee WW, Vader G, McClurg UL. Cancer and meiotic gene expression: Two sides of the same coin? Curr Top Dev Biol 2022; 151:43-68. [PMID: 36681477 DOI: 10.1016/bs.ctdb.2022.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Meiosis increases genetic diversity in offspring by generating genetically unique haploid gametes with reshuffled chromosomes. This process requires a specialized set of meiotic proteins, which facilitate chromosome recombination and segregation. However, re-expression of meiotic proteins in mitosis can have catastrophic oncogenic consequences and aberrant expression of meiotic proteins is a common occurrence in human tumors. Mechanistically, re-activation of meiotic genes in cancer promotes oncogenesis likely because cancers-conversely to healthy mitosis-are fueled by genetic instability which promotes tumor evolution, and evasion of immune response and treatment pressure. In this review, we explore similarities between meiotic and cancer cells with a particular focus on the oncogenic activation of meiotic genes in cancer. We emphasize the role of histones and their modifications, DNA methylation, genome organization, R-loops and the availability of distal enhancers.
Collapse
Affiliation(s)
- Ieng Fong Sou
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom; Chromatin Dynamics and Disease Epigenetics Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Geert Hamer
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Wee-Wei Tee
- Chromatin Dynamics and Disease Epigenetics Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gerben Vader
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Section of Oncogenetics, Department of Human Genetics, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Urszula Lucja McClurg
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
28
|
Comparative parallel multi-omics analysis during the induction of pluripotent and trophectoderm states. Nat Commun 2022; 13:3475. [PMID: 35715410 PMCID: PMC9205865 DOI: 10.1038/s41467-022-31131-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/31/2022] [Indexed: 11/09/2022] Open
Abstract
Following fertilization, it is only at the 32-64-cell stage when a clear segregation between cells of the inner cell mass and trophectoderm is observed, suggesting a 'T'-shaped model of specification. Here, we examine whether the acquisition of these two states in vitro, by nuclear reprogramming, share similar dynamics/trajectories. Using a comparative parallel multi-omics analysis (i.e., bulk RNA-seq, scRNA-seq, ATAC-seq, ChIP-seq, RRBS and CNVs) on cells undergoing reprogramming to pluripotency and TSC state we show that each reprogramming system exhibits specific trajectories from the onset of the process, suggesting 'V'-shaped model. We describe in detail the various trajectories toward the two states and illuminate reprogramming stage-specific markers, blockers, facilitators and TSC subpopulations. Finally, we show that while the acquisition of the TSC state involves the silencing of embryonic programs by DNA methylation, during the acquisition of pluripotency these regions are initially defined but retain inactive by the elimination of H3K27ac.
Collapse
|
29
|
Berlak M, Tucker E, Dorel M, Winkler A, McGearey A, Rodriguez-Fos E, da Costa BM, Barker K, Fyle E, Calton E, Eising S, Ober K, Hughes D, Koutroumanidou E, Carter P, Stankunaite R, Proszek P, Jain N, Rosswog C, Dorado-Garcia H, Molenaar JJ, Hubank M, Barone G, Anderson J, Lang P, Deubzer HE, Künkele A, Fischer M, Eggert A, Kloft C, Henssen AG, Boettcher M, Hertwig F, Blüthgen N, Chesler L, Schulte JH. Mutations in ALK signaling pathways conferring resistance to ALK inhibitor treatment lead to collateral vulnerabilities in neuroblastoma cells. Mol Cancer 2022; 21:126. [PMID: 35689207 PMCID: PMC9185889 DOI: 10.1186/s12943-022-01583-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/22/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Development of resistance to targeted therapies has tempered initial optimism that precision oncology would improve poor outcomes for cancer patients. Resistance mechanisms, however, can also confer new resistance-specific vulnerabilities, termed collateral sensitivities. Here we investigated anaplastic lymphoma kinase (ALK) inhibitor resistance in neuroblastoma, a childhood cancer frequently affected by activating ALK alterations. METHODS Genome-wide forward genetic CRISPR-Cas9 based screens were performed to identify genes associated with ALK inhibitor resistance in neuroblastoma cell lines. Furthermore, the neuroblastoma cell line NBLW-R was rendered resistant by continuous exposure to ALK inhibitors. Genes identified to be associated with ALK inhibitor resistance were further investigated by generating suitable cell line models. In addition, tumor and liquid biopsy samples of four patients with ALK-mutated neuroblastomas before ALK inhibitor treatment and during tumor progression under treatment were genomically profiled. RESULTS Both genome-wide CRISPR-Cas9-based screens and preclinical spontaneous ALKi resistance models identified NF1 loss and activating NRASQ61K mutations to confer resistance to chemically diverse ALKi. Moreover, human neuroblastomas recurrently developed de novo loss of NF1 and activating RAS mutations after ALKi treatment, leading to therapy resistance. Pathway-specific perturbations confirmed that NF1 loss and activating RAS mutations lead to RAS-MAPK signaling even in the presence of ALKi. Intriguingly, NF1 loss rendered neuroblastoma cells hypersensitive to MEK inhibition. CONCLUSIONS Our results provide a clinically relevant mechanistic model of ALKi resistance in neuroblastoma and highlight new clinically actionable collateral sensitivities in resistant cells.
Collapse
Affiliation(s)
- Mareike Berlak
- Department of Pediatric Oncology/Hematology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin School of Integrative Oncology (BSIO), Augustenburger Platz 1, 13353, Berlin, Germany
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universität Berlin, Kelchstr.31, 12169, Berlin, Germany
| | - Elizabeth Tucker
- Paediatric Solid Tumour Biology and Therapeutics Team, Clinical Division and Cancer Therapeutics Division, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | - Mathurin Dorel
- Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Pathology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
- IRI Life Sciences, Humboldt University Berlin, 10115, Berlin, Germany
| | - Annika Winkler
- Department of Pediatric Oncology/Hematology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Aleixandria McGearey
- Department of Pediatric Oncology/Hematology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Elias Rodriguez-Fos
- Department of Pediatric Oncology/Hematology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Experimental and Clinical Research Center (ECRC) of the Charité and Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125, Berlin, Germany
| | - Barbara Martins da Costa
- Paediatric Solid Tumour Biology and Therapeutics Team, Clinical Division and Cancer Therapeutics Division, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | - Karen Barker
- Paediatric Solid Tumour Biology and Therapeutics Team, Clinical Division and Cancer Therapeutics Division, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | - Elicia Fyle
- Paediatric Solid Tumour Biology and Therapeutics Team, Clinical Division and Cancer Therapeutics Division, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | - Elizabeth Calton
- Paediatric Solid Tumour Biology and Therapeutics Team, Clinical Division and Cancer Therapeutics Division, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | - Selma Eising
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Kim Ober
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Deborah Hughes
- Molecular Diagnostics Department, The Institute of Cancer Research and Clinical Genomics, The Royal Marsden NHS Foundation, London, UK
| | - Eleni Koutroumanidou
- Molecular Diagnostics Department, The Institute of Cancer Research and Clinical Genomics, The Royal Marsden NHS Foundation, London, UK
| | - Paul Carter
- Molecular Diagnostics Department, The Institute of Cancer Research and Clinical Genomics, The Royal Marsden NHS Foundation, London, UK
| | - Reda Stankunaite
- Molecular Diagnostics Department, The Institute of Cancer Research and Clinical Genomics, The Royal Marsden NHS Foundation, London, UK
| | - Paula Proszek
- Molecular Diagnostics Department, The Institute of Cancer Research and Clinical Genomics, The Royal Marsden NHS Foundation, London, UK
| | - Neha Jain
- Cancer Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Carolina Rosswog
- Department of Experimental Pediatric Oncology, Center for Molecular Medicine Cologne, 50931, Cologne, Germany
| | - Heathcliff Dorado-Garcia
- Department of Pediatric Oncology/Hematology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Jan Jasper Molenaar
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of pharmaceutical sciences, Utrecht University, Utrecht, The Netherlands
| | - Mike Hubank
- Molecular Diagnostics Department, The Institute of Cancer Research and Clinical Genomics, The Royal Marsden NHS Foundation, London, UK
| | - Giuseppe Barone
- Cancer Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - John Anderson
- Cancer Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Peter Lang
- Department of Pediatric Oncology/Hematology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Department of Pediatric Hematology and Oncology, University Hospital, Tübingen, Germany
| | - Hedwig Elisabeth Deubzer
- Department of Pediatric Oncology/Hematology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Experimental and Clinical Research Center (ECRC) of the Charité and Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125, Berlin, Germany
- German Cancer Consortium (DKTK), Berlin, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Annette Künkele
- Department of Pediatric Oncology/Hematology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- German Cancer Consortium (DKTK), Berlin, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Matthias Fischer
- Department of Experimental Pediatric Oncology, Center for Molecular Medicine Cologne, 50931, Cologne, Germany
| | - Angelika Eggert
- Department of Pediatric Oncology/Hematology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- German Cancer Consortium (DKTK), Berlin, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universität Berlin, Kelchstr.31, 12169, Berlin, Germany
| | - Anton George Henssen
- Department of Pediatric Oncology/Hematology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Experimental and Clinical Research Center (ECRC) of the Charité and Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125, Berlin, Germany
- German Cancer Consortium (DKTK), Berlin, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Michael Boettcher
- Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), 06120, Halle, Germany
| | - Falk Hertwig
- Department of Pediatric Oncology/Hematology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Nils Blüthgen
- Institute of Pathology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
- IRI Life Sciences, Humboldt University Berlin, 10115, Berlin, Germany
- German Cancer Consortium (DKTK), Berlin, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Louis Chesler
- Paediatric Solid Tumour Biology and Therapeutics Team, Clinical Division and Cancer Therapeutics Division, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | - Johannes Hubertus Schulte
- Department of Pediatric Oncology/Hematology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
- German Cancer Consortium (DKTK), Berlin, Germany.
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
| |
Collapse
|
30
|
Shendy NAM, Zimmerman MW, Abraham BJ, Durbin AD. Intrinsic transcriptional heterogeneity in neuroblastoma guides mechanistic and therapeutic insights. Cell Rep Med 2022; 3:100632. [PMID: 35584622 PMCID: PMC9133465 DOI: 10.1016/j.xcrm.2022.100632] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/24/2022] [Accepted: 04/20/2022] [Indexed: 12/20/2022]
Abstract
Cell state is controlled by master transcription factors (mTFs) that determine the cellular gene expression program. Cancer cells acquire dysregulated gene expression programs by mutational and non-mutational processes. Intratumoral heterogeneity can result from cells displaying distinct mTF-regulated cell states, which co-exist within the tumor. One archetypal tumor associated with transcriptionally regulated heterogeneity is high-risk neuroblastoma (NB). Patients with NB have poor overall survival despite intensive therapies, and relapsed patients are commonly refractory to treatment. The cellular populations that comprise NB are marked by different cohorts of mTFs and differential sensitivity to conventional therapies. Recent studies have highlighted mechanisms by which NB cells dynamically shift the cell state with treatment, revealing new opportunities to control the cellular response to treatment by manipulating cell-state-defining transcriptional programs. Here, we review recent advances in understanding transcriptionally defined cancer heterogeneity. We offer challenges to the field to encourage translation of basic science into clinical benefit.
Collapse
Affiliation(s)
- Noha A M Shendy
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mark W Zimmerman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Brian J Abraham
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Adam D Durbin
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
31
|
Deng S, Feng Y, Pauklin S. 3D chromatin architecture and transcription regulation in cancer. J Hematol Oncol 2022; 15:49. [PMID: 35509102 PMCID: PMC9069733 DOI: 10.1186/s13045-022-01271-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/21/2022] [Indexed: 12/18/2022] Open
Abstract
Chromatin has distinct three-dimensional (3D) architectures important in key biological processes, such as cell cycle, replication, differentiation, and transcription regulation. In turn, aberrant 3D structures play a vital role in developing abnormalities and diseases such as cancer. This review discusses key 3D chromatin structures (topologically associating domain, lamina-associated domain, and enhancer-promoter interactions) and corresponding structural protein elements mediating 3D chromatin interactions [CCCTC-binding factor, polycomb group protein, cohesin, and Brother of the Regulator of Imprinted Sites (BORIS) protein] with a highlight of their associations with cancer. We also summarise the recent development of technologies and bioinformatics approaches to study the 3D chromatin interactions in gene expression regulation, including crosslinking and proximity ligation methods in the bulk cell population (ChIA-PET and HiChIP) or single-molecule resolution (ChIA-drop), and methods other than proximity ligation, such as GAM, SPRITE, and super-resolution microscopy techniques.
Collapse
Affiliation(s)
- Siwei Deng
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, UK
| | - Yuliang Feng
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, UK
| | - Siim Pauklin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, UK.
| |
Collapse
|
32
|
Zhou Y, Petrovic J, Zhao J, Zhang W, Bigdeli A, Zhang Z, Berger SL, Pear WS, Faryabi RB. EBF1 nuclear repositioning instructs chromatin refolding to promote therapy resistance in T leukemic cells. Mol Cell 2022; 82:1003-1020.e15. [PMID: 35182476 PMCID: PMC8897266 DOI: 10.1016/j.molcel.2022.01.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/05/2021] [Accepted: 01/19/2022] [Indexed: 12/12/2022]
Abstract
Chromatin misfolding has been implicated in cancer pathogenesis; yet, its role in therapy resistance remains unclear. Here, we systematically integrated sequencing and imaging data to examine the spatial and linear chromatin structures in targeted therapy-sensitive and -resistant human T cell acute lymphoblastic leukemia (T-ALL). We found widespread alterations in successive layers of chromatin organization including spatial compartments, contact domain boundaries, and enhancer positioning upon the emergence of targeted therapy resistance. The reorganization of genome folding structures closely coincides with the restructuring of chromatin activity and redistribution of architectural proteins. Mechanistically, the derepression and repositioning of the B-lineage-determining transcription factor EBF1 from the heterochromatic nuclear envelope to the euchromatic interior instructs widespread genome refolding and promotes therapy resistance in leukemic T cells. Together, our findings suggest that lineage-determining transcription factors can instruct changes in genome topology as a driving force for epigenetic adaptations in targeted therapy resistance.
Collapse
Affiliation(s)
- Yeqiao Zhou
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jelena Petrovic
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jingru Zhao
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Wu Zhang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ashkan Bigdeli
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Zhen Zhang
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Shelley L Berger
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Warren S Pear
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Robert B Faryabi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
33
|
Yang Z, Pu M, Dong X, Yang H, Chang W, Liu T, Zhang X. CTCF-activated SNHG16 facilitates gastrointestinal stromal tumor by targeting miR-128-3p/CASC3 axis. Exp Cell Res 2022; 417:113131. [DOI: 10.1016/j.yexcr.2022.113131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/08/2022] [Accepted: 03/27/2022] [Indexed: 11/29/2022]
|
34
|
Xu H, Fang M, Li C, Zuo B, Ren J, Zhang Y. BORIS-mediated generation of circular RNAs induces inflammation. Transl Oncol 2022; 18:101363. [PMID: 35182955 PMCID: PMC8857574 DOI: 10.1016/j.tranon.2022.101363] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 11/04/2022] Open
Abstract
Cancer circRNAs can serve as a vaccine for cancer prevention. Cancer circRNAs activate TLR3 to stimulate NF-κB p65 and provoke inflammation. BORIS interactes with motifs adjacent to circRNA splicing sites. BORIS regulates the expression of circRNAs. Circular RNAs (circRNAs), which are more stable than linear mRNAs and long non-coding RNAs (LncRNAs), are detected in body fluids such as plasma, serum, and exosomes. Disease-associated circRNAs have significant clinical roles due to their diagnostic and prognostic values. Brother of regulator of imprinting site (BORIS) promotes cancer progression and is specifically highly expressed in the majority of carcinoma. However, the mechanism underlying the regulation of circRNAs by the oncoprotein BORIS and their role in regulating inflammation and immunity remain to be further explored. Vaccines prepared from circRNAs extracted from cancer cells showed that circRNAs induced inflammation and prevented cancer progression. Serum from animals injected with cancer cell-derived circRNAs vigorously reacted with cells that expressed cancer-specific antigen BORIS or cancer extracted circRNAs. It has been implicated that cancer-related circRNAs could be used as antigens to activate immune responses to prevent cancers and stimulate NF-κB signaling pathway by up-regulating and inducing TLR3. In the study we also found that BORIS regulated the expression of circRNAs and interacted with RNA motifs and the CCCTC binding factor (CTCF) motif adjacent to circRNA splicing sites to enhance the formation of circRNAs. Thus, our study delineated the novel mechanism by which cancer-specific antigen BORIS regulated circRNAs and identified that circRNAs could serve as a vaccine for cancer prevention.
Collapse
Affiliation(s)
- Hao Xu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou 310013, China
| | - Mengdie Fang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou 310013, China
| | - Chao Li
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou 310013, China
| | - Bowen Zuo
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou 310013, China
| | - Juan Ren
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou 310013, China
| | - Yanmei Zhang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou 310013, China.
| |
Collapse
|
35
|
CTCFL regulates the PI3K-Akt pathway and it is a target for personalized ovarian cancer therapy. NPJ Syst Biol Appl 2022; 8:5. [PMID: 35132075 PMCID: PMC8821627 DOI: 10.1038/s41540-022-00214-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 01/05/2022] [Indexed: 12/04/2022] Open
Abstract
High-grade serous ovarian carcinoma (HGSC) is the most lethal gynecologic malignancy due to the lack of reliable biomarkers, effective treatment, and chemoresistance. Improving the diagnosis and the development of targeted therapies is still needed. The molecular pathomechanisms driving HGSC progression are not fully understood though crucial for effective diagnosis and identification of novel targeted therapy options. The oncogene CTCFL (BORIS), the paralog of CTCF, is a transcriptional factor highly expressed in ovarian cancer (but in rarely any other tissue in females) with cancer-specific characteristics and therapeutic potential. In this work, we seek to understand the regulatory functions of CTCFL to unravel new target genes with clinical relevance. We used in vitro models to evaluate the transcriptional changes due to the presence of CTCFL, followed by a selection of gene candidates using de novo network enrichment analysis. The resulting mechanistic candidates were further assessed regarding their prognostic potential and druggability. We show that CTCFL-driven genes are involved in cytoplasmic membrane functions; in particular, the PI3K-Akt initiators EGFR1 and VEGFA, as well as ITGB3 and ITGB6 are potential drug targets. Finally, we identified the CTCFL targets ACTBL2, MALT1 and PCDH7 as mechanistic biomarkers to predict survival in HGSC. Finally, we elucidated the value of CTCFL in combination with its targets as a prognostic marker profile for HGSC progression and as putative drug targets.
Collapse
|
36
|
Sharifi Tabar M, Francis H, Yeo D, Bailey CG, Rasko JEJ. Mapping oncogenic protein interactions for precision medicine. Int J Cancer 2022; 151:7-19. [PMID: 35113472 PMCID: PMC9306658 DOI: 10.1002/ijc.33954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/10/2022]
Abstract
Normal protein‐protein interactions (normPPIs) occur with high fidelity to regulate almost every physiological process. In cancer, this highly organised and precisely regulated network is disrupted, hijacked or reprogrammed resulting in oncogenic protein‐protein interactions (oncoPPIs). OncoPPIs, which can result from genomic alterations, are a hallmark of many types of cancers. Recent technological advances in the field of mass spectrometry (MS)‐based interactomics, structural biology and drug discovery have prompted scientists to identify and characterise oncoPPIs. Disruption of oncoPPI interfaces has become a major focus of drug discovery programs and has resulted in the use of PPI‐specific drugs clinically. However, due to several technical hurdles, studies to build a reference oncoPPI map for various cancer types have not been undertaken. Therefore, there is an urgent need for experimental workflows to overcome the existing challenges in studying oncoPPIs in various cancers and to build comprehensive reference maps. Here, we discuss the important hurdles for characterising oncoPPIs and propose a three‐phase multidisciplinary workflow to identify and characterise oncoPPIs. Systematic identification of cancer‐type‐specific oncogenic interactions will spur new opportunities for PPI‐focused drug discovery projects and precision medicine.
Collapse
Affiliation(s)
- Mehdi Sharifi Tabar
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Cancer & Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Faculty of Medicine & Health, The University of Sydney, Sydney, NSW, Australia
| | - Habib Francis
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Cancer & Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Faculty of Medicine & Health, The University of Sydney, Sydney, NSW, Australia
| | - Dannel Yeo
- Faculty of Medicine & Health, The University of Sydney, Sydney, NSW, Australia.,Li Ka Shing Cell & Gene Therapy Program, The University of Sydney, Camperdown, NSW, Australia.,Cell & Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District, Camperdown, NSW, Australia
| | - Charles G Bailey
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Cancer & Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Faculty of Medicine & Health, The University of Sydney, Sydney, NSW, Australia
| | - John E J Rasko
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Faculty of Medicine & Health, The University of Sydney, Sydney, NSW, Australia.,Li Ka Shing Cell & Gene Therapy Program, The University of Sydney, Camperdown, NSW, Australia.,Cell & Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District, Camperdown, NSW, Australia
| |
Collapse
|
37
|
Johnson KS, Hussein S, Chakraborty P, Muruganantham A, Mikhail S, Gonzalez G, Song S, Jolly MK, Toneff MJ, Benton ML, Lin YC, Taube JH. CTCF Expression and Dynamic Motif Accessibility Modulates Epithelial-Mesenchymal Gene Expression. Cancers (Basel) 2022; 14:cancers14010209. [PMID: 35008373 PMCID: PMC8750563 DOI: 10.3390/cancers14010209] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) and its reversal, mesenchymal-epithelial transition (MET) drive tissue reorganization critical for early development. In carcinomas, processing through EMT, MET, or partial states promotes migration, invasion, dormancy, and metastatic colonization. As a reversible process, EMT is inherently regulated at epigenetic and epigenomic levels. To understand the epigenomic nature of reversible EMT and its partial states, we characterized chromatin accessibility dynamics, transcriptomic output, protein expression, and cellular phenotypes during stepwise reversible EMT. We find that the chromatin insulating protein machinery, including CTCF, is suppressed and re-expressed, coincident with broad alterations in chromatin accessibility, during EMT/MET, and is lower in triple-negative breast cancer cell lines with EMT features. Through an analysis of chromatin accessibility using ATAC-seq, we identify that early phases of EMT are characterized by enrichment for AP-1 family member binding motifs, but also by a diminished enrichment for CTCF binding motifs. Through a loss-of-function analysis, we demonstrate that the suppression of CTCF alters cellular plasticity, strengthening the epithelial phenotype via the upregulation of epithelial markers E-cadherin/CDH1 and downregulation of N-cadherin/CDH2. Conversely, the upregulation of CTCF leads to the upregulation of EMT gene expression and an increase in mesenchymal traits. These findings are indicative of a role of CTCF in regulating epithelial-mesenchymal plasticity and gene expression.
Collapse
Affiliation(s)
- Kelsey S. Johnson
- Department of Biology, Baylor University, Waco, TX 76706, USA; (K.S.J.); (A.M.); (S.M.); (G.G.); (S.S.)
| | - Shaimaa Hussein
- Baylor Institute for Immunology Research, Baylor Scott & White, Dallas, TX 75246, USA; (S.H.); (Y.C.L.)
| | - Priyanka Chakraborty
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India; (P.C.); (M.K.J.)
| | - Arvind Muruganantham
- Department of Biology, Baylor University, Waco, TX 76706, USA; (K.S.J.); (A.M.); (S.M.); (G.G.); (S.S.)
| | - Sheridan Mikhail
- Department of Biology, Baylor University, Waco, TX 76706, USA; (K.S.J.); (A.M.); (S.M.); (G.G.); (S.S.)
| | - Giovanny Gonzalez
- Department of Biology, Baylor University, Waco, TX 76706, USA; (K.S.J.); (A.M.); (S.M.); (G.G.); (S.S.)
| | - Shuxuan Song
- Department of Biology, Baylor University, Waco, TX 76706, USA; (K.S.J.); (A.M.); (S.M.); (G.G.); (S.S.)
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India; (P.C.); (M.K.J.)
| | | | | | - Yin C. Lin
- Baylor Institute for Immunology Research, Baylor Scott & White, Dallas, TX 75246, USA; (S.H.); (Y.C.L.)
| | - Joseph H. Taube
- Department of Biology, Baylor University, Waco, TX 76706, USA; (K.S.J.); (A.M.); (S.M.); (G.G.); (S.S.)
- Dan L. Duncan Cancer Center, Houston, TX 76706, USA
- Correspondence:
| |
Collapse
|
38
|
Yi X, Zheng Z, Xu H, Zhou Y, Huang D, Wang J, Feng X, Zhao K, Fan X, Zhang S, Dong X, Wang Z, Shen Y, Cheng H, Shi L, Li MJ. Interrogating cell type-specific cooperation of transcriptional regulators in 3D chromatin. iScience 2021; 24:103468. [PMID: 34888502 PMCID: PMC8634045 DOI: 10.1016/j.isci.2021.103468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/23/2021] [Accepted: 11/12/2021] [Indexed: 12/14/2022] Open
Abstract
Context-specific activities of transcription regulators (TRs) in the nucleus modulate spatiotemporal gene expression precisely. Using the largest ChIP-seq data and chromatin loops in the human K562 cell line, we initially interrogated TR cooperation in 3D chromatin via a graphical model and revealed many known and novel TRs manipulating context-specific pathways. To explore TR cooperation across broad tissue/cell types, we systematically leveraged large-scale open chromatin profiles, computational footprinting, and high-resolution chromatin interactions to investigate tissue/cell type-specific TR cooperation. We first delineated a landscape of TR cooperation across 40 human tissue/cell types. Network modularity analyses uncovered the commonality and specificity of TR cooperation in different conditions. We also demonstrated that TR cooperation information can better interpret the disease-causal variants identified by genome-wide association studies and recapitulate cell states during neural development. Our study characterizes shared and unique patterns of TR cooperation associated with the cell type specificity of gene regulation in 3D chromatin.
Computational inference of transcriptional regulator (TR) cooperation in 3D chromatin A landscape of 3D TR cooperation across 40 human tissue/cell types TR cooperation can better interpret the disease-causal variants identified by GWAS Cooperation of certain TRs shapes context-specific gene regulation in cell development
Collapse
Affiliation(s)
- Xianfu Yi
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China.,Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China
| | - Zhanye Zheng
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Hang Xu
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China
| | - Yao Zhou
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China.,Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Dandan Huang
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jianhua Wang
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China.,Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xiangling Feng
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China.,Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Ke Zhao
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China.,Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xutong Fan
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China.,Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Shijie Zhang
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China.,Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xiaobao Dong
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China.,Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Zhao Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yujun Shen
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, Chinese Academy of Medical Sciences, Tianjin 300070, China
| | - Lei Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Mulin Jun Li
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China.,Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.,Department of Epidemiology and Biostatistics, Tianjin Key Laboratory of Molecular Cancer Epidemiology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
39
|
D'Oto A, Fang J, Jin H, Xu B, Singh S, Mullasseril A, Jones V, Abu-Zaid A, von Buttlar X, Cooke B, Hu D, Shohet J, Murphy AJ, Davidoff AM, Yang J. KDM6B promotes activation of the oncogenic CDK4/6-pRB-E2F pathway by maintaining enhancer activity in MYCN-amplified neuroblastoma. Nat Commun 2021; 12:7204. [PMID: 34893606 PMCID: PMC8664842 DOI: 10.1038/s41467-021-27502-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
The H3K27me2/me3 histone demethylase KDM6B is essential to neuroblastoma cell survival. However, the mechanism of KDM6B action remains poorly defined. We demonstrate that inhibition of KDM6B activity 1) reduces the chromatin accessibility of E2F target genes and MYCN, 2) selectively leads to an increase of H3K27me3 but a decrease of the enhancer mark H3K4me1 at the CTCF and BORIS binding sites, which may, consequently, disrupt the long-range chromatin interaction of MYCN and E2F target genes, and 3) phenocopies the transcriptome induced by the specific CDK4/6 inhibitor palbociclib. Overexpression of CDK4/6 or Rb1 knockout confers neuroblastoma cell resistance to both palbociclib and the KDM6 inhibitor GSK-J4. These data indicate that KDM6B promotes an oncogenic CDK4/6-pRB-E2F pathway in neuroblastoma cells via H3K27me3-dependent enhancer-promoter interactions, providing a rationale to target KDM6B for high-risk neuroblastoma. The histone demethylase KDM6B is reported to be essential for neuroblastoma cell survival. Here the authors show that KDM6B regulates CDK4/6-pRB-E2F pathway through H3K27me3-dependent enhancer-promoter interactions in neuroblastoma.
Collapse
Affiliation(s)
- Alexandra D'Oto
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Jie Fang
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Hongjian Jin
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Shivendra Singh
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Anoushka Mullasseril
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Victoria Jones
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Ahmed Abu-Zaid
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Xinyu von Buttlar
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Bailey Cooke
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Dongli Hu
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Jason Shohet
- Department of Pediatrics, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA, 01655, USA
| | - Andrew J Murphy
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Andrew M Davidoff
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| | - Jun Yang
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
40
|
Westerhout EM, Hamdi M, Stroeken P, Nowakowska NE, Lakeman A, van Arkel J, Hasselt NE, Bleijlevens B, Akogul N, Haneveld F, Chan A, van Sluis P, Zwijnenburg D, Volckmann R, van Noesel CJ, Adameyko I, van Groningen T, Koster J, Valentijn LJ, van Nes J, Versteeg R. Mesenchymal type neuroblastoma cells escape ALK inhibitors. Cancer Res 2021; 82:484-496. [PMID: 34853072 DOI: 10.1158/0008-5472.can-21-1621] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/08/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022]
Abstract
Cancer therapy frequently fails due to the emergence of resistance. Many tumors include phenotypically immature tumor cells, which have been implicated in therapy resistance. Neuroblastoma cells can adopt a lineage committed adrenergic (ADRN) or an immature mesenchymal (MES) state. They differ in epigenetic landscape and transcription factors, and MES cells are more resistant to chemotherapy. Here we analyzed the response of MES cells to targeted drugs. Activating ALK mutations are frequently found in neuroblastoma and ALK inhibitors (ALKi) are in clinical trials. ALKi treatment of ADRN neuroblastoma cells with a tumor-driving ALK mutation induced cell death. Conversely, MES cells did not express either mutant or wild-type ALK and were resistant to ALKi, and MES cells formed tumors that progressed under ALKi therapy. In assessing the role of MES cells in relapse development, TRAIL was identified to specifically induce apoptosis in MES cells and suppress MES tumor growth. Addition of TRAIL to ALKi treatment of neuroblastoma xenografts delayed relapses in a subset of the animals, suggesting a role for MES cells in relapse formation. While ADRN cells resembled normal embryonal neuroblasts, MES cells resembled immature precursor cells which also lacked ALK expression. Resistance to targeted drugs can therefore be an intrinsic property of immature cancer cells based on their resemblance to developmental precursors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Boris Bleijlevens
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam
| | | | | | | | | | | | | | | | | | | | - Jan Koster
- Department of Oncogenomics, Amsterdam UMC, University of Amsterdam
| | | | | | | |
Collapse
|
41
|
Rao GK, Makani VKK, Mendonza JJ, Edathara PM, Patel N, Ramakrishna M, Cilamkoti P, Chiring Phukon J, Jose J, Bhadra U, Bhadra MP. Downregulation of BORIS/CTCFL leads to ROS-dependent cellular senescence and drug sensitivity in MYCN-amplified neuroblastoma. FEBS J 2021; 289:2915-2934. [PMID: 34854238 DOI: 10.1111/febs.16309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 11/08/2021] [Accepted: 11/30/2021] [Indexed: 12/28/2022]
Abstract
Brother of Regulator of Imprinted Sites (BORIS) or CCCTC-binding factor like (CTCFL) is a nucleotide-binding protein, aberrantly expressed in various malignancies. Expression of BORIS has been found to be associated with the expression of oncogenes which regulate the reactive oxygen species (ROS) biogenesis, DNA double-strand break repair, regulation of stemness, and induction of cellular senescence. In the present study, we have analyzed the effects of knockdown of BORIS, a potential oncogene, on the induction of senescence and tumor suppression. Loss of BORIS downregulated the expression of critical oncogenes such as BMI1, Akt, MYCN, and STAT3, whereas overexpression increased their respective expression levels in MYCN-amplified neuroblastoma cells. BORIS knockdown exhibited high levels of ROS biogenesis, indicating an upregulated mitochondrial superoxide production and thereby induction of senescence. Our study also showed that the loss of BORIS facilitated cellular senescence through the disruption of telomere integrity via altering the expression of various proteins required for telomere capping (POT1, TRF2, and TIN1). In addition to affecting ROS production and DNA damage, BORIS knockdown sensitized the cells toward chemotherapeutic drugs and induced apoptosis. Tumor induction studies on in vivo xenograft mouse models showed that cells with loss of BORIS/CTCFL failed to induce tumors. From our study, we conclude that silencing BORIS/CTCFL influences tumor growth and proliferation by regulating key oncogenes. The results also indicated that the BORIS knockdown can cause cellular senescence and upon a combinatorial treatment with chemotherapeutic drugs can induce enhanced drug sensitivity in MYCN-amplified neuroblastoma cells.
Collapse
Affiliation(s)
- Garikapati Koteswara Rao
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), (CSIR-HRDC) Campus, CSIR- Human Resource Development Centre, Ghaziabad, Uttar Pradesh, India
| | - Venkata Krishna Kanth Makani
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), (CSIR-HRDC) Campus, CSIR- Human Resource Development Centre, Ghaziabad, Uttar Pradesh, India
| | - Jolly Janette Mendonza
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), (CSIR-HRDC) Campus, CSIR- Human Resource Development Centre, Ghaziabad, Uttar Pradesh, India
| | | | - Nibedita Patel
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Maresha Ramakrishna
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Priyanka Cilamkoti
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | | | - Jedy Jose
- Animal House Group, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Utpal Bhadra
- Functional Genomics and Gene Silencing Group, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Manika Pal Bhadra
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| |
Collapse
|
42
|
Resistance to Targeted Agents Used to Treat Paediatric ALK-Positive ALCL. Cancers (Basel) 2021; 13:cancers13236003. [PMID: 34885113 PMCID: PMC8656581 DOI: 10.3390/cancers13236003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary In general, the non-Hodgkin lymphoma (NHL), anaplastic large cell lymphoma (ALCL) diagnosed in childhood has a good survival outcome when treated with multi-agent chemotherapy. However, side effects of treatment are common, and outcomes are poorer after relapse, which occurs in up to 30% of cases. New drugs are required that are more effective and have fewer side effects. Targeted therapies are potential solutions to these problems, however, the development of resistance may limit their impact. This review summarises the potential resistance mechanisms to these targeted therapies. Abstract Non-Hodgkin lymphoma (NHL) is the third most common malignancy diagnosed in children. The vast majority of paediatric NHL are either Burkitt lymphoma (BL), diffuse large B-cell lymphoma (DLBCL), anaplastic large cell lymphoma (ALCL), or lymphoblastic lymphoma (LL). Multi-agent chemotherapy is used to treat all of these types of NHL, and survival is over 90% but the chemotherapy regimens are intensive, and outcomes are generally poor if relapse occurs. Therefore, targeted therapies are of interest as potential solutions to these problems. However, the major problem with all targeted agents is the development of resistance. Mechanisms of resistance are not well understood, but increased knowledge will facilitate optimal management strategies through improving our understanding of when to select each targeted agent, and when a combinatorial approach may be helpful. This review summarises currently available knowledge regarding resistance to targeted therapies used in paediatric anaplastic lymphoma kinase (ALK)-positive ALCL. Specifically, we outline where gaps in knowledge exist, and further investigation is required in order to find a solution to the clinical problem of drug resistance in ALCL.
Collapse
|
43
|
Makani VKK, Mendonza JJ, Edathara PM, Yerramsetty S, Pal Bhadra M. BORIS/CTCFL expression activates the TGFβ signaling cascade and induces Drp1 mediated mitochondrial fission in neuroblastoma. Free Radic Biol Med 2021; 176:62-72. [PMID: 34534628 DOI: 10.1016/j.freeradbiomed.2021.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 11/19/2022]
Abstract
The cancer-testis antigen CTCFL/BORIS (Brother of Regulator of Imprinted Sites) also known, as a paralog of CTCF -the "master weaver of the genome" is a key transcriptional regulator. Both CTCF and BORIS can bind to the same promoter sequence and recruit diverse proteins. BORIS is also known to be associated with actively translating ribosomes suggesting new roles of BORIS in gene expression. Various studies have attempted to elucidate the role of BORIS in different cell types for the development of targeted therapy depending on molecular signatures and genetic aberrations associated with the disease type. The current study is focused on its role in neuroblastoma. Here, we have deciphered the role of BORIS on TGFβ1 pathway which is highly affected by embryonic CTCFL expression. BORIS stabilized the SMAD3 and SMAD4 transcripts leading to prolonged TGFβ activation. Further, loss of BORIS abrogated both the canonical and non-canonical TGFβ signaling suggesting the dependency of TGFβ on BORIS. The effect on the metabolic profile of the neuroblastoma cells were analyzed with change in BORIS expression levels. Also, ectopic expression of BORIS leads to Drp1 phosphorylation (Ser616) enhancing mitochondrial fission followed by a switch in cellular metabolism towards glycolysis. This cellular metabolism switch was in turn supported with a reduction in oxygen consumption rate upon BORIS expression. Interestingly methylome analysis revealed patterns of global histone methylation, a mechanism that regulate important signaling pathways in neuroblastoma. This study analyzes the consequence of BORIS expression in neuroblastoma cells and thereby elucidate its downstream targets, which could help in designing effective therapeutic for treating neuroblastoma. Similar results were obtained in both MYCN amplified and non-MYCN neuroblastoma cell lines, indicating a common mechanism of BORIS/CTCFL action in neuroblastoma.
Collapse
Affiliation(s)
- Venkata Krishna Kanth Makani
- Department of Applied Biology, CSIR- Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad, 50007, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Jolly Janette Mendonza
- Department of Applied Biology, CSIR- Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad, 50007, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Prajitha Mohandas Edathara
- Department of Applied Biology, CSIR- Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad, 50007, India
| | - Suresh Yerramsetty
- Department of Applied Biology, CSIR- Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad, 50007, India
| | - Manika Pal Bhadra
- Department of Applied Biology, CSIR- Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad, 50007, India.
| |
Collapse
|
44
|
Wajapeyee N, Gupta R. Epigenetic Alterations and Mechanisms That Drive Resistance to Targeted Cancer Therapies. Cancer Res 2021; 81:5589-5595. [PMID: 34531319 DOI: 10.1158/0008-5472.can-21-1606] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/16/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022]
Abstract
Cancer is a complex disease and cancer cells typically harbor multiple genetic and epigenetic alterations. Large-scale sequencing of patient-derived cancer samples has identified several druggable driver oncogenes. Many of these oncogenes can be pharmacologically targeted to provide effective therapies for breast cancer, leukemia, lung cancer, melanoma, lymphoma, and other cancer types. Initial responses to these agents can be robust in many cancer types and some patients with cancer experience sustained tumor inhibition. However, resistance to these targeted therapeutics frequently emerges, either from intrinsic or acquired mechanisms, posing a major clinical hurdle for effective treatment. Several resistance mechanisms, both cell autonomous and cell nonautonomous, have been identified in different cancer types. Here we describe how alterations of the transcriptome, transcription factors, DNA, and chromatin regulatory proteins confer resistance to targeted therapeutic agents. We also elaborate on how these studies have identified underlying epigenetic factors that drive drug resistance and oncogenic pathways, with direct implications for the prevention and treatment of drug-resistant cancer.
Collapse
Affiliation(s)
- Narendra Wajapeyee
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama. .,O'Neal Comprehensive Cancer Center at the University of Alabama at Birmingham, Birmingham, Alabama
| | - Romi Gupta
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama. .,O'Neal Comprehensive Cancer Center at the University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
45
|
Wang T, Song J, Qu M, Gao X, Zhang W, Wang Z, Zhao L, Wang Y, Li B, Li J, Yang J. Integrative Epigenome Map of the Normal Human Prostate Provides Insights Into Prostate Cancer Predisposition. Front Cell Dev Biol 2021; 9:723676. [PMID: 34513844 PMCID: PMC8427514 DOI: 10.3389/fcell.2021.723676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/06/2021] [Indexed: 12/22/2022] Open
Abstract
Cells of all tissues in the human body share almost the exact same DNA sequence, but the epigenomic landscape can be drastically distinct. To improve our understanding of the epigenetic abnormalities in prostate-related diseases, it is important to use the epigenome of normal prostate as a reference. Although previous efforts have provided critical insights into the genetic and transcriptomic features of the normal prostate, a comprehensive epigenome map has been lacking. To address this need, we conducted a Roadmap Epigenomics legacy project integrating six histone marks (H3K4me1, H3K4me3, H3K9me3, H3K36me3, H3K27me3, and H3K27ac) with complete DNA methylome, transcriptome, and chromatin accessibility data to produce a comprehensive epigenome map of normal prostate tissue. Our epigenome map is composed of 18 chromatin states each with unique signatures of DNA methylation, chromatin accessibility, and gene expression. This map provides a high-resolution comprehensive annotation of regulatory regions of the prostate, including 105,593 enhancer and 70,481 promoter elements, which account for 5.3% of the genome. By comparing with other epigenomes, we identified 7,580 prostate-specific active enhancers associated with prostate development. Epigenomic annotation of GWAS SNPs associated with prostate cancers revealed that two out of nine SNPs within prostate enhancer regions destroyed putative androgen receptor (AR) binding motif. A notable SNP rs17694493, might decouple AR's repressive effect on CDKN2B-AS1 and cell cycle regulation, thereby playing a causal role in predisposing cancer risk. The comprehensive epigenome map of the prostate is valuable for investigating prostate-related diseases.
Collapse
Affiliation(s)
- Tao Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Juan Song
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Qu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xu Gao
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Wenhui Zhang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Ziwei Wang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Lin Zhao
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yan Wang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Bing Li
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Li
- Department of Bioinformatics, Center for Translational Medicine, Second Military Medical University, Shanghai, China
| | - Jinjian Yang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
46
|
Jiang X, Wen J, Paver E, Wu Y, Sun G, Bullman A, Dahlstrom J, Tremethick DJ, Soboleva TA. H2A.B is a cancer/testis factor involved in the activation of ribosome biogenesis in Hodgkin lymphoma. EMBO Rep 2021; 22:e52462. [PMID: 34350706 PMCID: PMC8339673 DOI: 10.15252/embr.202152462] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/02/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Testis-specific regulators of chromatin function are commonly ectopically expressed in human cancers, but their roles are poorly understood. Examination of 81 primary Hodgkin lymphoma (HL) samples showed that the ectopic expression of the eutherian testis-specific histone variant H2A.B is an inherent feature of HL. In experiments using two HL cell lines derived from different subtypes of HL, H2A.B knockdown inhibited cell proliferation. H2A.B was enriched in both nucleoli of these HL cell lines and primary HL samples. We found that H2A.B enhanced ribosomal DNA (rDNA) transcription, was enriched at the rDNA promoter and transcribed regions, and interacted with RNA Pol I. Depletion of H2A.B caused the loss of RNA Pol I from rDNA chromatin. Remarkably, H2A.B was also required for high levels of ribosomal protein gene expression being located at the transcriptional start site and within the gene body. H2A.B knockdown reduced gene body chromatin accessibility of active RNA Pol II genes concurrent with a decrease in transcription. Taken together, our data show that in HL H2A.B has acquired a new function, the ability to increase ribosome biogenesis.
Collapse
Affiliation(s)
- Xuanzhao Jiang
- The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | - Jiayu Wen
- The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | - Elizabeth Paver
- Department of Tissue Pathology and Diagnostic OncologyRoyal Prince Alfred HospitalSydneyNSWAustralia
| | - Yu‐Huan Wu
- The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
- Present address:
IQVIA Solutions Taiwan Ltd.Taipei CityTaiwan
| | - Gege Sun
- The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
- Present address:
Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug DiscoveryHong Kong Polytechnic UniversityHong KongChina
| | - Amanda Bullman
- Department of Anatomical PathologyACT PathologyThe Canberra HospitalCanberraACTAustralia
| | - Jane E Dahlstrom
- Department of Anatomical PathologyACT PathologyThe Canberra HospitalCanberraACTAustralia
- Australian National University Medical SchoolThe Australian National UniversityCanberraACTAustralia
| | - David J Tremethick
- The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | - Tatiana A Soboleva
- The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| |
Collapse
|
47
|
Chromatin insulation dynamics in glioblastoma: challenges and future perspectives of precision oncology. Clin Epigenetics 2021; 13:150. [PMID: 34332627 PMCID: PMC8325855 DOI: 10.1186/s13148-021-01139-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor, having a poor prognosis and a median overall survival of less than two years. Over the last decade, numerous findings regarding the distinct molecular and genetic profiles of GBM have led to the emergence of several therapeutic approaches. Unfortunately, none of them has proven to be effective against GBM progression and recurrence. Epigenetic mechanisms underlying GBM tumor biology, including histone modifications, DNA methylation, and chromatin architecture, have become an attractive target for novel drug discovery strategies. Alterations on chromatin insulator elements (IEs) might lead to aberrant chromatin remodeling via DNA loop formation, causing oncogene reactivation in several types of cancer, including GBM. Importantly, it is shown that mutations affecting the isocitrate dehydrogenase (IDH) 1 and 2 genes, one of the most frequent genetic alterations in gliomas, lead to genome-wide DNA hypermethylation and the consequent IE dysfunction. The relevance of IEs has also been observed in a small population of cancer stem cells known as glioma stem cells (GSCs), which are thought to participate in GBM tumor initiation and drug resistance. Recent studies revealed that epigenomic alterations, specifically chromatin insulation and DNA loop formation, play a crucial role in establishing and maintaining the GSC transcriptional program. This review focuses on the relevance of IEs in GBM biology and their implementation as a potential theranostic target to stratify GBM patients and develop novel therapeutic approaches. We will also discuss the state-of-the-art emerging technologies using big data analysis and how they will settle the bases on future diagnosis and treatment strategies in GBM patients.
Collapse
|
48
|
Rivero-Hinojosa S, Pugacheva EM, Kang S, Méndez-Catalá CF, Kovalchuk AL, Strunnikov AV, Loukinov D, Lee JT, Lobanenkov VV. The combined action of CTCF and its testis-specific paralog BORIS is essential for spermatogenesis. Nat Commun 2021; 12:3846. [PMID: 34158481 PMCID: PMC8219828 DOI: 10.1038/s41467-021-24140-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/28/2021] [Indexed: 01/03/2023] Open
Abstract
CTCF is a key organizer of the 3D genome. Its specialized paralog, BORIS, heterodimerizes with CTCF but is expressed only in male germ cells and in cancer states. Unexpectedly, BORIS-null mice have only minimal germ cell defects. To understand the CTCF-BORIS relationship, mouse models with varied CTCF and BORIS levels were generated. Whereas Ctcf+/+Boris+/+, Ctcf+/-Boris+/+, and Ctcf+/+Boris-/- males are fertile, Ctcf+/-Boris-/- (Compound Mutant; CM) males are sterile. Testes with combined depletion of both CTCF and BORIS show reduced size, defective meiotic recombination, increased apoptosis, and malformed spermatozoa. Although CM germ cells exhibit only 25% of CTCF WT expression, chromatin binding of CTCF is preferentially lost from CTCF-BORIS heterodimeric sites. Furthermore, CM testes lose the expression of a large number of spermatogenesis genes and gain the expression of developmentally inappropriate genes that are "toxic" to fertility. Thus, a combined action of CTCF and BORIS is required to both repress pre-meiotic genes and activate post-meiotic genes for a complete spermatogenesis program.
Collapse
Affiliation(s)
- Samuel Rivero-Hinojosa
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
- Center for Cancer and Immunology Research, Children's National Research Institute, Washington, DC, USA.
| | - Elena M Pugacheva
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Sungyun Kang
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Claudia Fabiola Méndez-Catalá
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Genetics and Molecular Oncology, Building A4, Faculty of Higher Studies (FES) Iztacala, National Autonomous University of Mexico (UNAM), Tlalnepantla, State of Mexico, Mexico
| | - Alexander L Kovalchuk
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alexander V Strunnikov
- Guangzhou Institutes of Biomedicine and Health, Molecular Epigenetics Laboratory, Guangzhou, China
| | - Dmitri Loukinov
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Victor V Lobanenkov
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
49
|
Feng Y, Liu X, Pauklin S. 3D chromatin architecture and epigenetic regulation in cancer stem cells. Protein Cell 2021; 12:440-454. [PMID: 33453053 PMCID: PMC8160035 DOI: 10.1007/s13238-020-00819-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/05/2020] [Indexed: 12/29/2022] Open
Abstract
Dedifferentiation of cell identity to a progenitor-like or stem cell-like state with increased cellular plasticity is frequently observed in cancer formation. During this process, a subpopulation of cells in tumours acquires a stem cell-like state partially resembling to naturally occurring pluripotent stem cells that are temporarily present during early embryogenesis. Such characteristics allow these cancer stem cells (CSCs) to give rise to the whole tumour with its entire cellular heterogeneity and thereby support metastases formation while being resistant to current cancer therapeutics. Cancer development and progression are demarcated by transcriptional dysregulation. In this article, we explore the epigenetic mechanisms shaping gene expression during tumorigenesis and cancer stem cell formation, with an emphasis on 3D chromatin architecture. Comparing the pluripotent stem cell state and epigenetic reprogramming to dedifferentiation in cellular transformation provides intriguing insight to chromatin dynamics. We suggest that the 3D chromatin architecture could be used as a target for re-sensitizing cancer stem cells to therapeutics.
Collapse
Affiliation(s)
- Yuliang Feng
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences Old Road, University of Oxford, Oxford, OX3 7LD, UK
| | - Xingguo Liu
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences Old Road, University of Oxford, Oxford, OX3 7LD, UK.
| |
Collapse
|
50
|
Genome-wide interference of ZNF423 with B-lineage transcriptional circuitries in acute lymphoblastic leukemia. Blood Adv 2021; 5:1209-1223. [PMID: 33646306 DOI: 10.1182/bloodadvances.2020001844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 01/21/2021] [Indexed: 11/20/2022] Open
Abstract
Aberrant expression of the transcriptional modulator and early B-cell factor 1 (EBF1) antagonist ZNF423 has been implicated in B-cell leukemogenesis, but its impact on transcriptional circuitries in lymphopoiesis has not been elucidated in a comprehensive manner. Herein, in silico analyses of multiple expression data sets on 1354 acute leukemia samples revealed a widespread presence of ZNF423 in various subtypes of acute lymphoblastic leukemia (ALL). Average expression of ZNF423 was highest in ETV6-RUNX1, B-other, and TCF3-PBX1 ALL followed by BCR-ABL, hyperdiploid ALL, and KMT2A-rearranged ALL. In a KMT2A-AFF1 pro-B ALL model, a CRISPR-Cas9-mediated genetic ablation of ZNF423 decreased cell viability and significantly prolonged survival of mice upon xenotransplantation. For the first time, we characterized the genome-wide binding pattern of ZNF423, its impact on the chromatin landscape, and differential gene activities in a B-lineage context. In general, chromatin-bound ZNF423 was associated with a depletion of activating histone marks. At the transcriptional level, EBF1-dependent transactivation was disrupted by ZNF423, whereas repressive and pioneering activities of EBF1 were not discernibly impeded. Unexpectedly, we identified an enrichment of ZNF423 at canonical EBF1-binding sites also in the absence of EBF1, which was indicative of intrinsic EBF1-independent ZNF423 activities. A genome-wide motif search at EBF1 target gene loci revealed that EBF1 and ZNF423 co-regulated genes often contain SMAD1/SMAD4-binding motifs as exemplified by the TGFB1 promoter, which was repressed by ZNF423 outcompeting EBF1 by depending on its ability to bind EBF1 consensus sites and to interact with EBF1 or SMADs. Overall, these findings underscore the wide scope of ZNF423 activities that interfere with B-cell lymphopoiesis and contribute to leukemogenesis.
Collapse
|